

JavaScript
A Beginner’s Guide

Third Edition

BeginNew-Tight / JavaScript: A Beginner’s Guide / John Pollock / 295-6 / Front Matter
Blind Folio: ii

BeginNew-Tight / JavaScript: A Beginner’s Guide / John Pollock / 295-6 / Front Matter
Blind Folio: ii

About the Author
John Pollock is employed as a Web Administrator during
the day and works on Web sites and other projects during the
evening. He runs two Web sites devoted to Web development
and design—PageResource.com (www.pageresource.com)
is a development tutorial site, and JavaScript City (www
.javascriptcity.com) is a site that offers free JavaScript code
to Web developers. John holds a bachelor of arts in English
from Sam Houston State University and currently lives in New
Waverly, Texas with his wife Heather.

About the Technical Editor
Scott Duffy is an author and consultant based in Toronto,
Canada. He designs and develops Web sites for small and
medium-sized companies.

www.pageresource.com
www.javascriptcity.com
www.javascriptcity.com

JavaScript
A Beginner’s Guide

Third Edition

John Pollock

New York Chicago San Francisco
Lisbon London Madrid Mexico City
Milan New Delhi San Juan
Seoul Singapore Sydney Toronto

Copyright © 2010 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States Copyright Act
of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval
system, without the prior written permission of the publisher.

ISBN: 978-0-07-163296-6
MHID: 0-07-163296-4

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-163295-9, MHID: 0-07-163295-6.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trad marked
name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infring ment of the
trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate
training programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of human
or mechanical error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or complete-
ness of any information and is not responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and
retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works
based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior
copsent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your
right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES
AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE
WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR
OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMIT-
ED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and
its licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation
will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy,
error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for
the content of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable
for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work,
even if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause
whatsoever whether such claim or cause arises in contract, tort or otherwise.

To my wife Heather Pollock, Bruce and Joy Anderson, and
Dr. J. D. and Linda Andrews

In memory of James D. and Livian Anderson, John William and Edith Hopkins,

Burley T. and Aline Price, and “Doc” Flores

This page intentionally left blank

vii

Contents at a Glance

 1 Introduction to JavaScript . 1

 2 Placing JavaScript in an HTML File . 15

 3 Using Variables . 33

 4 Using Functions . 59

 5 JavaScript Operators . 87

 6 Conditional Statements and Loops . 115

 7 Event Handlers . 147

 8 Objects . 175

 9 The Document Object . 205

 10 Window Object . 241

 11 JavaScript Arrays . 273

 12 Math, Number, and Date Objects . 305

viii JavaScript: A Beginner’s Guide

 13 Handling Strings . 341

 14 JavaScript and Forms . 375

 15 JavaScript and Frames . 407

 16 An Introduction to Advanced Techniques . 435

 A Answers to Self Tests . 467

 Index . 479

ix

Contents

ACKNOWLEDGMENTS . xix
INTRODUCTION . xxi

 1 Introduction to JavaScript . 1
What You Need to Know . 2

Basic HTML and CSS Knowledge . 3
Basic Text Editor and Web Browser Knowledge . 3
Which Version? . 6
Remember, It’s Not Java . 7
Similarities to Other Languages . 8

Beginning with JavaScript . 8
Object Based . 8
Client Side . 8
Scripting Language . 9

Putting It All Together . 9
Online Resources . 10
Try This 1-1: Use JavaScript to Write Text . 10

x JavaScript: A Beginner’s Guide

 2 Placing JavaScript in an HTML File . 15
Using the HTML Script Tags . 16

Identifying the Scripting Language . 16
Calling External Scripts . 17
Using <noscript></noscript> Tags . 17

Creating Your First Script . 19
Writing a “Hello World” Script . 19
Creating an HTML Document for the Script . 20
Inserting the Script into the HTML Document . 20

Try This 2-1: Insert a Script into an HTML Document . 22
Using External JavaScript Files . 23

Creating a JavaScript File . 23
Creating the HTML Files . 24
Viewing the Pages in Your Browser . 25

Try This 2-2: Call an External Script from an HTML Document . 26
Using JavaScript Comments . 27

Inserting Comments on One Line . 28
Adding Multiple-Line Comments . 28

 3 Using Variables . 33
Understanding Variables . 34
Why Variables Are Useful . 35

Variables as Placeholders for Unknown Values . 35
Variables as Time-Savers . 35
Variables as Code Clarifiers . 36

Defining Variables for Your Scripts . 36
Declaring Variables . 36
Assigning Values to Variables . 36
Naming Variables . 38

Understanding Variable Types . 40
Number . 40
String . 41
Boolean . 46
Null . 46

Try This 3-1: Declare Variables . 47
Using Variables in Scripts . 48

Making a Call to a Variable . 49
Adding Variables to Text Strings . 49

Writing a Page of JavaScript . 51
Creating the Framework . 51
Defining the Variables . 51
Adding the Commands . 52
Modifying the Page . 53

Try This 3-2: Create an HTML Page with JavaScript . 55

 Contents xi

 4 Using Functions . 59
What a Function Is . 60
Why Functions Are Useful . 60
Structuring Functions . 61

Declaring Functions . 61
Defining the Code for Functions . 62
Naming Functions . 63
Adding Parameters to Functions . 64
Adding Return Statements to Functions . 66

Calling Functions in Your Scripts . 67
Script Tags: Head Section or Body Section . 68
Calling a Function from Another Function . 70
Calling Functions with Parameters . 72
Calling Functions with Return Statements . 76
Other Ways to Define Functions . 76

Try This 4-1: Create an HTML Page with Functions . 79
Putting It All Together . 81
Try This 4-2: Write Your Own Functions . 83

 5 JavaScript Operators . 87
Understanding the Operator Types . 88
Understanding Mathematical Operators . 89

The Addition Operator (+) . 90
The Subtraction Operator (–) . 92
The Multiplication Operator (*) . 92
The Division Operator (/) . 93
The Modulus Operator (%) . 94
The Increment Operator (++) . 94
The Decrement Operator (– –) . 95
The Unary Negation Operator (–) . 96

Understanding Assignment Operators . 97
The Assignment Operator (=) . 97
The Add-and-Assign Operator (+=) . 98
The Subtract-and-Assign Operator (–=) . 99
The Multiply-and-Assign Operator (*=) . 99
The Divide-and-Assign Operator (/=) . 99
The Modulus-and-Assign Operator (%=) . 99

Try This 5-1: Adjust a Variable Value . 100
Understanding Comparison Operators . 101

The Is-Equal-To Operator (==) . 102
The Is-Not-Equal-To Operator (!=) . 103
The Is-Greater-Than Operator (>) . 103
The Is-Less-Than Operator (<) . 104

xii JavaScript: A Beginner’s Guide

The Is-Greater-Than-or-Equal-To Operator (>=) . 104
The Is-Less-Than-or-Equal-To Operator (<=) . 105
The Strict Is-Equal-To Operator (===) . 105
The Strict Is-Not-Equal-To Operator (!==) . 106

Understanding Logical Operators . 107
The AND Operator (&&) . 107
The OR Operator (||) . 107
The NOT Operator (!) . 108
The Bitwise Operators . 108

Special Operators . 109
Understanding Order of Operations . 110
Try This 5-2: True or False? . 111

 6 Conditional Statements and Loops . 115
Defining Conditional Statements . 116

What Is a Conditional Statement? . 116
Why Conditional Statements Are Useful . 117

Using Conditional Statements . 117
Using if/else Statement Blocks . 117
Using the switch Statement . 125
Using the Conditional Operator . 126

Try This 6-1: Construct an if/else Block . 129
Defining Loops . 130

What Is a Loop? . 130
Why Loops Are Useful . 130

Using Loops . 131
for . 131
while . 137
do while . 139
for in . 140
for each in . 140
Using break and continue . 141

Try This 6-2: Work with for Loops and while Loops . 143

 7 Event Handlers . 147
What Is an Event Handler? . 148
Why Event Handlers Are Useful . 148
Understanding Event Handler Locations and Uses . 149

Using an Event Handler in an HTML Element . 149
Using an Event Handler in the Script Code . 151

Try This 7-1: Create a Button . 153
Learning the Event Handlers . 154

The Abort Event (onabort) . 155
The Blur Event (onblur) . 155

 Contents xiii

The Change Event (onchange) . 156
The Click Event (onclick) . 157
The Focus Event (onfocus) . 158
The Keydown Event (onkeydown) . 159
The Keypress Event (onkeypress) . 160
The Keyup Event (onkeyup) . 160
The Load Event (onload) . 160
The Mousedown Event (onmousedown) . 161
The Mousemove Event (onmousemove) . 161
The Mouseover Event (onmouseover) . 162
The Mouseout Event (onmouseout) . 163
The Mouseup Event (onmouseup) . 164
The Reset Event (onreset) . 164
The Submit Event (onsubmit) . 164
The Unload Event (onunload) . 164

Try This 7-2: Use Events to Send Out Alerts . 165
Creating Scripts Using Event Handlers . 167

The Text Box Message . 167
The Button Link . 169

Other Ways to Register Events . 171
The addEventListener() Method . 172
The attachEvent() Method . 172

 8 Objects . 175
Defining Objects . 176

What Is an Object? . 176
Why Objects Are Useful . 177

Creating Objects . 177
Naming . 177
Object Structure . 178
Adding Methods . 186
Object Manipulation Statements . 190

Try This 8-1: Create a Computer Object . 193
Understanding Predefined JavaScript Objects . 194

The Navigator Object . 194
The History Object . 199

Try This 8-2: Practice with the Predefined Navigator Object . 201

 9 The Document Object . 205
Defining the Document Object . 206
Using the Document Object Model . 206
Using the Properties of the Document Object . 207

The Color Properties . 210
The anchors Property (Array) . 210

xiv JavaScript: A Beginner’s Guide

The cookie Property . 210
The dir Property . 211
The domain Property . 212
The formname Property . 213
The forms Property (Array) . 215
The images Property (Array) . 215
The lastModified Property . 217
The layers Property (Array) . 217
The all Property . 218
The links Property (Array) . 219
The referrer Property . 219
The title Property . 219
The URL Property . 220
The URLUnencoded Property . 220

Using the Methods of the Document Object . 222
The getElementById() Method . 224
The getElementsByClassName() Method . 224
The getElementsByTagName() Method . 225
The open() and close() Methods . 225
The write() Method . 227
The writeln() Method . 227
Creation Methods . 228

Try This 9-1: Add a DOM Node to the Document . 233
Creating Dynamic Scripts . 234

Styles in JavaScript . 234
Coding a Dynamic Script . 235
The innerHTML Property . 236

Try This 9-2: Trying out Property Changes . 238

 10 Window Object . 241
An Introduction to the Window Object . 242
Using the Properties of the Window Object . 242

The closed Property . 243
The defaultStatus Property . 244
The frames Property (Array) . 244
The innerHeight and innerWidth Properties . 244
The length Property . 246
The location Property . 246
The name Property . 246
The opener Property . 247
The parent Property . 248
The self Property . 248
The status Property . 248
The top Property . 248

 Contents xv

Try This 10-1: Use the location and innerWidth Properties . 248
Using the Methods of the Window Object . 249

The alert() Method . 249
The confirm() Method . 251
The find() Method . 253
The home() Method . 253
The print() Method . 254
The prompt() Method . 255
The open() Method . 256
The close() Method . 261
The moveBy() Method . 262
The moveTo() Method . 263
The resizeBy() Method . 265
The resizeTo() Method . 265
The scrollBy() Method . 265
The scrollTo() Method . 265
The setInterval() Method . 265
The clearInterval() Method . 266
The setTimeout() Method . 267
The clearTimeout() Method . 267

Try This 10-2: Use the setTimeout() and confirm() Methods . 269

 11 JavaScript Arrays . 273
What Is an Array? . 274
Why Arrays Are Useful . 275
Defining and Accessing Arrays . 275

Naming an Array . 275
Defining an Array . 276
Accessing an Array’s Elements . 276
Other Ways to Define Arrays . 277

Understanding the Properties and Methods of the Array Object . 279
Properties . 279
Methods . 282
Extended Array Methods . 291

Using Arrays with Loops . 292
Creating Array Elements . 292
Moving Through Arrays . 293

Try This 11-1: Use Loops with Arrays . 297
Using Associative Arrays . 298

Defining Associative Arrays . 299
Accessing Associative Arrays . 299

Try This 11-2: Use Associative Arrays . 301

xvi JavaScript: A Beginner’s Guide

 12 Math, Number, and Date Objects . 305
Using the Math Object . 306

What Is the Math Object? . 306
How the Math Object Is Useful . 306
Properties . 306
Methods . 308

Try This 12-1: Display a Random Link on a Page . 321
Understanding the Number Object . 322

Properties . 322
Methods . 324

Using the Date Object . 326
Properties . 326
Methods . 327
Methods That Get Values . 329
Methods That Set Values . 332
Other Methods . 333
How About Some Date Scripts? . 334

Try This 12-2: Create a JavaScript Clock . 338

 13 Handling Strings . 341
Introduction to the String Object . 342

The String Object . 342
The String Literal . 343
What’s the Difference? . 343

Using the Properties of the String Object . 344
The constructor Property . 344
The length Property . 344
The prototype Property . 345

Using the Methods of the String Object . 345
Methods That Add HTML Tags . 345
The Other Methods . 351

Try This 13-1: Use charAt() to Find a First Letter . 359
Putting Methods Together . 360
Try This 13-2: Use indexOf() to Test an Address . 362
Using Regular Expressions . 363

Creating Regular Expressions . 363
Testing Strings Against Regular Expressions . 364
Adding Flags . 365
Creating Powerful Patterns . 366
Grouping Expressions . 369
The replace(), match(), and search() Methods . 370
More Information . 372

 Contents xvii

 14 JavaScript and Forms . 375
Accessing Forms . 376

Using the forms Array . 376
Using Form Names . 380
Using an ID . 381

Using the Properties and Methods of the Form Object . 382
Properties . 382
Methods . 392

Ensuring the Accessibility of Forms . 392
Using Proper Element and Label Order . 393
Using <label></label> Tags . 393
Using <fieldset></fieldset> Tags . 393
Not Assuming Client-Side Scripting . 394

Validation . 395
onsubmit and the return Statement . 395
Techniques . 396

Try This 14-1: Request a Number . 398
Using Forms for Navigation . 399

Clicking a Button . 399
Try This 14-2: Build a Select Box Navigation Script . 403

 15 JavaScript and Frames . 407
An Introduction to Frames . 408

Purpose of Frames . 408
The Code Behind the Frames . 409
Frame Options . 411

Accessing Frames . 414
The frames Array . 414
Using a Frame Name . 417

Changing Frames . 418
Change a Single Frame . 418
Change Multiple Frames . 419

Try This 15-1: Change Frames . 422
Step by Step . 422

Frame Navigation . 423
Using the Select Box with Frames . 423
Breaking Out of Frames . 424
Sending Viewers to Frames . 426

Using Variables Across Frames . 428
Try This 15-2: Use Variables . 432

xviii JavaScript: A Beginner’s Guide

 16 An Introduction to Advanced Techniques . 435
Debugging Scripts . 436

Types of Errors . 436
JavaScript and Accessibility . 442

Separate Content from Presentation . 442
Enhancing Content . 444

Try This 16-1: Make This Code Accessible . 445
Using Cookies . 446

Setting a Cookie . 446
Reading a Cookie . 449

Try This 16-2: Remember a Name . 451
Working with Images . 452

Preloading . 452
Rollovers . 454

JavaScript Security . 460
Security and Signed Scripts . 460
Page Protection . 460

AJAX . 462
JavaScript Libraries . 463

 A Answers to Self Tests . 467
Chapter 1: Introduction to JavaScript . 468
Chapter 2: Placing JavaScript in an HTML File . 468
Chapter 3: Using Variables . 469
Chapter 4: Using Functions . 469
Chapter 5: JavaScript Operators . 470
Chapter 6: Conditional Statements and Loops . 471
Chapter 7: Event Handlers . 471
Chapter 8: Objects . 472
Chapter 9: The Document Object . 473
Chapter 10: Window Object . 473
Chapter 11: JavaScript Arrays . 474
Chapter 12: Math, Number, and Date Objects . 475
Chapter 13: Handling Strings . 475
Chapter 14: JavaScript and Forms . 476
Chapter 15: JavaScript and Frames . 477
Chapter 16: An Introduction to Advanced Techniques . 477

 Index . 479

xix

Acknowledgments

I would like to begin by thanking my wonderful wife, Heather Pollock, for all of her love,
support, and encouragement in all I do. I love you!

I would like to thank my parents, Bruce and Joy Anderson, for their love and guidance,
and for always supporting my endeavors.

I would like to thank Dr. J. D. and Linda Andrews for their love, guidance, and support.
In addition I would like to thank John and Betty Hopkins (grandparents), James D. and Livian

Anderson (grandparents), Clifton and Juanita Idom (grandparents), Richard Pollock (brother) and
family, Misty Castleman (sister) and family, Warren Anderson (brother) and family, Jon Andrews
(brother) and family, Lisa and Julian Owens (aunt/uncle) and family, and every aunt, uncle,
cousin, or other relation in my family. All of you have been a great influence in my life.

I would like to thank all of my editors at McGraw-Hill/Professional for their outstanding
help and support throughout the writing of this book. Thanks to Jane Brownlow, Joya Anthony,
Janet Walden, Smita Rajan, Bill McManus, Claire Splan, Jim Kussow, Jeff Weeks, and to all of
the copy editors who worked on each edition of the book.

Thanks to my technical editor, Scott Duffy, for editing and checking over all of the technical
aspects of the book, and helping me provide clear explanations of the topics that are covered.

I would like to thank my English professors at Sam Houston State University in Huntsville,
Texas for guiding me toward a better understanding of the English language. Thanks to James J.
Dent, Helena Halmari, Douglas Krienke, Julie Hall, Tracy Bilsing, Phillip Parotti, Ralph Pease,
Paul Ruffin, and Jack Kerr. In addition, I thank all of my other professors at the university for
helping me gain knowledge in so many areas.

xx JavaScript: A Beginner’s Guide

I want to thank my friends for putting up with me and for giving me encouragement when
I have needed it. Thanks to Don Sargent and family, Dwayne Lacy, Marty J. Reeder and family,
Garrett Cradduck and family, and to all of my other friends for your support and guidance.

I would like to thank God for the ability He has given me to help and teach people by my
writing. “In all your ways acknowledge Him, and He shall direct your paths.” (Proverbs 3:6).

xxi

Introduction

Welcome to JavaScript: A Beginner’s Guide, Third Edition! Years ago, I was surfing the
Web and noticed that people were publishing pages about themselves and calling them

homepages. After viewing a number of these, I decided to create a homepage myself. I had no
idea where to begin but, through trial and error, I figured out how to code HTML and publish my
documents on a Web server. Over time, I saw some interesting effects used on other homepages
(like alert messages that popped up out of nowhere or images that would magically change when
I moved my mouse over them). I was curious and just had to know what was being done to
create those effects. Were these page creators using HTML tags I did not know about?

Eventually, one site revealed what they were using to create those effects: JavaScript.
I went in search of information on it, and came across a few tutorials and scripts on the Web.
Since I had programmed in other languages (such as a relatively obscure language called Ada),
I was able to catch on to JavaScript fairly quickly by looking at these tutorials and scripts.

I learned enough that I decided to create a Web site that would teach HTML and JavaScript
to beginners. As soon as I began the project, I received questions from visitors that were
way over my head—forcing me to dig deeper and learn more about JavaScript. As a result,
I became completely familiar with this scripting language and what it can do. Not only can
you add fun effects to a Web page, you can create scripts that will perform useful tasks, like
validate form input, add navigational elements to documents, or react to user events.

The goal of this book is to help you to learn the basics of the JavaScript language with as
little hair pulling and monitor smashing as possible. You do not need any prior programming
experience to learn JavaScript from this book. All you need is knowledge of HTML and/or
XHTML, Cascading Style Sheets (CSS), and how to use your favorite text editor and Web
browser (see Chapter 1 for more information).

xxii JavaScript: A Beginner’s Guide

What This Book Covers
The 16 chapters of this book cover specific topics on the JavaScript language. The first two
chapters cover the most basic aspects of the language: what it is, what you need to know to
begin using JavaScript, and how to place JavaScript into an HTML file. The middle of the
book (Chapters 3–15) covers beginning JavaScript topics from variables all the way to using
JavaScript with frames. The final chapter (Chapter 16) introduces some advanced techniques,
and points you toward resources if you want to learn more about JavaScript once you have
completed the book.

This book includes a number of special features in each chapter to assist you in learning
JavaScript. These features include:

● Key Skills & Concepts Each chapter begins with a set of key skills and concepts that
you will understand by the end of the chapter.

● Ask the Expert The Ask the Expert Sections present commonly asked questions about
topics covered in the preceding text, with responses from the author.

● Try This These sections get you to practice what you have learned using a hands-on
approach. Each Try This will have you code a script through step-by-step directions
on what you need to do to in order to accomplish the goal. You can find solutions to
each project on the McGraw-Hill/Professional Web site at www.mhprofessional.com/
computingdownload.

● Notes, Tips, and Cautions Notes, Tips, and Cautions call your attention to noteworthy
statements that you will find helpful as you move through the chapters.

● Code Code listings display example source code used in scripts or programs.

● Callouts Callouts display helpful hints and notes about the example code, pointing to the
relevant lines in the code.

● Self Test Each chapter ends with a Self Test, a series of 15 questions to see if you have
mastered the topics covered in the chapter. The answers to each Self Test can be found in
the back of the book in the appendix.

That is it! You are now familiar with the organization and special features of this book to
start your journey through JavaScript. If you find that you are stuck and need help, feel free to
get online and visit the JavaScript discussion forums on the Web Xpertz Web site at www
.webxpertz.net/forums. The forums will allow you to interact with other JavaScript coders
who may be able to help you with your questions.

Now it is time to learn JavaScript. Get ready, get set, and have fun!

www.mhprofessional.com/computingdownload
www.mhprofessional.com/computingdownload
www.webxpertz.net/forums
www.webxpertz.net/forums

1

Chapter 1
Introduction to
JavaScript

 2 JavaScript: A Beginner’s Guide

Key Skills & Concepts

● Using Text Editors, WYSIWYG Editors, and Web Browsers

● Defining JavaScript

● Differences Between JavaScript and Other Languages

Welcome to JavaScript: A Beginner’s Guide, Third Edition! You’re obviously interested in
learning JavaScript, but perhaps you’re not sure what you need to know to use it. This

chapter answers some basic questions about what JavaScript is, discusses its advantages and
limitations, explains how you can use it to create more dynamic and inviting Web pages, and
provides a brief history of the language.

JavaScript is ubiquitous on the World Wide Web. You can use JavaScript both to make
your Web pages more interactive, so that they react to a viewer’s actions, and to give your
Web pages some special effects (visual or otherwise).

JavaScript often gets thrown in with Hypertext Markup Language (HTML) as one of
the recommended languages for beginning Web developers (whether you build Web sites
for business or pleasure). Of course, you can build a Web page by using only HTML, but
JavaScript allows you to add additional features that a static page of HTML can’t provide
without some sort of scripting or programming help.

What You Need to Know
Before you begin learning about JavaScript, you should have (or obtain) a basic knowledge of
the following:

● HTML and Cascading Style Sheets (CSS)

● Text editors

● Web browsers

● The different versions of JavaScript

If you have this basic knowledge (the different versions of JavaScript will be discussed
in this chapter), then you’ll do just fine as you work through this book. Knowing another
programming/scripting language or having previous experience with JavaScript isn’t required.
This book is a beginner’s guide to JavaScript.

If you think you don’t have enough experience in one of the aforementioned areas, a closer
look at each one may help you decide what to do.

 Chapter 1: Introduction to JavaScript 3

Basic HTML and CSS Knowledge
While you don’t need to be an HTML guru, you do need to know where to place certain
elements (like the head and body elements) and how to add your own attributes. This book
will reference scripts in the head section (between the <head> and </head> tags) and the body
section (between the <body> and </body> tags).

Occasionally, you will also need to add an attribute to a tag for a script to function properly.
For example, you may need to name a form element using the id attribute, as shown in the
following code:

<input type="text" id="thename" />

If you know the basics of using tags and attributes, the HTML portion shouldn’t pose any
problems to learning JavaScript.

If you don’t have a basic knowledge of HTML, you can learn it fairly quickly through
a number of media. For example, you can buy a book or look for some helpful information
on the Web. A good book is HTML: A Beginner’s Guide, Fourth Edition by Wendy Willard
(McGraw-Hill Professional, 2009). To find information about HTML on the Web, check out
these sites: www.pageresource.com/html and www.w3schools.com/html/default.asp.

Occasionally, you will need to use CSS to add or change presentation features on a Web
page. We will mainly use CSS for the purposes of dynamically changing CSS properties via
JavaScript in this book. A good place to learn CSS is www.w3schools.com/css/css_intro.asp.

Basic Text Editor and Web Browser Knowledge
Before jumping in and coding with JavaScript, you must be able to use a text editor or HTML
editor, and a Web browser. You’ll use these tools to code your scripts.

Text Editors
A number of text editors and HTML editors support JavaScript. If you know HTML, you’ve
probably already used an HTML editor to create your HTML files, so you might not have to
change.

However, some HTML editors have problems related to adding JavaScript code (such
as changing where the code is placed or altering the code itself when you save the file). You
may need to use a simpler editor or look for an HTML editor that handles the addition of your
own JavaScript code easily (such as Adobe Dreamweaver). Some examples of text editors are
Notepad, TextPad, and Simple Text.

Web Browsers
Again, if you’ve been coding in HTML, you probably won’t need to change your browser.
However, some browsers have trouble with the newer versions of JavaScript. The choice of
Web browser is ultimately up to you, as long as it’s compatible with JavaScript. I recommend
one of the following browsers to test your JavaScript code:

● Microsoft Internet Explorer version 6.0 or later

● Mozilla Firefox version 1.0 or later

● Opera version 6.0 or later

www.pageresource.com/html
www.w3schools.com/html/default.asp
www.w3schools.com/css/css_intro.asp

 4 JavaScript: A Beginner’s Guide

New versions of these browsers continue to be produced. At the time of this writing,
nonbeta versions of Internet Explorer 8, Firefox 3, and Opera 9 are available.

To give you an idea of what some browsers look like, Figure 1-1 shows a Web page when
viewed in Microsoft Internet Explorer, and Figure 1-2 shows the same page when viewed in
Mozilla Firefox.

If you have an older browser and you can’t upgrade, a number of features (mostly discussed
later in the book) may not work in that browser. Even so, the book can still help you learn the
JavaScript language itself, so you don’t need to give up if you have an older browser. The three
browsers mentioned and the versions of JavaScript they support are shown in Table 1-1.

The next section, “Which Version?,” explains what the version numbers mean in more
detail. Once you’ve determined that you meet the basic requirements, you’re ready to begin
learning the language.

Figure 1-1 A Web page viewed in Microsoft Internet Explorer

 Chapter 1: Introduction to JavaScript 5

Figure 1-2 A Web page viewed in Mozilla Firefox

Table 1-1 JavaScript Versions Supported by the Three Major Browsers

Microsoft Internet
Explorer Version Mozilla Firefox Version Opera Version

JavaScript Version
Supported

– 3 – 1.8

– 2 – 1.7

– 1.5 – 1.6

5.5–8 1 6–9 1.5

4 – – 1.3

 6 JavaScript: A Beginner’s Guide

Which Version?
At the time of this writing, the browsers recommended earlier in this chapter should support at
least JavaScript 1.5. (The newest version of Firefox supports JavaScript 1.8.)

You may also see or hear about JScript or ECMAScript. JScript is the version of JavaScript
that Microsoft Internet Explorer uses (which has additional features because it is implemented
as a Windows Script engine; it can use server-side languages to perform more complex tasks
like updating databases). For more information on JScript, see http://msdn.microsoft.com/
en-us/library/hbxc2t98.aspx.

ECMAScript is the international standard name and specification for the JavaScript
language, so it’s not a new language but a standard that is set for JavaScript and JScript. For
more on ECMAScript, see www.ecma-international.org/publications/standards/Ecma-262.htm.

Q: You mentioned that I could use a text editor or HTML editor of my choice, but I’m
not quite sure what that means. What is a text editor and where can I find one?

A: A text editor is a program that you can use to save and edit written text. Text editors range
from simple to complex, and a number of choices are available: Notepad, WordPad, Simple
Text, and Corel WordPerfect X4, to name a few. You can also purchase and download some
from the Web, like NoteTab or TextPad.

An HTML editor is either a more complex text editor or an editor that allows you to
add code by clicking buttons or by other means—often called a What You See Is What You
Get (WYSIWYG) editor. I recommend a plain text editor or an HTML editor that doesn’t
change any code you add to it manually. Some examples of HTML editors are Adobe
Dreamweaver and Softpress Freeway.

Q: What exactly do I need to know about using a text editor?

A: Basically, you only need to know how to type plain text into the editor, save the file with
an .html or .htm extension, and be able to open it again and edit it if necessary. Special
features aren’t needed because HTML files are made up of plain text.

Q: What do I need to know about using a browser?

A: All you absolutely need to know is how to open a local HTML file on your computer (or
on the Web) and how to reload a page. If you don’t know how to open an HTML file from
your own computer, open your browser and go to the File menu. Look for an option that
says something like Open or Open File, and select it. You should be able to browse for the
file you want to open like you would with other programs. The following illustration shows
where the option is in Microsoft Internet Explorer:

Ask the Expert

www.ecma-international.org/publications/standards/Ecma-262.htm
http://msdn.microsoft.com/en-us/library/hbxc2t98.aspx
http://msdn.microsoft.com/en-us/library/hbxc2t98.aspx

 Chapter 1: Introduction to JavaScript 7

Remember, It’s Not Java
JavaScript and Java are two different languages. Java is a full programming language that
must be compiled (running a program through software that converts the higher-level code to
machine language) before a program (often called a Java applet) can be executed. Java is more
powerful but also more complex. JavaScript doesn’t need a compiler and is more lenient in a
number of areas, such as syntax.

Q: Where do I get those browsers you mentioned?

A: Here are links for the browsers:

● Microsoft Internet Explorer www.microsoft.com/ie

● Mozilla Firefox www.mozilla.com/firefox

● Opera www.opera.com

www.microsoft.com/ie
www.mozilla.com/firefox
www.opera.com

 8 JavaScript: A Beginner’s Guide

Similarities to Other Languages
JavaScript does have similarities to other programming and scripting languages. If you have
experience with Java, C++, or C, you’ll notice some similarities in the syntax, which may help
you to learn more quickly. Because it’s a scripting language, JavaScript also has similarities to
languages like Perl—it, too, can be run through an interpreter rather than being compiled.

If you have programming or scripting experience in any language, it will make learning
JavaScript easier—but it isn’t required.

Beginning with JavaScript
JavaScript came about as a joint effort between Netscape Communications Corporation and
Sun Microsystems, Inc. The news release of the new language came on December 4, 1995,
back when Netscape Navigator 2.0 was still in its beta version. JavaScript version 1.0 became
available with the new browser. (Before its release as JavaScript, it was called LiveScript.)

JavaScript is an object-based, client-side scripting language that you can use to make Web
pages more dynamic. To make sense of such a definition, let’s look at its important parts one
by one.

Object Based
Object based means that JavaScript can use items called objects. However, the objects are not
class based (meaning no distinction is made between a class and an instance); instead, they are
just general objects. You’ll learn how to work with JavaScript objects in Chapter 8. You don’t
need to understand them in any detail until you know a few other features of the language.

Client Side
Client side means that JavaScript runs in the client (software) that the viewer is using, rather than
on the Web server of the site serving the page. In this case, the client would be a Web browser.
To make more sense of this, let’s take a look at how a server-side language works and how a
client-side language works.

Server-Side Languages
A server-side language needs to get information from the Web page or the Web browser, send it
to a program that is run on the host’s server, and then send the information back to the browser.
Therefore, an intermediate step must send and retrieve information from the server before the
results of the program are seen in the browser.

A server-side language often gives the programmer options that a client-side language
doesn’t have, such as saving information on the Web server for later use, or using the new
information to update a Web page and save the updates.

However, a server-side language is likely to be limited in its ability to deal with special
features of the browser window that can be accessed with a client-side language (like the
content in a particular location on a Web page or the contents of a form before it’s submitted
to the server).

 Chapter 1: Introduction to JavaScript 9

Client-Side Languages
A client-side language is run directly through the client being used by the viewer. In the case
of JavaScript, the client is a Web browser. Therefore, JavaScript is run directly in the Web
browser and doesn’t need to go through the extra step of sending and retrieving information
from the Web server.

With a client-side language, the browser reads and interprets the code, and the results can
be given to the viewer without getting information from the server first. This process can make
certain tasks run more quickly.

A client-side language can also access special features of a browser window that may not
be accessible with a server-side language. However, a client-side language lacks the ability to
save files or updates to files on a Web server like a server-side language can.

NOTE
Using the XMLHttpRequest object allows JavaScript to request data from the server. This
will be covered briefly in Chapter 16.

A client-side language is useful for tasks that deal with parts of the browser or that allow
information to be validated before it is sent to a server-side program or script. For instance,
JavaScript can open a new window with specific dimensions, specific features (such as a
location bar or status bar), and a specific point of placement on the screen.

JavaScript can also be used to check the information entered into a form before the form is
sent to a server-side program to be processed. This information check can prevent strain on the
Web server by preventing submissions with inaccurate or incomplete information. Rather than
running the program on the server until the information is correct, that data can be sent to the
server just once with correct information.

Scripting Language
A scripting language doesn’t require a program to be compiled before it is run. All the
interpretation is done on-the-fly by the client.

With a regular programming language, before you can run a program you have written,
you must compile it using a special compiler to be sure there are no syntax errors. With a
scripting language, the code is interpreted as it is loaded in the client. Thus, you can test the
results of your code more quickly. However, errors won’t be caught before the script is run and
could cause problems with the client if it can’t handle the errors well. In the case of JavaScript,
the error handling is up to the browser being used by the viewer.

Putting It All Together
With all this in mind, you might wonder how JavaScript is run in a browser. You might wonder
where to write your JavaScript code and what tells the browser it is different from anything else
on a Web page. The answers are general for now, but the next chapter provides more details.

JavaScript runs in the browser by being added into an existing HTML document (either
directly or by referring to an external script file). You can add special tags and commands to

 10 JavaScript: A Beginner’s Guide

Try This 1-1

the HTML code that will tell the browser that it needs to run a script. Once the browser sees
these special tags, it interprets the JavaScript commands and will do what you have directed
it to do with your code. Thus, by simply editing an HTML document, you can begin using
JavaScript on your Web pages and see the results.

For example, the following code adds some JavaScript to an HTML file that writes some
text onto the Web page. Notice the addition of <script> and </script> tags. The code within
them is JavaScript.

<html>
<body>
<script type="text/javascript">
document.write("This writes text to the page");
</script>
</body>
</html>

The next chapter looks at how to add JavaScript in an HTML file by using the <script> and
</script> HTML tags. This will be your first step on the road to becoming a JavaScript coder!

Online Resources
To find additional information online to help you with JavaScript, here are some useful resources:

● A place to find tutorials with working examples of the results: www.pageresource.com/jscript

● An excellent tutorial site that includes cut-and-paste scripts: www.javascriptkit.com

● A place where you can address questions about JavaScript to fellow coders: www.webxpertz
.net/forums

 Use JavaScript to Write Text
This project shows you JavaScript in action by loading an HTML document in
your browser. The script writes a line of text in the browser using JavaScript.

Step by Step
 1. Copy and paste the code shown here into your text editor:

<html>
<body>
<script type="text/javascript">
document.write("This text was written with JavaScript!");
</script>

This line writes the text inside
the quote marks on the page

This tag tells the browser
that JavaScript follows

This line tells the browser that
this is the end of the script

pr1_1.html

www.pageresource.com/jscript
www.javascriptkit.com
www.webxpertz.net/forums
www.webxpertz.net/forums

 Chapter 1: Introduction to JavaScript 11

</body>
</html>

 2. Save the file as pr1_1.html and open it in your Web browser. You should see a single line
of text that was written with JavaScript.

Try This Summary
In this project, you copied and pasted a section of code into a text editor and saved the file.
When you opened the saved file in your Web browser, a line of text was displayed in the
browser. This text was written in the browser window using JavaScript. You will see more
about how this type of script works in Chapter 2.

 Chapter 1 Self Test
 1. You must know which of the following to be able to use JavaScript?

 A Perl

 B C++

 C HTML

 D SGML

 2. Which of the following is something you should have to use JavaScript?

 A A Web browser

 B A C++ compiler

 C A 50GB hard drive

 D A CD-RW drive

 3. The choice of a Web browser is up to you, as long it’s compatible with __________.

 A Flash MX

 B VBScript

 C JavaScript

 D Windows XP

✓

 12 JavaScript: A Beginner’s Guide

 4. JavaScript and Java are the same language.

 A True

 B False

 5. JavaScript is more __________ than Java in a number of areas, such as syntax.

 A complex

 B powerful

 C compiled

 D lenient

 6. JavaScript has similarities to other programming and scripting languages.

 A True

 B False

 7. Before its release as JavaScript, JavaScript was called __________.

 A Java

 B JavaCup

 C LiveScript

 D EasyScript

 8. JavaScript is __________.

 A object based

 B object oriented

 C object deficient

 D not a language that uses objects

 9. A client-side language is run directly through the __________ being used by the viewer.

 A server

 B client

 C monitor

 D lawyer

 Chapter 1: Introduction to JavaScript 13

 10. How can a client-side language help when using forms on a Web page?

 A It can save the information on the server.

 B It can validate the information before it is sent to the server.

 C It can update a file and save the file with the new information.

 D It can’t help at all.

 11. A __________ language doesn’t require a program to be compiled before it is run.

 A programming

 B server-side

 C scripting

 D computer

 12. With a scripting language, the code is interpreted as it is loaded in the client.

 A True

 B False

 13. In JavaScript, what handles errors in a script?

 A The Web server

 B A compiler

 C A program on the Web server

 D The Web browser

 14. How is JavaScript added to a Web page?

 A It is written into a special editor in the browser.

 B It is taken from a compiled program on the server.

 C You place the code in a file by itself and open that file.

 D It is added to an HTML document.

 15. What is added to a Web page to insert JavaScript code?

 A <script> and </script> HTML tags

 B The JavaScript code word

 C <javascript> and </javascript> HTML tags

 D <java> and </java> HTML tags

This page intentionally left blank

15

Chapter 2
Placing JavaScript
in an HTML File

 16 JavaScript: A Beginner’s Guide

Key Skills & Concepts

● Using the HTML Script Tags

● Creating Your First Script

● Using External JavaScript Files

● Using JavaScript Comments

Now that you have been introduced to JavaScript, you’re ready to start coding. Since
JavaScript code is run from HTML documents, you need to know how to tell browsers to

run your scripts. The most common way to set off a script is to use the HTML <script> and
</script> tags in your document. You can place your script tags in either the head or body
section of an HTML document.

This chapter first shows you how to use the script tags to begin and end a segment of
JavaScript code. Then, you will get started creating and running your first scripts. At the end of
the chapter, you will learn how to add JavaScript comments to document your scripts.

Using the HTML Script Tags
Script tags are used to tell the browser where some type of scripting language will begin and
end in an HTML document. In their most basic form, script tags appear just like any other set
of HTML tags:

<script>
JavaScript code here
</script>

As you can see, there is the opening <script> tag, the JavaScript code, and then the closing
</script> tag. When you use just the basic opening and closing tags like this, many browsers
will assume that the scripting language to follow will be JavaScript. However, some browsers
may need to be told which scripting language is being used.

Besides distinguishing where a script begins and ends for the browser, script tags can also
tell the browser which scripting language will be used and define the address for an external
JavaScript file. These additional functions are achieved through the type and src (source)
attributes.

Identifying the Scripting Language
The scripting language between the opening and closing script tags could be JavaScript,
VBScript, or some other language. Even though JavaScript is usually set as the default
scripting language in browsers, there may be some browsers that do not default to JavaScript.

Tells the browser where script code ends

Tells the browser where script code begins

 Chapter 2: Placing JavaScript in an HTML File 17

To be safe, it is a good idea to explicitly identify the language as JavaScript. You do this by
adding the type attribute with the value of “text/javascript” to the opening script tag:

<script type="text/javascript">
JavaScript code here
</script>

The type attribute in the opening script tag is also required in XHTML in order for the Web
page to validate.

In older versions of HTML, the script tag was not case sensitive. However, with XHTML,
the script tag must be in lowercase. JavaScript is case sensitive in all versions, so you will need
to be more careful with it. In this book, I will use XHTML 1.0 Transitional for the HTML code
(all tag and attribute names will be in lowercase). For the JavaScript code, I will use the case
that is needed for it to function correctly.

Calling External Scripts
Script tags are also useful if you wish to call an external JavaScript file in your document.
An external JavaScript file is a text file that contains nothing but JavaScript code, and it is
saved with the .js file extension. By calling an external file, you can save the time of coding or
copying a long script into each page in which the script is needed. Instead, you can use a single
line on each page that points to the JavaScript file with all of the code.

You can call external scripts by adding an src (source) attribute to the opening script tag:

<script type="text/javascript" src="yourfile.js"></script>

This example calls a JavaScript file named yourfile.js from any page on which you place
the line. Be sure there are no spaces or code between the opening and closing script tags, as
this may cause the script call to fail.

If the script is extremely long, using the src attribute to add the script to multiple pages can
be much quicker than inserting the entire code on each page. Also, the browser will cache the
external JavaScript file the first time it is loaded, making subsequent Web pages that use the
script render faster. Using an external script is also helpful when dealing with page validation
and when trying to keep script code separated from markup (HTML) code.

Using <noscript></noscript> Tags
One way of providing alternate content for those viewers without JavaScript (or with
JavaScript turned off) is to use the noscript tag. The <noscript></noscript> tags may be placed
anywhere in the HTML document and can contain any content needed for those viewers
browsing without JavaScript (such as viewers using mobile browsers like the ones on a
Blackberry or iPhone). For example:

<script type="text/javascript">
 document.write("The color is red.");
</script>
<noscript>
 The color is red.
</noscript>

Tells the browser the scripting
language will be JavaScript

Displays for those viewers with JavaScript

Begins noscript content for those
viewers without JavaScript

Ends noscript content

 18 JavaScript: A Beginner’s Guide

Ends the CDATA section

Opening and closing JavaScript
comments are placed around]]>

Opening and closing JavaScript comments
are placed around <![CDATA[

Begins the CDATA section

Q: Do I always need to use script tags to add JavaScript to a page?

A: It’s possible to use event handlers that allow you to write short bits of script within the
event-handling attribute of an HTML tag. You’ll learn about event handlers in Chapter 7.

Q: What about the language attribute?

A: With XHTML, the language attribute has been replaced with the type attribute. Using the
language attribute may cause a Web page to fail XHTML validation (in XHTML strict) and
is no longer recommended.

Q: My page won’t validate in XHTML strict (or transitional) when I add a script to it.
How do I get the page to validate?

A: If the script contains characters used in XHTML such as < (which is used for “less than”
in JavaScript but is seen as the beginning of a new tag in XHTML), then the page won’t
validate with the script directly in the document without adding a CDATA section:

<script type="text/javascript">
<![CDATA[
var x = 5;
var y = 10;
if (x < y) {
 window.alert("x is less than y");
}
]]>
</script>

 This will allow the page to validate, but because the <![CDATA[and]]> characters are in
the script, the script will no longer work. To fix this, you need JavaScript comments (/* and
*/) around those characters when they are within the script tags:

<script type="text/javascript">
/*<![CDATA[*/
var x = 5;
var y = 10;
if (x < y) {
 window.alert("x is less than y");
}
/*]]>*/
</script>

 As you can see, this can get quite tedious very quickly! Typically, the better option is
to use an external script file, which eliminates this problem because only the script tags
themselves are needed in the XHTML document.

Ask the Expert

 Chapter 2: Placing JavaScript in an HTML File 19

This example displays the phrase “The color is red.” to the viewer either through
JavaScript or through the text within the <noscript></noscript> tags.

CAUTION
Some older browsers may not handle the noscript tag correctly and won’t display the
content in either section. If your users have older browsers, another alternative is to
display the content on the page and then use JavaScript to enhance the content for
those who are able to display it with JavaScript on.

Creating Your First Script
Now that you know how to use the HTML script tags to tell browsers about the JavaScript in
a document, you’re ready to learn how to add the actual JavaScript code between those script
tags. The first coding example often given to teach any language is one that writes some sort
of text to the default output area, commonly known as a basic “Hello World” script. Following
that convention, your first script will write a string of text to a Web page.

Writing a “Hello World” Script
Rather than write “Hello World,” you’ll use another line of text for this script: “Yes! I am
now a JavaScript coder!” This requires only a single line of code, using the document.write()
method, which writes a string of text to the document:

<script type="text/javascript">
 document.write("Yes! I am now a JavaScript coder!");
</script>

Notice the parentheses and the quotation marks around the text. The parentheses are required
because the document.write() method is a JavaScript function, which takes an argument contained
in parentheses. You will learn more about JavaScript functions in Chapter 4.

The quotation marks denote a string of text. A string is a type of variable that is defined in
JavaScript by placing it inside quotation marks. Chapter 3 provides details on strings and other
types of JavaScript variables.

The last thing to notice about your script is the semicolon at the end of the line. The
semicolon signals the end of a JavaScript statement. A statement is a portion of code that does
not need anything added to it to be complete in its syntax (its form and order). A statement can
be used to perform a single task, to perform multiple tasks, or to make calls to other parts of
the script that perform several statements. Most JavaScript statements end with a semicolon, so
it is a good idea to get in the habit of remembering to add one.

NOTE
In later chapters, you will see various lines that do not end in semicolons because
they open or close a block of code. Also, many scripts you encounter may not end
statements with semicolons. JavaScript is lenient about the use of a semicolon in most
cases; however, it is best to use the semicolon to end a statement because it can prevent
possible errors and aid in debugging (removing errors from) the script later.

 20 JavaScript: A Beginner’s Guide

So, to write a text string to the page, you use the document.write() method, followed by the
text, surrounded by quotation marks and enclosed in parentheses. End the line (the statement)
with a semicolon. JavaScript will handle the rest of the job.

Creating an HTML Document for the Script
In order to make this example complete and test the script, you need to insert it into an HTML
document. First, create the following HTML document with the basic tags (using any text
editor you prefer):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Untitled Document</title>
</head>
<body>
</body>
</html>

Save the document as test1.html in your text editor. You will call it later with a Web
browser to see the results of the script. Next, you’ll add the script to this HTML document, so
leave the file open.

Inserting the Script into the HTML Document
Now you need to insert the script in the document. Where should it go? You can place a script
between the <head> and </head> tags, or between the <body> and </body> tags. Since this
example writes a text string directly to the page, you want to insert the script between the
<body> and </body> tags, wherever you want the text string to appear. It can come before,
after, or between any HTML code on the page.

To make it clear how the script results appear, you’ll add HTML code to write lines of text
before and after the script. The script tags and the script itself are inserted between those lines.
Add the lines shown next between the <body> and </body> tags:

This is the first line, before the script results.

<script type="text/javascript">
 document.write("Yes! I am now a JavaScript coder!");
</script>

This line comes after the script.

 Chapter 2: Placing JavaScript in an HTML File 21

Save the test1.html document again. You should now be able to open the document in your
Web browser to see the results of the script. Figure 2-1 shows how the text should look in your
browser when you load the Web page.

Congratulations, you have now finished your first script!

NOTE
The example code in this section uses the entire HTML document and all of its tags. In
order to keep things as relevant as possible, from this point on the example code will
use only the HTML tags involved with the scripts rather than the entirety of its tags.
Project code may use entire HTML documents as needed.

Figure 2-1 The test.html file in a Web browser

 22 JavaScript: A Beginner’s Guide

Try This 2-1 Insert a Script into an HTML Document
This project gives you practice adding a script to your page. You will create an
HTML document and insert a script that displays a short sentence in the browser
window when the page loads.

Step by Step
 1. Set up an HTML document so that you have a simple file with nothing between the <body>

and </body> tags yet.

 2. Put the following line of text into the Web page:

 I am part of the HTML document!

 3. Insert a
 tag after this line (to insert a line break on the page).

 4. After the
 tag, insert a script that will write the following line on the page:

 This came from my script, and is now on the page!

 5. After the script, add another
 tag.

 6. Put the following line of text into the Web page after the last
 tag, and make it
emphasized:

 I am also part of the HTML document, after the script results!

Q: Why is there a dot (.) in the document.write() command?

A: Document is one of JavaScript’s predefined objects, and write() is a predefined method of
the document object. The dot puts the object and the method together to make the function
work. Chapter 8 explains JavaScript objects, and Chapter 9 is devoted to the document
object.

Q: How do I know when to add the script inside the head section and when to add it
inside the body section?

A: The main situation in which to add a script to the body section of a document is when you
are writing something directly to the page. In many cases, most of the scripting can be
accomplished in the head section, since you can use functions to call the code in the body
section. We will often use external scripts in this book, which will eliminate much of the
dilemma since all the code will be in the external file.

Ask the Expert

pr2_1.html

 Chapter 2: Placing JavaScript in an HTML File 23

 7. Here is what your HTML document should look like:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://
www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>JavaScript Project 2-1</title>
</head>
<body>
I am part of the HTML document!

<script type="text/javascript">
 document.write("This came from my script, and is now on the page!");
</script>

I am also part of the HTML document, after the script results!
</body>
</html>

 8. Save the file as pr2_1.html and view the page in your browser to see the results.

Try This Summary
In this project, you created an HTML file. Using the knowledge that you acquired thus far in
this chapter, you inserted within the HTML file a script that writes a specific line of text on the
page. When the HTML page is opened in a Web browser, the result of the script is displayed
between two lines of text.

Using External JavaScript Files
Now suppose that you want to use your “Hello World” script (the one you created earlier in
this chapter) on more than one page, but you do not want to write it out on each page. You
can do this by putting the script in an external script file and calling it with the src attribute
of the script tag. For this method, you need to create a JavaScript text file to hold your script.
You also need one or more HTML files into which you will place the script tags to call your
external script file.

Creating a JavaScript File
For this example, you will create a JavaScript file that contains only one line. For practical
applications, you would use this approach for lengthier scripts—the longer the script is, the
more useful this technique becomes (especially if you are trying to validate your Web pages or
you are separating your script code from your markup).

 24 JavaScript: A Beginner’s Guide

Open a new file in your text editor and insert only the JavaScript code (the document.
write() statement) itself. The script tags are not needed in the external JavaScript file. The file
should appear like this:

document.write("Yes! I am now a JavaScript coder!");

Save the file as jsfile1.js in your text editor. To do this, you may need to use the Save As
option on the File menu and place quotation marks around your filename, as shown in Figure 2-2
(using Notepad with Windows).

Once the file has been saved, you can move on to the next step, which is to create the
HTML files in which to use the script.

Creating the HTML Files
You will create two files in which to place your script. The technique should work for any
number of HTML files, though, as long as you add the required script tags to each file.

For the first file, create your base HTML document and insert the script tags into the body
section of the document, using the src attribute to point to the jsfile1.js file, and add some
HTML text to the body of the page to identify it as the first HTML document:

<body>
<script type="text/javascript" src="jsfile1.js"></script>
<p>
 This is page 1, and the script works here!
</p>
</body>

Figure 2-2 An example of saving a file with a .js extension using quote marks so it will
save with the correct file extension

 Chapter 2: Placing JavaScript in an HTML File 25

Save this file as jsext1.html in your text editor. Be sure to save it in the same directory as
your jsfile1.js file.

The second HTML document looks the same as the first one, except that the HTML text
says that it’s page 2:

<body>
<script type="text/javascript" src="jsfile1.js"></script>
<p>
 This is page 2, and the script also works here!
</p>
</body>

Save this file as jsext2.html in your text editor. Again, be sure to place it in the same
directory as the other files.

Viewing the Pages in Your Browser
Open the jsext1.html file in your Web browser. It should appear as shown in Figure 2-3, with
the JavaScript inserted in the page from the external script file.

Figure 2-3 The result of calling the script in the jsext1.html file, the first HTML page

 26 JavaScript: A Beginner’s Guide

Try This 2-2

Next, open the jsext2.html file in your Web browser. It should appear as shown in Figure 2-4,
with only the small difference of the text you added to the HTML file to say that this is page 2.
The JavaScript should write the same text to this page as it did to the first HTML page.

Although we used a short script in this example, it should give you an idea of how using
an external file could be a great time-saver when you have a large script.

 Call an External Script from an HTML
Document

This project will allow you to practice creating external JavaScript files and using
them to insert a script into a Web page.

Figure 2-4 The result of calling the script in the jsext2.html file, the second HTML page

pr2_2.html
prjs2_2.js

 Chapter 2: Placing JavaScript in an HTML File 27

Step by Step
 1. Set up a simple HTML document with nothing between the <body> and </body> tags.

 2. Place the following line of text between the body tags of the page:

 This text is from the HTML document!

 3. Place a
 tag after this text. If you need to save this file now, save it as pr2_2.html.

 4. Create an external JavaScript file that will write the following line when it is executed:

 I love writing JavaScript and using external files!

 5. Here is how your JavaScript file should look:

document.write("I love writing JavaScript, and using external files!");

 6. Save the JavaScript file as prjs2_2.js.

 7. Go back to the HTML document. Place the script tags after the
 tag in the document
so that the external JavaScript file will write its sentence on the page.

 8. The body of your HTML document should look like this:

<body>
This text is from the HTML document!

<script type="text/javascript" src="prjs2_2.js"></script>
</body>

 9. Save this file as pr2_2.html and view the results in your browser.

Try This Summary
In this project, you created an HTML page. Using your knowledge of external JavaScript files
from the previous section, you created an external JavaScript file and placed the necessary
code into the HTML file to include the external JavaScript file. When the HTML file is
displayed in a Web browser, a line of plain text is shown, followed by the results of the
external JavaScript file.

Using JavaScript Comments
You may need to make notes in your JavaScript code, such as to describe what a line of code is
supposed to do. It’s also possible that you will want to disable a line of the script for some reason.
For instance, if you are looking for an error in a script, you may want to disable a line in the
script to see if it is the line causing the error. You can accomplish these tasks by using JavaScript
comments. You can insert comments that appear on one line or run for numerous lines.

 28 JavaScript: A Beginner’s Guide

Inserting Comments on One Line
If you want to add commentary on a single line in your code, place a pair of forward slashes
before the text of the comment:

// Your comment here

In this format, anything preceding the two slashes on that line is “live” code—code that
will be executed—and anything after the slashes on that line is ignored. For example, suppose
that you wrote this line in your code:

document.write("This is cool!"); // writes out my opinion

The document.write() method will be run by the browser, so the text “This is cool!” will be
written to the page. However, the comment after the slashes will be ignored by the browser.

If you place the forward slashes at the beginning of a line, the browser will ignore the entire
line. Suppose that you move the slashes in the previous example to be the first items on the line:

// document.write("This is cool!"); writes out my opinion

In this format, the entire line is ignored, since it begins with the two slashes that represent
a JavaScript comment. The text will not be written to the page, since the code will not be
executed by the browser. In effect, you are disabling the document.write() statement. You may
wish to do this if the script containing this line has an error and you want to know whether or
not this line is causing the problem.

Adding Multiple-Line Comments
Comments denoted by a pair of forward slashes apply only to the line on which they appear;
their effects are cut off at the end of the line. To add comments that span any number of lines,
you use a different comment format: a forward slash followed by an asterisk at the beginning
of the comment, then the text of the comment, and then an asterisk followed by a forward slash
at the end of the comment. Here’s an example:

/*
My script will write some text into my HTML document!
All of this text is ignored by the browser.
*/
document.write("You can see me!");

Using this format, you can begin the comment on one line and end it on another line.
Multiple-line comments can be handy when you want to insert lengthier descriptions or

other text, but you need to be careful when you use them. Look at this example to see if you
can find a problem with it:

<script type="text/javascript">
/*
This code won’t work for some reason.

 Chapter 2: Placing JavaScript in an HTML File 29

document.write("I want someone to see me!");
</script>

Did you notice that the closing JavaScript comment symbols are missing? When you
use multiple-line comments, you need to be careful to close them. Otherwise, you might
accidentally comment out code you need executed! In this example, the comment just keeps
going on with no end in sight. To fix this, you need to close the JavaScript comments before
the document.write() method is used:

<script type="text/javascript">
/*
The JavaScript code is now working! This text is hidden.
*/
document.write("Now everyone can see me!");
</script>

In the preceding examples, you saw how comments can be used to provide some
documentation of what to expect from each script. In Chapter 16, you will learn how using
comments can help you debug your JavaScript code. For now, you should get in the habit of
adding comments to your scripts as short documentation or instructions.

 Chapter 2 Self Test
 1. What is the purpose of the <script> and </script> tags?

 A To tell the browser where a script begins and ends

 B To let the browser know the scripting language to be used

 C To point to an external JavaScript file

 D All of the above

 2. Why should you use the type attribute in the opening script tag?

 A To let the browser know what type of coder you are

 B To be sure the browser does not interpret your JavaScript as another scripting language
and to ensure the Web page validates in XHTML

 C To create a typing script

 D To make sure the script does not make a grammatical error

 3. Is JavaScript code case sensitive?

 A Yes

 B No

✓

 30 JavaScript: A Beginner’s Guide

 4. The noscript tag provides __________ for those without __________.

 5. An external JavaScript file commonly uses a filename extension of __________.

 A .js

 B .html

 C .jav

 D .java

 6. Which of the following correctly points to an external JavaScript file named yourfile.js?

 A <extscript type=“text/javascript” src=“yourfile.js”></extscript>

 B <script type= “text/javascript” src=“yourfile.js”></script>

 C <script language=“yourfile.js”></script>

 D <script type=“text/javascript” link=“yourfile.js”></script>

 7. In older versions of HTML, the script tag is not case sensitive. However, with XHTML, the
script tag must be in __________.

 8. The __________ signals the end of a JavaScript statement.

 A colon

 B period

 C question mark

 D semicolon

 9. To write a string of text on a Web page, the __________ method is used.

 A document.write()

 B document.print()

 C document,type()

 D window.print()

 10. When would it be a good idea to use an external JavaScript file?

 A When the script is short or going to be used in only one HTML document

 B When your Web site viewers have older browsers

 C When the script is very long or needs to be placed in more than one HTML document

 D External files are not a good idea

 11. JavaScript comments can be very useful for the purpose of __________ or __________
your code.

 Chapter 2: Placing JavaScript in an HTML File 31

 12. Which of the following indicates that a single line of commentary will follow it within
JavaScript code?

 A /*

 B /-

 C //

 D <!--

 13. Which of the following indicates that more than one line of commentary will follow it
within JavaScript code?

 A /*

 B /-

 C //

 D <!--

 14. Which of the following indicates the end of a multiple-line JavaScript comment?

 A \\

 B -->

 C /*

 D */

 15. When you use multiple-line JavaScript comments, you need to be careful to __________
them.

 A close

 B read

 C program

 D compile

This page intentionally left blank

33

Chapter 3
Using Variables

 34 JavaScript: A Beginner’s Guide

Key Skills & Concepts

● Understanding Variables

● Why Variables Are Useful

● Defining Variables for Your Scripts

● Understanding Variable Types

● Using Variables in Scripts

Now that you have learned the basics of adding JavaScript to a Web page, it is time to
get into the inner workings of the language. Since variables are an important part of

JavaScript coding, you will need to know as much as possible about what they are and why
they are useful in your scripts. Once you have an understanding of how variables work and
what they can do, you will be able to move on to other topics that build on the use of the
various types of variables.

In this chapter, you will begin by learning what variables are and why they are useful. You
will then move on to find out about the methods that are used to declare variables and how to
assign a value to a variable. Finally, you will see how to use variables in your scripts.

Understanding Variables
A variable represents or holds a value. The actual value of a variable can be changed at any
time. To understand what a variable is, consider a basic statement that you may recall from
algebra class:

x=2

The letter x is used as the name of the variable. It is assigned a value of 2. To change the value,
you simply give x a new assignment:

x=4

The name of the variable stays the same, but now it represents a different value.
Taking the math class example one step further, you probably had to solve a problem like

this one:

If x=2, then 3+x=?

To get the answer, you put the value of 2 in place of the variable x in the problem, for 3+2=5.
If the value of x changes, so does the answer to the problem. So, if x=7, then the calculation
turns into 3+7, and now the result is 10.

 Chapter 3: Using Variables 35

Variables in JavaScript are much like those used in mathematics. You give a variable a
name, and then assign it values based on your needs. If the value of the variable changes, it
will change something that happens within the script.

Why Variables Are Useful
Using variables offers several benefits:

● They can be used in places where the value they represent is unknown when the code
is written.

● They can save you time in writing and updating your scripts.

● They can make the purpose of your code clearer.

Variables as Placeholders for Unknown Values
Oftentimes, a variable will hold a place in memory for a value that is unknown at the time the
script is written. A variable value might change based on something entered by the viewer or
may be changed by you later in the script code.

For instance, you might have a function that takes in certain values based on user input
(functions will be discussed in Chapter 4). Since the value of user input is unknown at the time
the script is written, a variable can be used to hold the value that will be input by the user. This
is true for any sort of user input, whether it be in the form of a JavaScript prompt/confirm box,
input fields in a form, or other methods of input.

Variables as Time-Savers
Variables speed up script writing because their values can change. When you assign a value to
a variable at the beginning of a script, the rest of the script can simply use the variable in its
place. If you decide to change the value later, you need to change the code in only one place—
where you assigned a value to the variable—rather than in numerous places.

For instance, suppose that back in math class, you were asked to solve this problem:

If x=2, then 3+x-1+2-x=?

You know that you need to substitute the value of 2 for each x that appears, for 3+2–1+2–
2=4. Now if the teacher wants you to do this problem again with a different value for x, the
whole problem does not need to be rewritten. The teacher can just give you the following
instruction:

Solve the above problem for x=4.

The longer and more complex the problem gets, the more useful the variable becomes.
Rather than rewriting the same thing over and over, you can change one variable to offer an
entirely new result.

 36 JavaScript: A Beginner’s Guide

Variables as Code Clarifiers
Since variables represent something, and you can give them meaningful names, they are often
easier to recognize when you read over (and debug) your scripts. If you just add numbers, you
may forget what they stand for. For example, consider this line of code:

TotalPrice=2.42+4.33;

Here, the numbers could mean almost anything. Instead, you might assign 2.42 as the value of
a variable named CandyPrice and 4.33 as the value of a variable named OilPrice:

TotalPrice=CandyPrice+OilPrice;

Now, rather than trying to remember the meaning of the numbers, you can see that the script
is adding the price of some candy to the price of some oil. This is also useful in debugging,
because the meaningful variable names make it easier to spot errors.

Defining Variables for Your Scripts
Now that you understand what variables are and why you want to use them, you need to
learn how to make them work in your scripts. You create variables by declaring them. Then
you assign values to them using the JavaScript assignment operator. When you name your
variables, you need to follow the rules for naming variables in JavaScript, as well as consider
the meaningfulness of the name.

Declaring Variables
To declare text as a variable, you use the var keyword, which tells the browser that the text to
follow will be the name of a new variable:

var variablename;

For example, to name your variable coolcar, the declaration looks like this:

var coolcar;

In this example, you have a new variable with the name coolcar. The semicolon ends the
statement. The variable coolcar does not have a value assigned to it yet. As described in the
next section, you can give your new variable a value at the same time that you declare it or you
can assign it a value later in your script.

The code for giving a variable a name is simple, but there are some restrictions on words
that you can use for variables and the cases of the letters. You’ll learn more about JavaScript
naming rules after you see how to assign a value to a variable.

Assigning Values to Variables
To assign a value to a variable, you use the JavaScript assignment operator, which is the equal
to (=) symbol. If you want to declare a variable and assign a value to it on the same line, use
this format:

var variablename=variablevalue;

 Chapter 3: Using Variables 37

For example, to name your variable paycheck and give it the numeric value 1200, use
this statement:

var paycheck=1200;

The statement begins with the keyword var, followed by the variable paycheck, just as in
the plain variable declaration described in the previous section. Next comes the assignment
operator (=), which tells the browser to assign the value on the right side of the operator to the
variable on the left side of the operator. To the right of the assignment operator is 1200, which
is the numeric value being assigned to the variable paycheck. The line ends with a semicolon
to mark the end of the statement.

CAUTION
Be careful not to think of the assignment operator (=) as having the meaning “is equal
to.” This operator only assigns a value. The operator for “is equal to” is two equal signs
together (==), as you’ll learn in Chapter 5.

To declare and assign another variable, you use the same format, placing the statement on
a new line. For example, to set up a variable named spending to track the amount of money
you are spending from the paycheck variable, use these statements:

var paycheck=1200;
var spending=1500;

Of course, you will also notice that this financial situation is headed for trouble, since the
money being spent in the spending variable is more than what is being brought in with the
paycheck variable. Oddly, it is starting to look like the budget for my Web site!

The examples you’ve seen illustrate the proper and safe way to code variable declarations
and assignments. However, the truth is that JavaScript allows a certain amount of flexibility
when it comes to variables. In many cases, the code will work without using precise coding
syntax. For example, you may see some scripts written without using the var keyword the first
time a variable is used. JavaScript will often declare the variable the first time it is used even if
it is previously undeclared. An example is shown here:

paycheck=1200;

This works since the variable is being assigned a value (JavaScript will simply declare the
variable and assign it the value of 1200). However, if you were trying to declare the variable
without an assignment, the following would not be valid:

paycheck;

This declaration would still require the var keyword to be valid, as in the following code:

var paycheck;

Assigns a value of 1200 to the variable paycheck
Assigns a value of 1500 to the variable spending

 38 JavaScript: A Beginner’s Guide

You may also see a script that leaves off the ending semicolon:

var paycheck=1200

And in some scripts, both features are left out of the variable assignment:

paycheck=1200

All of these shortcuts may seem handy, but it is best to go ahead and define each variable
before using it, use the var keyword, and include the semicolon. Not doing so can cause errors
in some browsers and may give people the impression the code was not written well. Also, any
of these omissions can be really troublesome if you need to debug the script. Giving variables
the correct declarations and assignments will avoid problems, and your code will be easier to
read and understand.

Naming Variables
Before you start naming your own variables, you need to be aware of JavaScript’s naming
rules. The factors you need to consider when choosing names are case sensitivity, invalid
characters, and the names that are reserved by JavaScript. Additionally, you should try to give
your variables names that are both easy to remember and meaningful.

Using Case in Variables
JavaScript variables are case sensitive—paycheck, PAYCHECK, Paycheck, and PaYcHeCk
are four different variables. When you create a variable, you need to be sure to use the same
case when you write that variable’s name later in the script. If you change the capitalization at
all, JavaScript sees it as a new variable or returns an error. Either way, it can cause problems
with your script.

Here are a couple of suggestions for using case in your variable names:

● If you are using a variable name that consists of only one word, it is probably easiest to use
lowercase for the entire name. It will be quicker to type, and you will know when you use
it later to type it all in lowercase.

● For a variable name with two words, you might decide to capitalize the first letter of each
word. For example, you may name a variable MyCar or My_Car (you will see more on the
underscore character, _, in the next section).

The capitalization of variables is entirely up to you, so you should use whatever style
you are most comfortable with. It is best that you adopt a convention and continue to use it.
For instance, if you name a variable using lowercase characters only, you should do the same
throughout the script to avoid accidentally switching the case when using the variable later. In
this book, I use only lowercase characters for variable names, to keep the code clear.

Using Allowed Characters
An important rule to remember is that a variable name must begin with a letter or an underscore
character (_). The variable name cannot begin with a number or any other character that is not

 Chapter 3: Using Variables 39

a letter (other than the underscore). The other characters in the variable name can be letters,
numbers, or underscores. Blank spaces are not allowed in variable names. So, the following
variable names would be valid:

● paycheck

● _paycheck

● pay2check

● pay_check

● pay_245

However, the following variable names are not valid:

● #paycheck

● 1paycheck

● pay check

● pay_check 2

● _pay check

The hardest rule to remember may be that you cannot begin the name with a number (it’s
the one I forget most often). While such a name seems reasonable, JavaScript doesn’t allow it.

Avoiding Reserved Words
Another rule to keep in mind when naming your variables is to avoid the use of JavaScript
reserved words. These are special words that are used for a specific purpose in JavaScript. For
instance, you’ve learned that the reserved word var is used to declare a JavaScript variable.
Using it as a variable name can cause numerous problems in your script, since this word is
meant to be used in a different way.

Table 3-1 lists the reserved words in JavaScript. Note that all of these words are in all
lowercase letters. In later chapters, you will learn how these reserved words are used, so they
will become more familiar over time.

Giving Variables Meaningful Names
Although x is an acceptable variable name, it is unlikely that you will be able to remember
what it stands for if you need to debug the program later. Also, if someone else is trying to help
you debug the code, their job will be even harder.

You should try to give your variables names that describe what they represent as clearly as
possible. Suppose that you want to use a variable to hold a number of an example on a page.
Rather than use x, ex, or another short variable, use something more descriptive:

var example_number=2;

 40 JavaScript: A Beginner’s Guide

The variable example_number will be easy for you to recognize later, and other coders will be
more likely to understand its use quickly.

The more variables you use in a script, the more important it becomes to use meaningful
and memorable names.

Understanding Variable Types
So far, you’ve seen examples of variable values that are numbers. In JavaScript, the variable
values, or types, can include number, string, Boolean, and null.

Unlike stricter programming languages, JavaScript does not force you to declare the type
of variable when you define it. Instead, JavaScript allows virtually any value to be assigned to
any variable. Although this gives you flexibility in coding, you need to be careful because you
can end up with some unexpected results—especially when adding numbers.

Number
Number variables are just that—numbers. JavaScript does not require numbers to be declared
as integers, floating-point (decimal) numbers, or any other number type. Instead, any number
is seen as just another number, whether it is 7, –2, 3.453, or anything else. The number will
remain the same type unless you perform a calculation to change the type. For instance, if
you use an integer in a variable, it won’t suddenly have decimal places unless you perform a
calculation of some sort to change it (dividing unevenly, for instance).

As you’ve seen, you define a number variable by using the keyword var:

var variablename=number;

Table 3-1 JavaScript Reserved Words

abstract delete goto null throws

as do if package transient

boolean double implements private true

break else import protected try

byte enum in public typeof

case export instanceof return use

catch extends int short var

char false interface static void

class final is super volatile

const finally long switch while

continue float namespace synchronized with

debugger for native this

default function new throw

 Chapter 3: Using Variables 41

Here are some examples:

var paycheck=1200;
var phonebill=29.99;
var savings=0;
var sparetime=-24.5;

If you need to use a particularly long number, JavaScript has exponential notation. To
denote the exponent, use a letter e right after the base number and before the exponent. For
example, to create a variable named bignumber and assign it a value of 4.52 × 105 (452,000),
put the letter e in place of everything between the number and the exponent (to represent the
phrase “times 10 to the power of”):

var bignumber=4.52e5;

NOTE
JavaScript may return an answer to a calculation using exponential notation (like many
calculators).

String
String variables are variables that represent a string of text. The string may contain letters,
words, spaces, numbers, symbols, or most anything you like. Strings are defined in a slightly
different way than numbers, using this format:

var variablename="stringtext";

Here are some examples of string variables:

var mycar="Corvette";
var oldcar="Big Brown Station Wagon";
var mycomputer="Pentium 3, 500 MHz, 128MB RAM";
var oldcomputer="386 SX, 40 mHz, 8MB RAM";
var jibberish="what? cool! I am @ home 4 now. (cool, right?)";

As you can see, strings can be short, long, or anything in between. You can place all sorts
of text and other characters inside of string variables. However, the quotation marks, some
special characters, and the case sensitivity of strings need to be considered.

Matching the Quotation Marks
In JavaScript, you define strings by placing them inside quotation marks (quotes, for short),
as you saw in the examples. JavaScript allows you to use either double quotes or single quotes
to define a string value. The catch is that if the string is opened with double quotes, it must be
closed with double quotes:

var mycar="Red Corvette";

 42 JavaScript: A Beginner’s Guide

The same goes for single quotes:

var myhouse='small brick house';

Trying to close the string with the wrong type of quotation mark, or leaving out an opening
or closing quotation mark, will cause problems.

var mycar="Red Corvette';
var myhouse= 'small brick house";
var mycomputer="Pentium 3, 500 mHz, 128MB RAM;

These mistakes will result in an “Unterminated String” error in the Web browser.

Watching the Case
JavaScript strings are case sensitive. This may not seem important now, but it matters when
you need to compare strings for a match. It only takes one character having a different case to
make the strings different:

"My car is fun to drive!"
"my car is fun to drive!"

You’ll learn more about string comparisons in Chapter 5.

Using Special Characters
Special characters enable you to add things to your strings that could not be added otherwise.
For example, suppose that you need a tab character between each word in a string. If you press
the TAB key on the keyboard, JavaScript will probably see it as a bunch of spaces. Instead, use
the special character \t, which places a tab in the string, as in this example:

var mypets="dog\tcat\tbird";

In each spot where the special character \t appears, JavaScript interprets a tab character.
The special characters all begin with a backslash character (\). Thus, if you want a single

backslash character in your string, you need to use the special code for a backslash: \\.
For instance, suppose you wish to write the following sentence on a Web page: “Go to the
directory c:\javascript on your computer.” If you use the string as it is written, your code would
look like this:

<script type="text/javascript">
 document.write("Go to the directory c:\javascript on your computer.");
</script>

Incorrect, string is opened with
a single quote and closed with
double quotes

Incorrect, string does not have a closing quote

Incorrect, string is opened with double quotes and closed
with a single quote

The single backslash won’t be printed to the browser

 Chapter 3: Using Variables 43

The problem is that the single backslash would not be printed on the Web page. It would
appear as

Go to the directory c:javascript on your computer

Unless the backslash is followed with the code for a special character, JavaScript prints the
character after the slash as it appears (you will see this in the escape technique discussed in the
next section). To fix this, use the \\ special code to print a single backslash on the page:

<script type="text/javascript">
 document.write("Go to the directory c:\\javascript on your
computer.");
</script>

Now you get the sentence you want printed to the browser, like this:

Go to the directory c\:javascript on your computer.

The special characters used in JavaScript are shown in Table 3-2.
Suppose that you want to print a sentence on a Web page with strong emphasis. JavaScript

allows you to print HTML code to the page as part of a string in the document.write() method
(which you used for your first scripts in Chapter 2). To print in bold type, you could just add in
the and tags from HTML, as in this sample code:

<script type="text/javascript">
 document.write("JavaScript Rules! This is fun.");
</script>

Using the special code for the backslash
character allows it to be printed to the browser

Output Character Special Code to Use

Backslash (\) \\

Double quote (") \"

Single quote (') \'

Backspace \b

Form feed \f

Newline \n

Carriage return \r

Tab \t

Vertical Tab \v

Table 3-2 Special JavaScript Characters

Note the HTML and tags
within the JavaScript string

 44 JavaScript: A Beginner’s Guide

Now suppose that you want the code itself to appear on two lines when it is viewed,
like this:

JavaScript Rules!
This is fun.

You might try this by adding the newline special character to the code:

<script type="text/javascript">
 document.write("JavaScript Rules!\n This is fun.");
</script>

The \n special code is only a newline in JavaScript; it will not result in an HTML line
break. The JavaScript newline code does not add a new line to the result of the code shown in
the browser display. So, the end result of the preceding code is a sentence like this one:

JavaScript Rules! This is fun.

If you want to add a line break in the browser display, you need to use the HTML
 tag to
produce it.

Keep in mind that the JavaScript newline affects only the appearance of the source code;
it does not play a factor in the end result. However, it does help later when you want to format
the output of JavaScript alert boxes and various other JavaScript constructions.

Escaping Characters
JavaScript allows you to escape certain characters, so that they will show up correctly and
avoid causing errors. Like special characters, escape sequences use the backslash character (\),
which precedes the character that needs to be escaped.

As noted earlier, JavaScript checks each string for the presence of special characters before
rendering it. This is useful if you want to have a quote within a string. For example, suppose
that you want to print the following sentence on a Web page:

John said, "JavaScript is easy."

What would happen if you just threw it all into a document.write() command?

<script type="text/javascript">
 document.write("John said, "JavaScript is easy."");
</script>

If you look near the end of the document.write() line, you will see that the two double
quotes together could cause trouble, but the browser will actually get upset before that point.
When the double quote is used before the word JavaScript, the browser thinks you have closed
the string used in the document.write() command and expects the ending parenthesis and
semicolon. Instead, there is more text, and the browser gets confused.

To avoid problems with quotes, use the backslash character to escape the quotation marks
inside the string. By placing a backslash in front of each of the interior double quote marks,

The extra set of quote marks here will cause an error

 Chapter 3: Using Variables 45

you force them to be seen as part of the text string, rather than as part of the JavaScript
statement:

<script type="text/javascript">
 document.write("John said, \"JavaScript is easy.\"");
</script>

This fixes the problem with the string, and the sentence will print with the quotation marks.

CAUTION
Also watch for single quotes and apostrophes within strings. Escaping these is required
for strings enclosed within single quotes.

The escape technique also works for HTML code in which you need quotation marks.
For instance, if you want to put a link on a page, you use the anchor tag and place the URL in
quotes. If you escape the quotes in the anchor tag, JavaScript allows you to write the HTML
code to the page within the document.write() method, as in this example:

<script type="text/javascript">
 document.write("Text");
</script>

This does the job, but there is also an easier way to make this work if you do not want to
escape quotation marks all of the time.

To avoid escaping the quotes in the preceding code, you could use single quotes around the
URL address instead, as in this code:

<script type="text/javascript">
 document.write("Text");
</script>

You can also do this the other way around if you prefer to use single quotes on the outside,
as in this example:

<script type="text/javascript">
 document.write('Text');
</script>

The important point to remember here is to be sure that you do not use the same type of
quotation marks inside the string as you use to enclose the string. If you need to go more than
one level deep with the quotes, you need to start escaping the quotes; this is because if you
switch again, it will terminate the string. For example, look at this code:

document.write("John said, 'Jeff says, \"Hi!\" to someone.'");
document.write("John said, 'Jeff says, "Hi!" to someone.'");

The first one would work, since the quotes are escaped to keep the string going. However,
the second line only switches back to double quotes when inside the single quotes within the

The backslashes allow the inner quote
marks to become part of the string

Single quotes within double quotes are okay

Double quotes inside single quotes are also okay

 46 JavaScript: A Beginner’s Guide

string. Placing the double quotes there without escaping them causes the string to terminate
and gives an error.

As you can see, quotation marks can be a real pain when you need to use a large number
of them within a string. However, remembering to use the backslash to escape the quotes when
necessary will save you quite a few headaches when you are looking for a missing quote. I’ve
had to look for missing quotes in my code a number of times, and my head was spinning after
a few of those encounters! Later in this chapter, you will see that you can add strings together,
which can simplify the use of quotes for you.

Boolean
A Boolean variable is one with a value of true or false. Here are examples:

var JohnCodes=true;
var JohnIsCool=false;

Notice that the words true and false do not need to be enclosed in quotes. This is because they
are reserved words, which JavaScript recognizes as Boolean values.

Instead of using the words true and false, JavaScript also allows you to use the number 1
for true and the number 0 for false, as shown here:

var JohnCodes=1;
var JohnIsCool=0;

Boolean variables are useful when you need variables that can only have values of true and
false, such as in event handlers (covered in Chapter 7).

NOTE
When we talk about the concept of a Boolean variable, the first letter of the word
Boolean is capitalized (because it is derived from the name of the mathematician
George Boole). However, the JavaScript reserved word boolean is written in all
lowercase letters when you use the keyword in a script.

Null
Null means that the variable has no value. It is not a space, nor is it a zero; it is simply nothing.
If you need to define a variable with a value of null, use a declaration like this:

var variablename=null;

As with the Boolean variables, you do not need to enclose this value in quotation marks as
you do with string values, because JavaScript recognizes null as a keyword with a predefined
value (nothing).

Null variables are useful when you test for input in scripts, as you’ll learn in later
chapters.

Using the number 0 is the same as using the value of false
Using the number 1 is the same as using the value of true

 Chapter 3: Using Variables 47

Try This 3-1 Declare Variables
This project gives you the opportunity to practice declaring variables with various
values. It also prints a short line of text on the page.

Q: Why do I need to learn about variables? Couldn’t I just put in the number or text I
want to use right where I’m going to use it?

A: You can do that; however, it will make longer scripts much harder to write, read, and
debug. It also makes it much more difficult to update your scripts because, in order to
change that number or text, you would need to change every line where it appears. When
you use variables, you can modify just one line of code to change the value of a variable
every place it is used. As you gain more experience with JavaScript, you will see just how
useful variables are.

Q: Why don’t I need to define the type of number I am using (such as float or integer)
when I declare a numeric variable?

A: JavaScript doesn’t require this, which can be a good or bad feature depending on your
perspective. To JavaScript, any number is just a number and can be used as a number
variable.

Q: Why do I need to put quotation marks around the text in a string?

A: This is done so that JavaScript knows where a string begins and ends. Without it, JavaScript
would be unsure what should be in a string and what should not.

Q: But doesn’t a semicolon end a statement? Why not use that and lose the quote marks?

A: A variable declaration or any command involving strings can become more complex when
the addition operator is used to add two strings and/or variables together. When this happens,
JavaScript needs to know when one string stops and another begins on the same line.

Q: What does the backslash (\) character do, in general?

A: If the backslash is followed by a code to create a special character, the special character is
rendered in its place. Otherwise, the first character after a single backslash is seen “as-is”
by JavaScript and treated as part of the string in which it resides.

Ask the Expert

(continued)

pr3_1.html

 48 JavaScript: A Beginner’s Guide

Step by Step
 1. Create an HTML page, leaving the space between the <body> and </body> tags open.

 2. Between the <body> and </body> tags, add the <script> and </script> tags as you learned
in Chapter 2.

 3. Create a numeric variable named chipscost and give it the value 2.59.

 4. Create a Boolean variable named istrue and give it the value false.

 5. Create a variable named nada and give it the value null.

 6. Create a JavaScript statement to write to the Web page the string value that follows.
Remember to escape quotation marks when necessary:

 John said, “This project is fun!”

 7. The body section of the HTML document should look like this when you are finished:

<body>
<script type="text/javascript">
 var chipscost=2.59;
 var istrue=false;
 var nada=null;
 document.write("John said, \"This project is fun!\"");
</script>
</body>

 8. Save the file as pr3_1.html and view it in your Web browser.

You should see only the text that you output with the document.write() command. The
variable definitions won’t be printed on the browser screen. You can view the page source code
to see how the variable definitions look in the code.

Try This Summary
In this project, you were able to use your skills to declare different types of variables in a
script. This project included a numeric variable, a Boolean variable, and a variable with a
value of null. You were also able to use skills learned in Chapter 2 to write a line of text to the
page with JavaScript.

Using Variables in Scripts
To make a variable useful, you need to do more than just declare it in the script. You need to
use it later in the script in some way, perhaps to print its value or even just to change its value.
To use a variable, you make the call to a variable after it has been declared.

 Chapter 3: Using Variables 49

Making a Call to a Variable
The following code shows how to write the value of a variable to a Web page using the
document.write() method:

<script language="JavaScript">
 var mycar="Corvette";
 document.write(mycar);
</script>

The script begins by declaring a variable mycar and giving it a value of “Corvette”. Then,
in the document.write() command, you see that just the variable name mycar is enclosed
within the parentheses. The result of this script is simply to write “Corvette” to the browser.

There are no quotation marks around the mycar variable that is being written to the page.
The reason for this is that the mycar variable has already been given a string value, so it does
not need to be within quotes to print its value to the page in the document.write() command.
Already, you can see how using a variable has the advantage of making a short document.write()
command easier to code.

Adding Variables to Text Strings
The preceding code just prints the value of the variable in the browser. If you want that
variable to print along with some other text in a string, the document.write() command
becomes more complex. The text string needs quotes around it if it has not been defined as a
variable, and the variable needs to be on its own. You use the addition operator (+) to add the
value of the variable to the string, as shown in this example:

<script type="text/javascript">
 var mycar="Corvette";
 document.write("I like driving my "+mycar);
</script>

This code prints the following sentence in the browser window:

I like driving my Corvette.

Notice the space after the word “my” in the code. This ensures that a space appears before the
variable is added to the string. If you used the line

document.write("I like driving my"+mycar);

the result would be

I like driving myCorvette.

When adding strings, you need to be careful to add the spaces that you want to appear in the
output.

A variable is added to the string
that is written to the browser

Prints the value of the mycar variable to the browser

 50 JavaScript: A Beginner’s Guide

The addition operator enables you to place a variable before, after, or even into the middle
of a string. To insert a variable into the middle of a string (so that it shows with text on both
sides of it), just use another addition operator to add whatever you need to the right of the
variable, as in this example:

<script type="text/javascript">
 var mycar="Corvette";
 document.write("I like driving my "+mycar+" every day!");
</script>

Now the variable sits inside two text strings, putting a single string together from three
pieces. This code prints the following sentence to the browser:

I like driving my Corvette every day!

When using the variable, you need to make sure that the variable and addition operators
are not inside the quotation marks of a string. If they are, you will not get the results you
intended. For example, look at this code:

<script type="text/javascript">
 var mycar="Corvette";
 document.write("I like driving my +mycar+ every day!");
</script>

JavaScript will not recognize the operators and variables here; they are seen only as part of the
text string because they are inside the quotes. Instead of using the variable, JavaScript takes
everything literally and prints this sentence in the browser:

I like driving my +mycar+ every day!

To make this code easier to write, you could place every string involved into a variable, so
that you only need to add the variable values together rather than dealing with the quotes, like
this:

<script type="text/javascript">
 var firstString= "I like driving my ";
 var mycar="Corvette";
 var secondString= " every day!";
 document.write(firstString+mycar+secondString);
</script>

This prints the same sentence but allows you to change its parts later without needing to edit
the document.write() command.

The techniques you’ve learned in this section will become useful as your strings become
more complex, especially when you use HTML code within the strings.

The variable is added between two strings

The addition operator must also be
outside the quote marks to work

Three variables are added
together and printed to the
browser

 Chapter 3: Using Variables 51

Writing a Page of JavaScript
Now that you know how to use variables and write basic HTML code to the page using
JavaScript, you will create a page that is almost entirely written with JavaScript (everything
inside the <body> and </body> tags), as a way to reinforce the techniques you have learned up
to this point.

Creating the Framework
The first thing you need is a basic framework for the page so that you know where to insert
your script. Since you are writing information onto the page, the script tags will be placed
within the <body> and </body> tags. In this case, an external script file named ch3_code.js
will be used. The body section of your HTML document will look like this:

<body>
<script type="text/javascript" src="ch3_code.js"></script>
</body>

The code you place in the ch3_code.js file will determine what shows up in the browser
when you have finished.

Defining the Variables
To begin your script file, use some JavaScript code to write an HTML heading. You could
write the code as a string directly into the document.write() command, as shown here:

document.write("<h1>A Page of JavaScript</h1>");

On the other hand, you could place the string inside a variable and use the variable inside the
document.write() command later in the script:

var headingtext="<h1>A Page of JavaScript</h1>";
Other code may be placed here...
document.write(headingtext);

For this example, you will go with the second method, since it uses a variable. You will see
how this can be a handy feature as you get further into the script.

In fact, along with the headingtext variable, you’ll create a bunch of variables to hold
the strings of HTML code to add to the page. The next one will add a short sentence of
introduction to the page. The variable declaration for the introduction will look like this:

var myintro="Hello, welcome to my JavaScript page!";

Next, you’ll add a link to the page. The variable declaration for the link looks like this:

var linktag="Link to a Site";

Next, you’ll put in some red text to add a little color. Here’s the redtext variable definition:

var redtext="I am so colorful today!";

The script tags are inserted here to call the external JavaScript file

 52 JavaScript: A Beginner’s Guide

Finally, you’ll add in some variables that give you just the opening and closing strong tags and
paragraph tags:

var begineffect="";
var endeffect= "";
var beginpara="<p>";
var endpara="</p>";

The code for all of the variables in the ch3_code.js file is as follows:

var headingtext="<h1>A Page of JavaScript</h1>";
var myintro="Hello, welcome to my JavaScript page!";
var linktag="Link to a Site";
var redtext="I am so colorful today!";
var begineffect="";
var endeffect= "";
var beginpara="<p>";
var endpara="</p>";

Adding the Commands
Now, following the variable declarations, you can add some document.write() commands to
the ch3_code.js file to write the contents of the variables back to the HTML document:

document.write(headingtext);
document.write(begineffect+myintro+endeffect);
document.write(beginpara);
document.write(linktag);
document.write(endpara);
document.write(beginpara);
document.write(redtext);
document.write(endpara);

This writes the heading at the top of the page. Adding the begineffect and endeffect
variables to the left and right of the myintro variable writes the introductory text in bold under
the heading. After that is a new paragraph, followed by a link, and then another new paragraph,
followed by the red text message.

Here is the entire code for the ch3_code.js file up to this point:

var headingtext="<h1>A Page of JavaScript</h1>";
var myintro="Hello, welcome to my JavaScript page!";
var linktag="Link to a Site";
var redtext="I am so colorful today!";
var begineffect="";
var endeffect= "";
var beginpara="<p>";
var endpara="</p>";

All of the variables are declared and assigned values here

 Chapter 3: Using Variables 53

document.write(headingtext);
document.write(begineffect+myintro+endeffect);
document.write(beginpara);
document.write(linktag);
document.write(endpara);
document.write(beginpara);
document.write(redtext);
document.write(endpara);

Save the ch3_code.js file and then load your HTML document. The end result of this
code in the browser is shown in Figure 3-1. Note the strong introduction text and the use of
paragraphs between sections.

Modifying the Page
Now suppose that you do not like the layout as it appeared on the Web page. Instead, you
want the strongly emphasized introduction to be normally emphasized. If you had written the
document.write() commands with plain strings rather than variables, you would need to search
through the code to find the tags and change them to tags.

However, since you used the variables, all you need to do is change the values of the
appropriate variables at the top of the script file. You only need to change the values of the
variables, and you don’t need to look for the strong tags inside a bunch of code.

The values of the variables are
printed to the browser here

Figure 3-1 The result of the JavaScript code in a Web browser

 54 JavaScript: A Beginner’s Guide

The code that follows shows the changes that you could make to the script file to get the
new effect. Notice how you only need to change the values of the begineffect and endeffect
variables to change the format of the text on the page:

var headingtext="<h1>A Page of JavaScript</h1>";
var myintro="Hello, welcome to my JavaScript page!";
var linktag="Link to a Site";
var redtext="I am so colorful today!";
var begineffect="";
var endeffect= "";
var beginpara="<p>";
var endpara="</p>";
document.write(headingtext);
document.write(begineffect+myintro+endeffect);
document.write(beginpara);
document.write(linktag);
document.write(endpara);
document.write(beginpara);
document.write(redtext);
document.write(endpara);

Save the ch3_code.js file and reload your HTML document. Figure 3-2 shows how these
changes affect the display of the page in a Web browser.

Changed to
Changed to

Figure 3-2 The page after changing some JavaScript variables

 Chapter 3: Using Variables 55

Try This 3-2 Create an HTML Page with JavaScript
In this project, you will create an HTML page with JavaScript, similar to the
one you created in this chapter. The variables will be given new values, and the
differences should be noticeable.

Step by Step
 1. Create an HTML page, leaving the space between the <body> and </body> tags open.

 2. Between the <body> and </body> tags, add the <script> and </script> tags to link to a file
named prjs3_2.js. Save the HTML file as pr3_2.html.

 3. Open a file to use as your JavaScript file. Save it with the filename prjs3_2.js. Use this file
to add the JavaScript code in steps 4–10.

 4. Create a variable named myheading and give it this value:

 This is My Web Page!

 5. Create a variable named linktag and give it this value:

 Web Site Link!

 6. Create a variable named sometext and give it this value:

 This text can be affected by other statements.

 7. Create a variable named begineffect and give it the value .

 8. Create a variable named endeffect and give it the value .

 9. Create a variable named newsection and give it the value
.

 10. Write the value of each variable back to the HTML document in this order:

 myheading
newsection
begineffect
sometext
endeffect
newsection
linktag
newsection
sometext

(continued)

pr3_2.html
prjs3_2.js

 56 JavaScript: A Beginner’s Guide

 When you have finished, save the prjs3_2.js file. It should look like this:

var myheading="<h1>This is My Web Page!</h1>";
var linktag="Web Site
Link!";
var sometext="This text can be affected by other statements.";
var begineffect="";
var endeffect="";
var newsection="
";
document.write(myheading);
document.write(begineffect);
document.write(sometext);
document.write(endeffect);
document.write(newsection);
document.write(linktag);
document.write(newsection);
document.write(sometext);

 11. Open the pr3_2.html page in your Web browser and view the results.

 12. Reopen the prjs3_2.js file and make the changes in steps 13–14.

 13. Change the value of begineffect to .

 14. Change the value of endeffect to .

 15. When you have finished, save the prjs3_2.js file. It should look like this:

var myheading="<h1>This is My Web Page!</h1>";
var linktag="Web Site
Link!";
var sometext="This text can be affected by other statements.";
var begineffect="";
var endeffect="";
var newsection="
";
document.write(myheading);
document.write(begineffect);
document.write(sometext);
document.write(endeffect);
document.write(newsection);
document.write(linktag);
document.write(newsection);
document.write(sometext);

 16. Reload the pr3_2.html page in your Web browser. Notice the differences resulting from the
changes in the variable values in the JavaScript file.

 Chapter 3: Using Variables 57

Try This Summary
In this project, you combined your new skills on using variables with earlier skills on writing
to a Web page with JavaScript. You created a Web page with a script that uses variables to
write the HTML code on the page. You then changed the values of two variables and resaved
the script file. The changes to the variables made visible changes to the page.

 Chapter 3 Self Test
 1. A variable __________ or __________ a value.

 2. What are two of the benefits of using variables?

 A They can save you time in writing and updating your scripts, and they can make the
purpose of your code clearer.

 B They make the purpose of your code clearer, and they make it harder for noncoders to
understand the script.

 C They can save you time in writing and updating your scripts, and they make it harder
for noncoders to understand the script.

 D They offer no advantages whatsoever.

 3. To declare a variable, you use the __________ keyword.

 4. What symbol is used as the assignment operator in JavaScript?

 A +

 B –

 C :

 D =

 5. Which of the following declares a variable named pagenumber and gives it a value of 240?

 A var PageNumber=240;

 B pagenumber=220;

 C var pagenumber=240;

 D var integer named Pagenumber=240;

 6. Variable names are not case sensitive.

 A True

 B False

✓

 58 JavaScript: A Beginner’s Guide

 7. A variable name must begin with a(n) __________ or a(n) __________ character.

 8. You should avoid using JavaScript reserved words as variable names.

 A True

 B False

 9. Which of the following variable declarations uses a variable with a valid variable name
in JavaScript?

 A var default;

 B var my_house;

 C var my dog;

 D var 2cats;

 10. In JavaScript, the variable values, or __________, can include numbers, strings, Booleans,
and nulls.

 11. To denote an exponent in JavaScript, you use a letter __________ right after the base
number and before the exponent.

 12. Which of the following string declarations is invalid?

 A var mytext=“Here is some text!”;

 B var mytext=‘Here is some text!’;

 C var mytext= “Here is some text!’;

 D var mytext= “Here is \n some text!”;

 13. Which of the following statements would be valid in JavaScript?

 A document.write(“John said, “Hi!””);

 B document.write(‘John said, “Hi!””);

 C document.write(“John said, “Hi!’”);

 D document.write(“John said, \“Hi!\””);

 14. __________ characters enable you to add things to your strings that could not be added
otherwise.

 15. Which of the following successfully prints a variable named myhobby by adding it to a set
of strings?

 A document.write(“I like to +myhobby+ every weekend”);

 B document.write(“I like to ” +myhobby+ “ every weekend”);

 C document.write(“I like to myhobby every weekend”);

 D document.write(“I like to ‘myhobby’ every weekend”);

59

Chapter 4
Using Functions

 60 JavaScript: A Beginner’s Guide

Key Skills & Concepts

● What a Function Is

● Why Functions Are Useful

● Structuring Functions

● Calling Functions in Your Scripts

A s a JavaScript coder, you need to know how to use functions in your scripts. Functions can
make your scripts more portable and easier to debug.
This chapter covers the basics of using functions. First, you will find out what a function

is and why functions are useful. Then, you will learn how to define and structure functions.
Finally, you will learn how to call functions in your scripts.

What a Function Is
A function is basically a little script within a larger script. Its purpose is to perform a single
task or a series of tasks. What a function does depends on what code you place inside it. For
instance, a function might write a line of text to the browser or calculate a numeric value and
return that value to the main script.

As you may recall from math class, a function can be used to calculate values on a
coordinate plane. You may have seen calculations like these:

f(x)=x+2
y=x+2

Both are commonly used to calculate the y coordinate from the value of the x coordinate. If
you need the y coordinate when x is equal to 3, you substitute 3 for x to get the y value: 3+2=5.
Using the function, you find that when x=3, y=5.

The function itself is just sitting on the paper (or, in our case, the script) until you need
to use it to perform its task. And you can use the function as many times as you need to, by
calling it from the main script.

Why Functions Are Useful
Functions help organize the various parts of a script into the different tasks that must be
accomplished. By using one function for writing text and another for making a calculation, you
make it easier for yourself and others to see the purpose of each section of the script, and thus
debug it more easily.

 Chapter 4: Using Functions 61

Another reason functions are useful is their reusability. They can be used more than once
within a script to perform their task. Rather than rewriting the entire block of code, you can
simply call the function again.

Consider the simple function y=x+2. If you use it only once, the function doesn’t serve
much purpose. If you need to get several values, however, the function becomes increasingly
useful. Rather than writing out the formula for each calculation, you can just substitute the x
values each time you need to get the y value. So, if you need the y value when x is 3, 4, and 5,
you can use the function three times to get the y values. The function will calculate 5, 6, and
7, respectively. Instead of writing the content of the function three times, it only needs to be
written once to get three answers.

Functions can perform complex tasks and can be quite lengthy. In the examples in this and
later chapters, you’ll see just how useful and time-saving they are in JavaScript.

Structuring Functions
Now that you understand what functions are and why you want to use them, you need to learn
how to structure them in your scripts. A function needs to be declared with its name and its
code. There are also some optional additions you can use to make functions even more useful.
You can import one or more variables into the function, which are called parameters. You can
also return a value to the main script from the function using the return statement. You will
start by looking at how the function begins.

Declaring Functions
On the first line of a function, you declare it as a function, name it, and indicate whether it
accepts any parameters. To declare a function, you use the reserved word function, followed by
its name, and then a set of parentheses:

function functionname()

The reserved word function tells the browser that you are declaring a function and that more
information will follow. The next piece of information is the function’s name. After that, the
set of parentheses indicates whether the function accepts any parameters.

For example, to name your function reallycool and indicate that it does not use any
parameters, the first line looks like this:

function reallycool()

Because the function does not use any parameters, the parentheses are left empty. As with
variable names, there are some special considerations for naming functions. You’ll learn about
those considerations after the discussion of the function structure.

You may have noticed that this line does not end with a semicolon, as do the other code
lines you’ve seen so far in this book. The semicolon is absent because you use a different
technique to show where the function’s code begins and ends, as described next. However,

 62 JavaScript: A Beginner’s Guide

each of the separate lines of code within the function does end with a semicolon, as you will
see in the examples in this chapter.

Defining the Code for Functions
Curly brackets ({ }) surround the code inside the function. The opening curly bracket marks
the beginning of the function’s code; then comes the code; and, finally, the closing curly
bracket marks the end of the function, in this format:

function reallycool()
{
 JavaScript code here
}

The browser will execute all of the code inside the curly brackets when the function is
called (as you will learn later in this chapter). When the browser gets to the closing curly
bracket, it knows the function has ended. The browser will move to the next line of code or
continue whatever it was doing before the function was called.

You have some flexibility in formatting the curly brackets. There are several common
ways to place the curly brackets into a script. The format shown in the preceding example
“lines up” the brackets so that the opening and closing of the function are seen on the left
margin of the code. This method is handy if you use other statements that need curly brackets
(you will see some other statements that use curly brackets in later chapters). By indenting
each set of brackets, you make it easy to see which brackets are nested within the function and
which ones begin and end the function itself.

Another common format is to put the opening bracket on the same line as the function
declaration, rather than on the next line:

function reallycool() {
 JavaScript code here
}

In this format, the opening brackets of code blocks are seen to the right, and closing brackets
appear on the left. This can be a useful technique if you wish to count how many brackets have
been opened and/or closed within a segment of code.

Of course, if you have a particularly short function, you can even place the entirety of the
function on a single line, like this:

function reallycool() { JavaScript code here }

The curly brackets are flexible in this way because white space, tabs, and line breaks that
appear between tokens in JavaScript are ignored (tokens are such things as variable or function

Function is defined and given the name reallycool Opening curly bracket to show the
beginning of code within the function

Closing curly bracket ends the function

JavaScript code to be executed is
placed here, between the brackets

Opening bracket is on the first line
with the declaration of the function

 Chapter 4: Using Functions 63

names, keywords, or other parts of the code that must remain intact). Thus, the following code
would be valid:

function reallycool() {
var
 a
 =
 5; var b = 3; var c = 6; }

Though it may be more difficult to read, JavaScript will still see it as valid code since the
proper syntax is otherwise in place.

The format you choose for the curly brackets will likely depend on your background in
programming and how you like to see the code. All the styles are acceptable to the JavaScript
interpreter, so use the one that you feel most comfortable viewing and editing. In the examples
in this book, I will place the opening bracket on the same line as the function declaration (as
in the second example format from this section) and may occasionally place the entirety of a
function on one line if it is particularly short (as in the third example format in this section).

Naming Functions
As with variables, functions need to be named carefully to avoid problems with your
scripts. The same basic rules that applied to variables apply to the naming of functions:
case sensitivity, using allowed characters, avoiding reserved words, and giving functions
memorable and meaningful names.

NOTE
If you already know the rules for naming variables, you may wish to skip this section,
since the function-naming rules are essentially the same. However, there are some
details about choosing names for functions that you may find useful.

Using Case in Function Names
Function names are case sensitive, just like variable names. This means that reallycool,
REALLYCOOL, and ReallyCool represent different functions. Remember that you need to
call your functions using the same letter cases as you used in their declarations.

Using Allowed Characters and Avoiding Reserved Words
The characters that are allowed for function names are the same as those you can use for
variable names:

● The function name must begin with a letter or an underscore character (_).

● The function name cannot contain any spaces.

Also as with variable names, you cannot use JavaScript reserved words for function names.
Doing so can cause the function to fail, which can cause real problems within a script. Refer to
the section “Avoiding Reserved Words” in Chapter 3 for a complete list of JavaScript reserved
words.

 64 JavaScript: A Beginner’s Guide

Giving Functions Meaningful Names
Your functions will be easier to remember and to debug if you choose names that reflect their
purpose. As you learned in Chapter 3, for a variable, you should use a name that represents its
value, such as example_number to stand for the number of an example on a page. A function
name should tell you something about what the function will do. For example, suppose that
you create a function that writes some text to the page. It could contain the following line of
code:

document.write("This is a strong statement!");

You could just name the function text, but that might not be descriptive enough, because
you could have other functions that also write text to the page. Instead, you might name it
something like print_strong_text, so that you know that the function is used to print a piece of
strongly emphasized text to the browser. The full function is shown here:

function print_strong_text() {
 document.write("This is a strong statement!");
}

As with variables, the more functions you use in a script, the more important it becomes to
use meaningful and memorable names for them.

Adding Parameters to Functions
Parameters are used to allow a function to import one or more values from somewhere outside
the function. Parameters are set on the first line of the function inside the set of parentheses, in
this format:

function functionname(variable1,variable2)

Any value brought in as a parameter becomes a variable within the function, using the name
you give it inside the parentheses.

For example, here is how you would define a function reallycool with the parameters
(variables) coolcar and coolplace:

function reallycool(coolcar,coolplace) {
 JavaScript code here
}

Notice that in JavaScript, you do not use the var keyword when you set the parameters for
a function. JavaScript declares the variables automatically when they are set as parameters to a
function, so the var keyword is not used here. For example, a line like this one is invalid:

function reallycool(var coolcar, var coolplace)

This name helps describe the purpose of the function

This line is the code that will be executed when the function is called

Parameters are added to the first line within the parentheses

 Chapter 4: Using Functions 65

Where do the parameters come from in the first place? They are obtained from outside the
function when you make the function call. You will see how this works later in this chapter.
For now, you just need to know how they are used as parameters to JavaScript functions.

NOTE
In other languages, it is often required that a variable have a declaration when set as
a parameter, but JavaScript will do this for you. However, when you declare variables
anywhere else, you need to use the var keyword.

Using Function Parameter Values
When you assign parameters to a function, you can use them like any other variables. For
example, you could give the coolcar variable value to another variable by using the assignment
operator, as in this example:

function reallycool(coolcar,coolplace) {
 var mycar=coolcar;
}

This assigns the value of the coolcar parameter to a variable named mycar.
Instead of assigning its value to another variable, you could just use the coolcar parameter

in the function, as in this example:

function reallycool(coolcar,coolplace) {
 document.write("My car is a "+coolcar);
}

If the value of coolcar is Corvette, then the function would print this line to the browser
when it is called:

My car is a Corvette

The coolcar parameter is given a value out of the blue here. In actual use, the value must come
from somewhere in the main script or another function, or else the variable will have no value.

Using Multiple Parameters
You may have noticed that the previous example had two parameters but used only one parameter.
A function can have as few or as many parameters as you wish. When you assign multiple
function parameters, the function doesn’t need to use all of them. It can use one parameter, a few,
or none. How many are used depends on what the function does and how it is called.

The only rule is that if you have more than one parameter, you need to separate each
parameter with a comma, so that the browser knows what to do.

In the previous example, the second parameter was not used. Here is how you could
change the function to use both parameters:

function reallycool(coolcar,coolplace) {
 document.write("My car is a "+coolcar+" and I drive it to "+coolplace);
}

The value of the coolcar variable
is assigned to the mycar variable

The value of the coolcar variable is
used in a document.write() command

Both parameters are used as variables in this document.write() command

 66 JavaScript: A Beginner’s Guide

Now, if the value of coolcar is Corvette and the value of coolplace is Las Vegas, the
function would print the following line to the browser when it is called:

My car is a Corvette and I drive it to Las Vegas

You can place as many parameters as your function needs within the parentheses on the
first line of the function. Here is an example with four parameters:

function reallycool(coolcar,coolplace,coolfood,coolbreeze)

Remember to separate each parameter with a comma when you have more than one.

Adding Return Statements to Functions
A return statement is used to be sure that a function returns a specific value to the main script,
to be used in the main script. You place the return statement as the last line of the function
before the closing curly bracket and end it with a semicolon. Most often, the value returned is
the value of a variable, using the following format:

return variablename;

For example, to return the value of a variable cooltext, the return statement looks like this:

return cooltext;

This returns the value of cooltext to the place in the main script where the function was called.
Suppose that you want to write a function that returns the result of adding two strings

together. You could use a return statement, as in this example:

function get_added_text() {
 var textpart1="This is ";
 var textpart2="fun!";
 var added_text=textpart1+textpart2;
 return added_text;
}

In this function, the first two variables are assigned string values, and the added_text
variable is given the value of the addition of those two strings. The new value is sent back to
the script where it was called. It returns this string:

This is fun!

This returned value is then used in the main script. In its current form, this function is not very
useful, because the strings were just defined in the function rather than being brought in as
parameters.

The variable with the result of the string addition is returned to the script

The strings are added together to combine
them and assigned to a variable

Second string to be added
is assigned to a variable

First string to be added is assigned to a variable

 Chapter 4: Using Functions 67

In addition to returning a variable value, you can return a simple value or even nothing. All
of the following would be valid return statements:

return "This is cool";
return 42;
return true;
return null;
return;

All of these return the control back to the first JavaScript statement after the function call.
Returning nothing does this without sending back a value.

You can also return an expression, such as the addition of numbers or strings (or any other
expression you decide to build). The following would also be valid return statements:

Return "This is "+"cool";
return 21+20+1;

These would return the values “This is cool” and 42, respectively.
You will see examples of more useful functions that use parameters and return statements

in the next section.

Calling Functions in Your Scripts
Now that you know how the function itself works, you need to learn how to call a function in
your script. A call to a function in JavaScript is simply the function name along with the set of
parentheses (with or without parameters between the opening and closing parentheses), ending
with a semicolon, like a normal JavaScript statement:

functionname();

You can call functions anywhere in your script code. You can even call a function inside
of another function. A good rule to follow is to have the function definition come before the
function call in the script. The easiest way to be sure that your function definition comes
before your function call is to place all of your function definitions as close to the beginning of
the script as possible.

Defining a function before calling it is a suggestion for good coding practice, not a strict
rule. A function can be called anywhere in JavaScript, but the function code must be loaded
by the browser before the function will work. This is why it is suggested that you define your
functions before calling them. If you were to call a function that is defined near the bottom of
a script, there is a chance it would not load in time to be executed. Thus, it is normally best to
define a function before it is called.

Returns a string value Returns a numeric value

Returns a Boolean value

Returns nothing

Returns the result of the addition of two strings
Returns the result of the addition of three numbers

Returns a null value

 68 JavaScript: A Beginner’s Guide

Script Tags: Head Section or Body Section
When adding scripts directly to a Web page rather than using an external file, making sure
that variable and function declarations are in the head section often helps to ensure they are
available when the script calls them in the body section. However, since JavaScript often uses
information from the document that may not have loaded yet, this could become problematic.
On the other hand, having a lot of JavaScript code in the body section can also be troublesome
when you need to edit your HTML code (and if the JavaScript code is in the body section it
needs to be after the element(s) that have the information JavaScript needs to use to ensure
the necessary information is loaded). It is preferable to place all of your code into an external
JavaScript file. Then, you can decide whether you want to place the script tags in the head
section or in the body section.

If a script needs no information from the document, placing the script tags in the head
section works very well. As an example, you will create a script that sends an alert message to
the viewer as soon as the page is opened in the browser. To have a message pop up in a small
message box, you use a JavaScript method called window.alert.

First, you’ll learn how to create a JavaScript alert, and then you’ll see how to build a
function that uses that method and call the function in a script.

Creating a JavaScript Alert
Rather than writing something to the screen with the document.write() method, you can create
a JavaScript alert that pops up in a message box by using the window.alert method. Like the
document.write() method, the window.alert method takes the text string for the alert as a
parameter, using this format:

window.alert("alert_text");

The string of text will be displayed in the alert pop-up box.
For example, suppose that you want to display “This is an alert!” in the pop-up box. You

would write the command in your external JavaScript file (we will use the filename js_alert.js
for this example) like this:

window.alert("This is an alert!");

Now you know how to make the alert pop up, but how can you get it to appear right as the
page is opened? You can do this by making sure the script is called before the body section
of the Web page is loaded. By placing the script tags inside the <head> and </head> tags of
the document, as shown next, you ensure that it will be executed before the rest of the page is
loaded:

<head>
<title>Functions – Alert!</title>
<script type="text/javascript" src="js_alert.js"></script>
</head>
<body>
HTML code here
</body>

This line calls the external JavaScript file

The HTML for the page would be here

 Chapter 4: Using Functions 69

Save the HTML file as js_alert.html and view it in your Web browser. As you can see, this
would certainly be an easy way to show an alert when the page opens. However, because you
are learning about functions, you will take another approach.

Using a Function for a JavaScript Alert
The following code uses a function in your external JavaScript file to pop up an alert box. In
your js_alert.js file, change the code to the following:

function show_message() {
 window.alert("This is an alert!");
}
show_message();

This example creates a function named show_message() to do the job of showing the alert.
The alert will be shown only if you call the show_message() function somewhere after it is
defined. In this case, the function is called right after its definition. The result is a small alert
box with the message “This is an alert!”

NOTE
When an alert box appears, you may see the page pause until you click the OK button,
or it may continue to load while waiting for you to click OK. This depends on your
browser.

Even though the function is defined first, it doesn’t mean it will be executed first. A
function is not executed until it is called; in other words, JavaScript will not use the function
until it gets to the function call in the script.

Any commands that come before the function call (and that are not part of the function
definition) will be executed before the function. For instance, we could change the code in the
JavaScript file as follows:

function show_message() {
 window.alert("This is an alert!");
}
window.alert("I am first, ha!");
window.alert("I am second, ha ha!");
show_message();

The window.alert() command
is used in the function

Names and begins the function

The function is called and executes, causing the alert to pop up

The function is defined This alert doesn’t happen
until the function is called

This alert shows up first

This alert is second
This finally calls the function so that the alert inside it can display

 70 JavaScript: A Beginner’s Guide

This example defines the same function, show_message(), on the first line. The function
is followed by two lone window.alert commands, and then the line that calls the function.
Save the js_alert.js file with this new code and then reload the js_alert.html file in your Web
browser. You should see an interesting result!

The two lone alert commands are the first executable statements JavaScript sees, and they
come first. The call to our function is seen last, so the function is executed last. The result is
three alerts, in this order:

● The user gets an alert, saying “I am first, ha!” and needs to click the OK button to get rid
of it.

● Then the alert that displays “I am second, ha ha!” appears, and the viewer needs to click
OK again.

● Finally, the function is executed, and the viewer sees the alert “This is an alert!” and needs
to click OK a third time to end the alert frenzy.

Although this example goes overboard with its alerts, it helps you understand how a
function call works.

If you are not worried about how soon the alerts display, the script can be called in the
body section as well. As you gain more experience coding, choosing whether to place script
tags in the head or body section will become easier. When scripts use information from the
body of the HTML document, the script tags typically either are placed in the head section
with a function set up to initialize variables and other functions when the page has loaded (this
uses event handling, which will be discussed in Chapter 7) or are placed in the body section
(often just before the ending </body> tag). I will use the latter method in this book.

Calling a Function from Another Function
Calling a function within another function can be a useful way to organize the sequence in
which your events will occur. Usually, the function is placed inside another function that has a
larger task to finish.

When you place a function call within a function, you should define the function that will
be called before you define the function that calls it, per the earlier suggestion that a function
should be defined before it is called.

Here is an example of two functions, where the second function calls the first one:

function update_alert(){
 window.alert("Welcome! This site is updated daily!");
}
function call_alert() {
 update_alert();
}
call_alert();

This function does the work of displaying the alert

This function just calls the previous function

This calls the call_alert() function to get things started

 Chapter 4: Using Functions 71

Notice that the update_alert() function is where all the real action happens. Everything
else is a function call. The call_alert() function does nothing more than call the update_alert()
function so that it is executed. Finally, you see the command that starts the entire sequence,
which is the call to the call_alert() function. Since this is the first JavaScript statement outside
a function, it is executed first. When it is executed, it just calls the update_alert() function,
which does the work of displaying the alert.

NOTE
Most browsers would execute the preceding example without a problem even if you
defined the update_alert() function after you called it. However, there is a chance that
some older browsers may not be as lenient and will want the function defined before it
is called. Also, if the function definition is too far down in the code to be loaded in time,
it will not work correctly. Thus, it is normally best to define a function before it is called.

Now suppose that you want to create three functions to perform three tasks. To make
sure that they occur in the correct sequence, you can call them in order from within another
function. Here is an example of this technique with three functions that call alerts for various
purposes:

function update_alert() {
 window.alert("Welcome! This site is updated daily!");
}
function section_alert() {
 window.alert("Please visit the picture section!");
}
function links_alert() {
 window.alert("Also, check out my links page!");
}
function get_messages() {
 update_alert();
 section_alert();
 links_alert();
}
get_messages();

The code begins by defining the three functions to show each alert. Then it defines the
get_messages() function, which just calls the previous three functions. Of course, the get_
messages() function must be called to actually put this into action. This call happens as the first
statement outside of a function.

Of course, creating a script that pops up message after message is not something you
typically want to do. Although the example demonstrates the correct use of function calls, a
script that does this would likely annoy your viewers! You’ll see examples of practical uses of
functions in later chapters.

This function pops up
an alert when called

This function also pops
up an alert when called

This function also pops up
an alert when called

This function calls the other three
functions into action when called

Calling the get_messages() function starts the process

 72 JavaScript: A Beginner’s Guide

Calling Functions with Parameters
The previous example used three different functions to show three alerts. Although it works, it
would be nice if you did not need to write a new function for each alert. You can avoid doing
this by using parameters. You can create a function to be used multiple times to do the same
thing, but with the new information from the parameters each time.

As mentioned earlier in the chapter, variables are commonly used as parameters. However,
you can also use a value as a parameter. You’ll learn about the different types of variable
parameters first, and then take a look at value parameters.

If you want to send the values of certain variables to the function, you must first declare
the variables and then be sure that they have the values you need before you send them. Here,
the scope of a variable becomes important. The scope of a variable determines where it is and
is not valid. JavaScript has global and local variables.

Using Global Variables
Global variables are the variables that you learned about in Chapter 3. Because they are defined
outside any functions, they can be changed anywhere in the script—inside or outside of functions.
A global variable is declared anywhere outside a function, as in the following code:

var mycar="Honda";
var paycheck="1200";

The variables in this example can be changed anywhere in the script. This means that they
can even be accidentally overwritten or changed by a function.

To understand how global variables can be affected by a function, consider an example
that shows two alerts. You want one alert to tell you how much money you need to get a
certain car, and you want the other one to tell you how much money you currently have and
what type of car you now own. What would happen if you used the following code?

var mycar="Honda";
var paycheck=1200;
function new_car() {
 mycar="Ferrari";
 paycheck=3500;
 window.alert("You need $"+paycheck+" to get a "+mycar);
}
new_car();
window.alert("You make $"+paycheck+" and have a "+mycar);

It may look as if you created new variables inside the function, even though they had the
same name. However, the script would output the following text in the two alerts:

You need $3500 to get a Ferrari
You make $3500 and have a Ferrari

Obviously, this isn’t right.

These are global variables being declared

These are being declared as global variables

Oops! The function assigns the variables new values

The alert here is what you expect

The alert here is not what you expect, since the variables were accidentally changed

 Chapter 4: Using Functions 73

This example demonstrates why you need to use the var keyword when declaring
variables. Without the var keyword, you are not creating new variables inside the function
(which would make them local). Instead, you are changing the value of your global
variables—you are issuing a reassignment command rather than a new variable command.
To clear this up, you need to either change one set of variable names or use local variables, as
described in the next section.

Using Local Variables
A local variable can be used only within the function in which it is declared. It does not exist
outside that function, unless you pass it along to another function by using a parameter.

The key to creating a local variable in a function is to be sure that you declare it using the
var keyword. Otherwise, any global variables by that name could be changed, as you saw in
the previous example. To declare a local variable, you must place it inside a function and use
the var keyword, as shown in this code:

function new_car() {
 var mycar="Ferrari";
 var paycheck="3500";
}

The mycar and paycheck variables are now local variables, which can only be seen and
changed by the new_car() function.

Therefore, to correct the script in the previous section, you just need to add the var
keyword to declare the local variables inside the function, like this:

var mycar="Honda";
var paycheck=1200;
function new_car() {
 var mycar="Ferrari";
 var paycheck=3500;
 window.alert("You need $"+paycheck+" to get a "+mycar);
}
new_car();
window.alert("You make $"+paycheck+" and have a "+mycar);

Now the alerts should appear as you intended:

You need $3500 to get a Ferrari
You make $1200 and have a Honda

As you can see, the scope of a variable may be important when you send certain variables
as parameters to a function.

Using Variables As Function Parameters
The following example uses variable parameters. It sends a global variable along to the
function. It then assigns its value to a local variable to avoid any accidental changes.

These variables are declared as local variables,
using the var keyword inside a function

Adding the var keyword ensures that variables
are declared locally and do not change the
global variables by the same name

 74 JavaScript: A Beginner’s Guide

function check_alert(paycheck) {
 var pcheck=paycheck;
 window.alert("You make $"+pcheck);
}
var paycheck=1200;
check_alert(paycheck);

The script begins with the check_alert() function, which takes in the parameter paycheck.
The line of code in the function assigns the value of paycheck to a local variable, pcheck. This
way, you can use pcheck within the function to avoid changing the global paycheck variable.
The function is then used to display an alert that uses the value of pcheck. After the function,
in the outside script, the global variable paycheck is assigned a value of 1200. Then the code
calls the check_alert() function and sends it the value of the paycheck variable.

The previous example shows a rather long way to keep from changing a global variable.
Since function parameters are sent as values of variables, you can change the variable name
the function accepts inside the parentheses in the function definition. This creates a local
variable from the parameter that is sent to the function. Here is an example:

function check_alert(pcheck) {
 window.alert("You make $"+pcheck);
}
var paycheck=1200;
check_alert(paycheck);

When this code calls the check_alert() function, it sends that function the value of the
paycheck variable. The value is pulled in from the function itself. Rather than naming the
value “paycheck” here and assigning it to another variable, you simply use another name
within the parentheses: pcheck. The pcheck variable becomes a local variable inside the
check_alert() function. Since the code sends paycheck a value of 1200, pcheck will be 1200,
unless you change it later in the function.

Using Value Parameters
You can also send a value as a parameter directly. Instead of needing to declare a global
variable in order to send a parameter, you can just send a value that will be turned into a local
variable inside the function. This allows you to send a value on the fly and eliminates the need
to have a global variable handy.

The important thing to remember is that if you send a string value, you need to enclose it
in quotes. The following function call sends a string value of “something” to a function named
text_alert():

text_alert("something");

The function accepts a parameter

The local variable is used inside
the function for the alert

The parameter value is
assigned to a local variable

The variable is
assigned a value

The value is passed to the function as a parameter

The function takes in a parameter
and gives it a local variable name

The local variable is used for the alert

 Chapter 4: Using Functions 75

For example, the last example in the previous section can be modified to add more information
while using one less line by using value parameters:

function check_alert(pcheck,car) {
 window.alert("You make $"+pcheck+" and have a "+car);
}
check_alert(1200,"Corvette");

In this example, the function call sends two parameters to the function. The first one is a
numeric value and does not need quotes. The second value is a string and needs to be enclosed
in quotes. These values are then sent to the function, where they are read in as the local
variables pcheck and car, respectively. They can now be used in the function to display this
sentence in an alert:

You make $1200 and have a Corvette

Parameters can also be sent using expressions, such as the following:

check_alert(500+700, "Cor"+"vette");

JavaScript will evaluate each expression and send the results as parameters to the function. Thus,
the preceding code would have the same end result (adding 500 and 700 gives 1200, and adding
“Cor” and “vette” gives “Corvette”):

You make $1200 and have a Corvette

Parameters Are Optional
Another thing that should be mentioned is that sending parameters to a function is optional.
The function will do its best to do its work without the parameter values that are not sent. You
could call the function check_alert() without any parameters:

function check_alert(pcheck,car) {
 window.alert("You make $"+pcheck+" and have a "+car);
}
check_alert();

Your result would be something like the following text:

You make $undefined and have a undefined

Thus, it is a good idea to set up some code to handle a situation where a parameter is not sent.
This can be done using conditionals. Here is one way to check if the parameters were sent to
check_alert():

function check_alert(pcheck,car) {
 if (pcheck && car) {
 window.alert("You make $"+pcheck+" and have a "+car);
 }

The function is sent a numeric value and
a string value instead of variable values

 76 JavaScript: A Beginner’s Guide

 else {
 window.alert("My parameters are missing!");
 }
}
check_alert();

This essentially tells JavaScript to see if the parameters exist before writing the statement
to the page. If they do exist, the statement is written on the page with the parameter values.
If they do not exist, then the viewer gets an alert that says “My parameters are missing!” The
logical operator && will be discussed in more detail in Chapter 5 and the if/else statement will
be discussed in more detail in Chapter 6.

Calling Functions with Return Statements
To call a function and use a return statement in the function, you can assign the result of the
function to a variable. In this way, the variable gets the value returned from the function and
can be used later in the script. This is the format for declaring a variable that has the value
returned by a function:

var variablename=functionname();

Consider the previous example, which had a function that returned the value of two text
strings added together. You can modify it so that the function result is assigned to a variable, as
follows:

function get_added_text() {
 var textpart1="This is ";
 var textpart2="fun!";
 var added_text=textpart1+textpart2;
 return added_text;
}
var alert_text=get_added_text();
window.alert(alert_text);

As you can see, the function returns the value of the added text variable to the script. By
assigning the result of the get_added_text() function to the alert_text variable, you can use the
added text later in the script. The variable is used to send an alert to the user with the result of
the added text. The alert message reads

This is fun!

Now, isn’t this fun? You’ll see some more practical applications of return methods when you
learn about form validation in Chapter 14.

Other Ways to Define Functions
There are several ways to define functions that you may come across while looking at scripts
or may find useful in coding new scripts: the function declaration (already discussed), the
function constructor, and the function expression.

The result of the added text is returned to the script

The result of the function is assigned to a variable

The value of the variable is used as the text for the alert

 Chapter 4: Using Functions 77

The Function Declaration
This is the method you have been using up to this point and one that will be used often in this
book. As you will recall, you simply declare the function as follows:

function functionname() {
 Code for function here
}

You can also add parameters and/or return statements as mentioned earlier in this chapter.

The Function Constructor
The function constructor creates a function object in the same way you would create a new
instance of an object (this will be discussed in Chapter 8):

var functionname = new Function (arguments, code for function) ;

This will work like other functions, but the main drawback to this method is that it has poorer
performance than the other methods (it is evaluated every time it is used rather than only being
parsed once). More often than not, you will use one of the other two methods for defining
functions.

The Function Expression
The function expression (also called the function operator) uses the same syntax as a function
declaration. The main difference between this and a function declaration is that a function
declaration creates a variable with the same name as the function name that can be used outside
the function, while the function expression can only access the variable by its name within the
function itself. For instance, the following code uses a function declaration and can output an alert
using the function name as a variable (the value of the variable will be all of the function’s code):

function send_alert() {
 var my_num = 1;
}
window.alert(send_alert);

On the other hand, the following code would give an error when run:

var get_func = function send_alert() {
 var my_num = 1;
}
window.alert(send_alert);

As seen in the preceding code, the function expression also uses a function name. However,
the function name cannot be used as a variable outside of the function.

CAUTION
This use of the function expression in Internet Explorer 7 (as of the time of this writing)
did not give an error, but gave the same result as the function declaration. To test for this
difference, Mozilla Firefox may be used.

 78 JavaScript: A Beginner’s Guide

Anonymous Functions One effective use of the function expression is to use it without a
function name to create an anonymous function. An anonymous function is one that is created
and called at the same time, and is helpful when you wish to call a function in only one place
in your code (rather than declaring the function elsewhere in the code and reusing it by calling
it more than once). The following is the general format for an anonymous function:

var varname = function(parameters) {
 Code for function
};

This uses the function keyword but does not name the function.
Anonymous functions are quite useful when dealing with JavaScript events. For example,

to react to a user clicking the mouse while on a Web page, you could write a simple function
for a click event on the document and then call it, as in the following code:

function do_not_click() {
 window.alert("Do not click on my page!");
}
document.onclick = do_not_click;

This declares the function, then calls it afterward (without parentheses) to handle the click
event.

However, you could combine these two steps into one using an anonymous function, as
follows:

document.onclick = function() {
 window.alert("Do not click on my page!");
};

Since the reaction to this event will only be in one place in the JavaScript code, the anonymous
function is a handy way to handle the event without the need to declare the function elsewhere
and then call it. This technique and the type of code used for event handling (such as in the
code listings above) will be discussed in more detail in Chapter 7.

Q: What if I put a function into my script but decide not to call it in the script? Will it
matter?

A: The function won’t be executed unless it is called. However, having unused functions
makes the code more difficult to maintain and will increase the download time for viewers
(which could make a difference on a slow connection such as dial-up or in situations where
optimization of the download time of the code is desired). Also, if the function contains
syntax errors, it could send the viewer JavaScript errors and keep other things on the Web
page from working correctly.

Ask the Expert

 Chapter 4: Using Functions 79

Q: What happens if I decide to remove a function from my script later?

A: This can cause trouble if you do not also remove any calls you made to the function.
The script may cause a JavaScript error; or it may run but give you unexpected results.
Also, before you remove a function, make sure that it does not perform a necessary task
someplace in the script.

Q: So, what happens if I call a function that doesn’t exist?

A: Either you will get a JavaScript error or the browser will do nothing when the function is
called, since it cannot find the function.

Q: What is the best way to determine when to use a function and when to just code what
I want right into the script?

A: For the most part, you want to use a function if the code within the function will be reusable in
some way. For instance, a function that performs a specific calculation might be useful in more
than one spot in the script. Also, if you just like the idea of organizing the code a little more,
a function helps with that. If you decide the code will be used just once in the script, you may
just want to put the code right into the script as it is or use an anonymous function for it.

Try This 4-1 Create an HTML Page with Functions
In this project, you create an HTML page with two JavaScript functions. One
function uses parameters sent to it to pop up an alert box with a message. The
other function uses a return statement to send a value back to the script. That
returned value then is used in an alert message to the viewer.

Step by Step
 1. Create an HTML page, leaving the space between the <body> and </body> tags.

 2. Create an external JavaScript file and save it as prjs4_1.js.

 3. Add the script tags necessary between the <body> and </body> tags of the HTML
document to include the external JavaScript file. Save the HTML file as pr4_1.html.

 4. Open the prjs4_1.js external JavaScript file and do steps 5–10.

(continued)

pr4_1.html
prjs4_1.js

 80 JavaScript: A Beginner’s Guide

 5. Create a function named car_cost() that takes two parameters, mycar and paycheck. Create
a window.alert command that will display an alert with the following message:

You have a <mycar variable here> and make $<paycheck variable here>

 6. Create a function named get_added_text() that returns the value of two strings added
together inside the function. The two strings to add are these two separate lines:

This project<space here>
is almost fun!

 7. In the main script (after the function definitions), call the car_cost() function, and send it the
values of “Mustang” and 1500 as parameters.

 8. In the main script (after the function definitions), assign the result of the get_added_text()
function to a variable named alert_text. Create an alert that pops up with the value of that
variable.

 9. When you have finished, your external JavaScript file should look like this:

function car_cost(mycar,paycheck) {
 window.alert("You have a "+mycar+" and make $"+paycheck);
}
function get_added_text() {
 var textpart1="This project ";
 var textpart2="is almost fun!";
 var added_text=textpart1+textpart2;
 return added_text;
}
car_cost("Mustang",1500);
var alert_text=get_added_text();
window.alert(alert_text);

 10. Save the external JavaScript file.

 11. Open the pr4_1.html file and view it in your browser to see the result.

When you open the Web page, you should see two alert messages:

You have a Mustang and make $1500
This project is almost fun!

Try This Summary
In this project, you created a script that uses two JavaScript functions. The first function uses
parameters and creates an alert box with a message based on the parameters that are sent to the
function. The second function returns a value to the script after adding two strings together.
The result of the script in the browser is two alert messages based on the information sent to
the first function and the information returned to the script from the second function.

 Chapter 4: Using Functions 81

Putting It All Together
Now that you have learned the basics of using functions, take a look at the rather long page
that follows. This page has some JavaScript added to the HTML document. Try to follow it
through to see how it works and what it will do.

<body>
<h1>"Welcome to my Function Page," I said.</h1>
<script type="text/javascript">
function get_added_text(textpart1,textpart2) {
 var added_text=textpart1+" "+textpart2;
 return added_text;
}
function print_text() {
 var myfood=get_added_text("cheese","bread");
 document.write(myfood);
}
var alert_text=get_added_text("soup","crackers");
window.alert(alert_text);
print_text();
</script>
<p style="color:red">I'm seeing red!</p>
</body>

First, you see that there are two functions defined. The get_added_text() function is used to
add two pieces of text, put a space between them, and return that value to where it was called.
The print_text() function is used to send some text as parameters to the get_added_text()
function, assign the result to a variable named myfood, and print the result to the page itself.

The first command executed is the one right after all the function definitions. It is this line:

var alert_text=get_added_text("soup","crackers");

This line is declaring a variable named alert_text and assigning it the value that is returned
from the get_added_text() function when the function receives “soup” and “crackers” as
the parameters. The result will be the two parameter values with a space between them. The
returned string of “soup crackers” is now assigned to the alert_text variable.

The next line executed is the line directly afterward, shown here:

window.alert(alert_text);

The alert has the text assigned to the alert_text variable, which is the added string returned from
the get_added_text() function.

Next, there is the call to put the print_text() function into action.
The first thing the print_text() function does is declare a variable named myfood and assign

it the value returned from the get_added_text() function. It is sent the values of “cheese” and

 82 JavaScript: A Beginner’s Guide

“bread” as parameters. So, the value returned is the string “cheese bread”, which will be assigned
to the myfood variable. The print_text() function then takes that value and writes it to the screen
using the document.write() method.

Figures 4-1 and 4-2 show the results of this script when run in a browser. Figure 4-1 shows
the alert box that pops up first, and Figure 4-2 shows the page the viewer sees after clicking
OK in the alert box.

This example shows how you can use the different techniques you learned in this chapter
to structure functions, add parameters to function, call functions within other functions, and
use return statements. These can all be used in a single script to perform their assigned tasks
when necessary.

Figure 4-1 The alert box that appears before or while the page loads

 Chapter 4: Using Functions 83

Figure 4-2 The page that appears after the OK button in the alert box is clicked

Try This 4-2 Write Your Own Functions
In this project, you again create an HTML page with two JavaScript functions,
but for this project, you use your own variable and function names and create
your own version of the script.

Step by Step
 1. Create an HTML file and save it as pr4_2.html.

 2. Create an external JavaScript file and save it as prjs4_2.js. Use this file for steps 3–6.

 3. Create one function that takes in two strings as parameters. Have it return the value of the
two strings added together, but with a space between them.

pr4_2.html
prjs4_2.js

(continued)

 84 JavaScript: A Beginner’s Guide

 4. Create a second function that gets the result of the first function and assigns it to a variable.
Write the value of this variable directly into the HTML document. The parameters to send
to the first function are the strings “Hi” and “there!”.

 5. In the main script, create a new variable and assign it the result of the first function. This
time, send the function the two strings “Regular” and “text!”.

 6. Create an alert that will display the value of this variable in an alert box.

 7. In the body section of the HTML page, place the script tags in the document (pointing to the
prjs4_2.js file) so that the script will write the result of the second function after a line of
strong text reading “This is some strong text.”

 8. When you have finished, save the HTML and JavaScript files and view the HTML page in
your browser to see how it works.

The results should be an alert that says “Hi there!” followed by the page opening when OK
is clicked in the alert box. The page should display a strong line of text reading “This is some
strong text.” On the next line, there should be text reading “Regular text!”

Try This Summary
In this project, you used your knowledge of functions, parameters, and returning values to
create a script. The result of the script is that the HTML page you created pops up an alert box
and writes text to the page based on the results of the two functions that you created.

 Chapter 4 Self Test
 1. In general, a function is a little __________ within a larger __________ that is used to

perform a single __________ or a series of __________.

 2. What are two reasons why a function can be useful?

 A They make simple scripts more complex, and they make it harder for noncoders to read
the script.

 B They provide a way to organize the various parts of the script into the different tasks
that must be accomplished, and they can be reused.

 C They make simple scripts more complex, and they can be reused.

 D They provide a way to organize the various parts of the script into the different tasks
that must be accomplished, and they make it harder for noncoders to read the script.

 3. On the first line of a function, you __________ it as a function, _________ it, and indicate
whether it accepts any __________.

✓

 Chapter 4: Using Functions 85

 4. To declare a function, you use the reserved word __________.

 A var

 B switch

 C function

 D for

 5. What surrounds the code inside a function?

 A Curly brackets – {}

 B Colons – ::

 C Square brackets – []

 D Nothing

 6. Function names are case sensitive.

 A True

 B False

 7. JavaScript reserved words can be used as function names.

 A True

 B False

 8. Which of the following would be a valid function name in JavaScript?

 A function my function()

 B function if()

 C function get_text()

 D function 24hours()

 9. __________ are used to allow a function to import one or more values from somewhere
outside the function.

 10. Parameters are set on the first line of a function, inside a set of __________.

 A curly brackets – {}

 B parentheses – ()

 C square brackets – []

 D nothing

 86 JavaScript: A Beginner’s Guide

 11. Multiple parameters are separated by what symbol?

 A Period

 B Colon

 C Semicolon

 D Comma

 12. Which of the following is a valid use of the window.alert() method?

 A win.alt(“This is text”);

 B window.alert(“This is text);

 C window.alert(‘This is text”);

 D window.alert(“This is text”);

 13. Which of the following correctly calls a function named some_alert() and sends it two
string values as parameters?

 A some_alert();

 B some_alert(“some”,“words”);

 C some_alert(“some”,“words);

 D SOME_alert(“some”,“words”);

 14. Which of the following correctly assigns the result of a function named get_something() to
a variable named shopping?

 A var shopping=get_something();

 B var shopping=“get_something”;

 C var Shopping=get_Something;

 D shopping=getsomething;

 15. A __________ variable can be used only within the function in which it is declared.

87

Chapter 5
JavaScript Operators

 88 JavaScript: A Beginner’s Guide

Key Skills & Concepts

● Understanding the Operator Types

● Understanding Mathematical Operators

● Understanding Assignment Operators

● Understanding Comparison Operators

● Understanding Logical Operators

● Understanding Order of Operations

Operators do much of the work in scripts. In the previous chapters, you have seen examples
of the use of the assignment (=) and addition (+) operators. JavaScript offers many other

types of operators to perform various operations.
This chapter begins by giving you an introduction to the different types of JavaScript

operators. Then, you will learn about each operator and its use in scripts. Finally, you will
learn about the order of precedence for operators, which determines which operations are
performed before others.

Understanding the Operator Types
An operator is a symbol or word in JavaScript that performs some sort of calculation,
comparison, or assignment on one or more values. In some cases, an operator provides a
shortcut to shorten the code so that you have less to type.

Common calculations include finding the sum of two numbers, combining two strings, or
dividing two numbers. Some common comparisons might be to find out if two values are equal
or to see if one value is greater than the other. A shortcut assignment operator might be used to
assign a new value to a variable so that the variable name does need to be typed twice.

JavaScript uses several different types of operators:

● Mathematical These operators are most often used to perform mathematical calculations
on two values. The mathematical operators will probably be the most familiar to you. They
use symbols such as +, –, and *.

● Assignment These operators are used to assign new values to variables. As you learned
in Chapter 3, one of the assignment operators is the symbol =.

● Comparison These operators are used to compare two values, two variables, or perhaps
two longer statements. They use symbols such as > (for “is greater than”) and < (for “is
less than”).

 Chapter 5: JavaScript Operators 89

● Logical These operators are used to compare two conditional statements (or to operate
on one statement) to determine if the result is true and to proceed accordingly. They use
symbols such as && (returns true if the statements on both sides of the operator are true)
and || (returns true if a statement on either side of the operator is true).

● Bitwise These are logical operators that work at the bit level (ones and zeros). They use
symbols like << (for left-shifting bits) and >> (for right-shifting bits).

● Special These are operators that perform other special functions of their own.

In this chapter, you will learn about each of these types of operators. This will be a general
overview of the function of each type of operator, so that you will better know the purpose of
all the operator types when you put them to use later. To begin, you’ll look at the mathematical
operators in JavaScript.

Understanding Mathematical Operators
For a mathematical calculation, you use a mathematical operator. The values that you use
can be any sort of values you like. For instance, you could use two variables, two numbers,
or a variable and a number. A few of these operators are able to perform a task on a single
variable’s value.

As a quick example, you will remember that you used the addition operator (+) to add two
strings together in previous chapters. Here is an example of two string values being combined
with the addition operator:

window.alert("I begin and "+"this is the end.");

You can also use the addition operator when one of the values is a variable, as in this example:

var part2="this is the end."
window.alert("I begin and "+part2);

The addition operator also works when both values are variables, as in the next example:

var part1="I begin and ";
var part2="this is the end."
window.alert(part1+part2);

These examples illustrate how you can use many of the mathematical operators with a
number of values and/or variables. This allows you some flexibility in the way you code your
scripts.

The three operators that work on single values are the increment, decrement, and unary
negation operators. The increment and decrement operators are actually shortcuts to adding
or subtracting 1, so learning how to use them could save you some coding time.

The mathematical operators and their functions are summarized in Table 5-1. The following
sections discuss each operator in more detail.

 90 JavaScript: A Beginner’s Guide

The Addition Operator (+)
As you have seen, the addition operator can be used to combine two strings. It is also used to
add numbers in mathematical calculations.

Variables for Addition Results
One use of the addition operator is to add two numbers to get the mathematical result. When
adding numerical values, you often assign the result to a variable and use the variable later to
make use of the result. For example, to calculate the value of 4 plus 7 and show the result, you
could code it like this:

var thesum=4+7;
window.alert(thesum);

The result is an alert that says 11.
To make the example a little more complex, you could change one of the numbers to a

variable:

var num1=4;
var thesum=num1+7;
window.alert(thesum);

The result is the same as the previous example’s code: an alert that says 11.
Taking the example one step further, you could make both of the numbers variables:

var num1=4;
var num2=7;
var thesum=num1+num2;
window.alert(thesum);

Table 5-1 The Mathematical Operators

Operator Symbol Function

Addition + Adds two values

Subtraction - Subtracts one value from another

Multiplication * Multiplies two values

Division / Divides one value by another

Modulus % Divides one value by another and returns the remainder

Increment + + Shortcut to add 1 to a single number

Decrement - - Shortcut to subtract 1 from a single number

Unary negation - Makes a positive negative or a negative positive

Two numbers are added with the addition operator
The result of the addition is shown as an alert to the viewer

A number is assigned to a variable
A number is added to the variable and
the total is assigned to a new variable

Two variables are added using
the addition operator

 Chapter 5: JavaScript Operators 91

This example allows for the most flexibility, since you can change the values of the two
number variables and get a new result without needing to dig deeper into the script to make the
change.

Type Conversions in Addition Calculations
It is important to note how JavaScript performs type conversion when working with the
mathematical operators. When you use the addition and other mathematical operators, you
need to be aware that JavaScript automatically converts different values, like an integer (a
nondecimal numeric value) and a float (a decimal numeric value) to the appropriate type. For
instance, you might have the following code:

var num1=4.73;
var num2=7;
var thesum=num1+num2;
window.alert(thesum);

When the script is run, you will see an alert with the result.

JavaScript added the integer and the float together and gave back a float: 11.73. JavaScript
does this often, so you need to make sure that you have the right sort of values when you begin
adding.

For example, if you add a number and a string, the result will come out as though you had
added two strings. Look at this example:

var num1=4;
var num2="7";
var thesum=num1+num2;
window.alert(thesum);

This looks as if it would be adding the numbers 4 and 7, since they both appear to be numbers.
The trouble is that the 7 is a string in this case, not a number, because it has quotes around it. This
causes the 4 to be converted to a string, and then the two strings are added (combined). The result
that appears in the alert box may surprise you.

This variable has decimal places

The two variables are added, and JavaScript
will show the answer with the decimal places

This variable is an integer

This variable is a number
Oops! This variable is a string, not a number

When they are added, they are added like strings

 92 JavaScript: A Beginner’s Guide

Rather than the expected answer of 11, you get 47. When the two values are added as
strings, they are strung together rather than added mathematically. With strings, “4”+“7”=47.

NOTE
Outside of the addition operator (+), the other mathematical operators only work on
numbers and will not work on string values.

The other mathematical operators also do conversions, much like the addition operator.
You’ll see how this can be important later, when you learn how to take user input in your
scripts.

The Subtraction Operator (–)
The subtraction operator is used to subtract the value on its right side from the value on its left
side, as in mathematics. Here is an example:

var theresult=10-3;
window.alert(theresult);

This code simply subtracts 3 (the number on the right of the operator) from 10 (the number on
the left of the operator). The result is an alert that says 7.

As with the addition operator, you can use variables to hold the numbers you are working
with, as in this example:

var num1=10;
var num2=3;
var theresult=num1-num2;
window.alert(theresult);

The result is the same as the previous example: an alert that says 7.
The use of variables with mathematical operators also works with the multiplication,

division, and modulus operators, which are described in the next sections.

The Multiplication Operator (*)
The multiplication operator is used to multiply the value on its right side by the value on its left
side. Again, this is just like mathematical multiplication. The next example shows this operator
in action:

var num1=4;
var num2=5;
var thetotal=num1*num2;
window.alert(thetotal);

Here, you get an alert that says 20, the result of 4 times 5. This operator shouldn’t give you too
many surprises, so move on to the division operator.

Two numbers are subtracted
using the subtraction operator

Two variables are subtracted
using the subtraction operator

Two variables are multiplied
using the multiplication operator

 Chapter 5: JavaScript Operators 93

The Division Operator (/)
The division operator is used to divide the value on its left side by the value on its right side.
For example, the code 4/2 means 4 divided by 2 and gives the result of 2.

For a JavaScript example of this in action, take a look at this code:

var num1=10;
var num2=2;
var theresult=num1/num2;
window.alert(theresult);

This gives you an alert that says 5, the result of dividing 10 by 2.

Division by Zero
When you use the division operator, you need to be careful that you do not end up dividing by
zero in some way. If you do, the result is going to be either infinity or undefined, depending
on your browser. The code that follows shows an example of this happening (although it is
unlikely to occur exactly in this way):

var num1=10;
var num2=0;
var theresult=num1/num2;
window.alert(theresult);

If you placed this code in a document, you might see an alert box like this:

To avoid dividing by zero, be careful about what numbers or variables you place on the
right side of the division operator.

Type Conversions in Division Calculations
Another thing to remember with division is that if you have two values that do not divide
evenly, the result is converted into a float, and thus will have decimal places. The code that
follows shows an example:

var num1=3;
var num2=4;
var theresult=num1/num2;
window.alert(theresult);

The result in this case is 0.75, which is what you see in the alert box. Some browsers may not
show the 0 before the decimal, and display just .75 in the alert box instead.

Two numbers are divided
using the division operator

This alert won’t be a number

Oh no! On this line you are dividing by zero

 94 JavaScript: A Beginner’s Guide

This example shows a simple calculation; but the result can get much longer, depending on
the numbers used. In later chapters, you will learn some techniques for formatting the output,
so that the viewer doesn’t end up seeing something like .75664421004.

The Modulus Operator (%)
The modulus operator is used to divide the number on its left side by the number on its right
side, and then give a result that is the integer remainder of the division. Think back to when
you learned long division and used remainders as part of the answer rather than converting to
decimals or fractions. Dividing 11 by 2 gives 5 with a remainder of 1. The remainder of 1 is
what the modulus operator gives you when you write 11%2.

The following is an example in JavaScript:

var num1=11;
var num2=2;
var theresult=num1%num2;
window.alert(theresult);

The result is an alert box that shows the value of the remainder, which is 1. If the calculation
had no remainder, the result would be 0.

This is the last of the mathematical operators that work on two values at the same time.
The next operators work on only one value at a time.

The Increment Operator (++)
The increment operator can be used on either side of the value on which it operates. It increases
the value it is operating on by 1, just like adding 1 to the value. The actual result depends on
whether the operator is used before or after the value it works on, called the operand. This
operator is often used with variables, and often within loops (covered in Chapter 6).

The Increment Operator Before the Operand
When the increment operator is placed before the operand, it increases the value of the operand
by 1, and then the rest of the statement is executed. Here is an example:

var num1=2;
var theresult=++num1;

In this case, the variable num1 begins with a value of 2. However, when the code assigns the
value to the variable theresult, it increments the value of num1 before the assignment takes place.
The increment occurs first because the increment operator is in front of the operand. So, the value
of num1 is set to 3 (2+1) and is then assigned to the variable theresult, which gets a value of 3.

The Increment Operator After the Operand
If you place the increment operator after the operand, it changes the value of the operand after
the assignment. Consider this example:

var num1=2;
var theresult=num1++;

Two variables using the modulus
operator to get the remainder

 Chapter 5: JavaScript Operators 95

As in the previous example, num1 begins with the value of 2. On the next line, the increment
operator is used after the operand. This means that the code assigns the current value of num1
to the variable theresult, and after that is done, it increments the value of num1. So, only after
this assignment is complete do you have a new value for num1. The variable theresult is given a
value of 2, and then num1 is changed to 3. If you use num1 after this, it will have a value of 3.

Another way to see how the increment operator works before and after the operand is to
run the following script in your browser. Notice what the values are in the first alert and what
they are in the second alert.

<script type="text/javascript">
num1=2;
result= ++num1;
alert("num1= "+num1+" result= "+result);
num1=2;
result= num1++;
alert("num1= "+num1+" result= "+result);
</script>

In the first alert box, you will see num1= 3 result= 3. Since the ++ operator is used before
the operand here, the value of num1 is increased by 1 and then assigned to the result variable.
In the second alert box, you will see num1= 3 result= 2. This is because the ++ operator is
used after the operand, so the value of num1 is increased after it has been assigned to the result
variable. The result variable gets a value of 2, but num1 will be increased to 3.

NOTE
Don’t worry if the difference between using the increment operator before and after the
operand is still not clear to you. When you learn how to use loops in Chapter 6, you
will see how the placement of this operator can be quite important.

The Decrement Operator (– –)
The decrement operator works in the same way as the increment operator, but it subtracts 1
from the operand rather than adding 1 to it. As with the increment operator, its placement before
or after the operand is important.

If you place the decrement operator before the operand, the operand is decremented, and
then the remainder of the statement is executed. Here is an example:

var num1=2;
var theresult=--num1;

Here, the variable num1 is given a value of 2. In the next line, the code subtracts 1 from num1
and then assigns the result to the variable theresult. Thus, the variable theresult ends up with a
value of 1 (2–1).

When you place the operator after the operand, as in the next example, the rest of the
statement is executed and the operand is decremented afterward:

var num1=2;
var theresult=num1--;

 96 JavaScript: A Beginner’s Guide

This time, the variable theresult is assigned a value of 2, and then num1 is decremented to 1.
If you use num1 after this line, it will have a value of 1.

As with the increment operator, the decrement operator becomes important when you work
with loops, as you will learn in later chapters.

The Unary Negation Operator (–)
Unary negation is the use of the subtraction sign on only a single operand. This operator
creates a negative number or negates the current sign of the number (positive or negative).

Here is an example of assigning a negative value to a number:

var negnum=-3;

This defines a variable with a value of negative 3. Basically, the operator tells the browser that
the 3 is “not positive,” because it negates the default sign of positive by placing the negation
operator ahead of the number.

You can also use the unary negation operator to help show the addition or subtraction of a
negative number, as in this example:

var theresult=4+(-3);

Notice the parentheses around the –3 portion of the statement. As in math, you can use
parentheses to set the order of operations (as you’ll learn later in this chapter) or just to clarify
the order visually. Here, the parentheses aren’t necessary, but they help organize that code so
that you can see that it is adding –3 to 4. You could have written this code as well:

var theresult=4+-3;

This doesn’t look as nice, but it still works.
You may be thinking that an even easier way to write the same thing looks like this:

var theresult=4-3;

You’re right, this is the simplest way to write it; but it uses subtraction rather than unary
negation.

To make it appear more clearly, you could use this operator on a variable value, which
simply negates the sign on the number represented by the variable:

var x=4;
var y=3;
var z=-y;

This assigns the variable z the unary negated value of y, which is –3.
Now that you’ve learned about the mathematical operators, it’s time to turn to the

assignment operators.

 Chapter 5: JavaScript Operators 97

Understanding Assignment Operators
Assignment operators assign a value to a variable. They do not compare two items, nor do they
perform logical tests.

When you learned about variables in Chapter 3, you saw how the basic assignment
operator, the single equal sign (=), is used to give an initial value or a new value to a variable,
as in this example:

var mytime=0;

As you know, this assigns a value of 0 to a variable mytime.
The other assignment operators also give new values to variables, but they do so in

slightly different ways because they perform a simple calculation as well. These operators are
particularly useful within loops, as you’ll learn in later chapters.

Table 5-2 summarizes the assignment operators, which are discussed in more detail in the
following sections.

The Assignment Operator (=)
You have been using the direct assignment operator since Chapter 3. It assigns the value on the
right side of the operator to the variable on the left side, as in this example:

var population=4500;

This assigns the value of 4500 to the variable population.

Operator Symbol Function

Assignment = Assigns the value on the right side of the operator to a variable

Add and assign += Adds the value on the right side of the operator to the variable on the
left side, and then assigns the new value to the variable

Subtract and assign –= Subtracts the value on the right side of the operator from the variable
on the left side, and then assigns the new value to the variable

Multiply and assign *= Multiplies the value on the right side of the operator by the variable
on the left side, and then assigns the new value to the variable

Divide and assign /= Divides the variable on the left side of the operator by the value on
the right side, and then assigns the new value to the variable

Modulus and assign %= Takes the integer remainder of dividing the variable on the left side by
the value on the right side, and assigns the new value to the variable

Table 5-2 The Assignment Operators

 98 JavaScript: A Beginner’s Guide

The Add-and-Assign Operator (+=)
The += operator adds the value on the right side of the operator to the variable on the left side
and then assigns to the variable that new value. In essence, it is a shortcut to writing the type of
code shown here:

var mymoney=1000;
mymoney=mymoney+1;

Here, the variable mymoney is created and assigned a value of 1000. The code then changes
the value by assigning it a value of itself plus 1. The value assigned to the mymoney variable is
1001.

Instead of writing the variable name an extra time, you can use the add-and-assign operator
to shorten the code. The following code gives the same result as the previous example, but
saves a little typing:

var mymoney=1000;
mymoney+=1;

Using the add-and-assign operator, this code adds 1 (the value on the right) to mymoney (the
variable on the left), assigning the new value of 1001 to the variable mymoney.

This operator can be used to add any value, not just 1. For example, you could add 5 in the
assignment, as in this example:

var mymoney=1000;
mymoney+=5;

This time, mymoney ends up with a value of 1005.
You can even use a variable rather than a plain number value on the right side, as in this

example:

var mymoney=1000;
var bonus=300;
mymoney+=bonus;

Here, bonus has a value of 300, which is added to the variable mymoney, and then mymoney
is assigned the result of 1300. In this way, the value of the bonus variable can be changed to
affect the result of the assignment.

This assignment operator, like the addition mathematical operator, also works with strings.
Thus, you could add on to the end of a string value using this operator:

var myname="Bob";
myname+="by";

This adds the string “by” to the end of the string “Bob”, which yields the string “Bobby”.

 Chapter 5: JavaScript Operators 99

The Subtract-and-Assign Operator (–=)
The –= operator works like the += operator, except that it subtracts the value on the right side
of the operator from the variable on the left side. This value is then assigned to the variable.
Here is an example of this operator in action:

var mymoney=1000;
var bills=800;
mymoney-=bills;

This example subtracts the value of the bills variable (800) from the mymoney variable and
assigns the result to mymoney. In the end, mymoney has a value of 200. Since this is so similar
to the add-and-assign operator, let’s move on to the next one (which is also very similar).

The Multiply-and-Assign Operator (*=)
The *= operator multiples the value on the right side of the operator by the variable on the left
side. The result is then assigned to the variable. The next example shows this operator at work:

var mymoney=1000;
var multby=2;
mymoney*=multby;

Here, the variable mymoney is multiplied by the value of the multby variable, which is 2. The
result of 2000 is then assigned to the variable mymoney.

The Divide-and-Assign Operator (/=)
The /= operator divides the variable on the left side of the operator by the value on the right
side. The result is then assigned to the variable. Here is an example:

var mymoney=1000;
var cutpayby=2;
mymoney/=cutpayby;

In this example, the variable mymoney is divided by the value of the variable cutpayby, which
is 2. The result of 500 is then assigned to the mymoney variable.

The Modulus-and-Assign Operator (%=)
Like the other assignment variables that also perform math, the %= operator does a calculation
for the variable assignment. It divides the variable on the left side of the operator by the value
on the right side, takes the integer remainder of the division, and assigns the result to the
variable. Here is how you might assign a value to the mymoney variable using the modulus-
and-assign operator:

var mymoney=1000;
var cutpayby=2;
mymoney%=cutpayby;

 100 JavaScript: A Beginner’s Guide

Try This 5-1

Here, the variable mymoney is divided by the value of the variable cutpayby, which is 2. The
result of that is 500 with no remainder, meaning that the end result of the calculation is 0.
Thus, 0 is the value that gets assigned to the variable mymoney. (If they start cutting pay like
this anyplace, it is probably time to leave!)

 Adjust a Variable Value
In this project, you create a page that uses some of the mathematical and
assignment operators and writes the results on an HTML page.

There is more than one solution that can be used for many of these steps, so feel free to use
the method you prefer. You can also try to see which method requires the least typing. Be sure
to write the results of each change to the page by using the document.write() command.

Step by Step
 1. Create an HTML page and save it as pr5_1.html. Place script tags inside the body section to

point to a script named prjs5_1.js.

 2. Create an external JavaScript file and save it as prjs5_1.js. Use this file for steps 3–10.

 3. Create a variable named paycheck and give it an initial value of 2000.

 4. Using only an assignment operator, increase the value of paycheck to 4000.

 5. Using a mathematical operator, decrease the value of paycheck to 3500.

 6. Using a mathematical operator, decrease the value of paycheck to 0.

 7. Using a mathematical operator, increase the value of paycheck to 500.

 8. Finally, using an assignment operator, decrease the value of paycheck to 420.

 9. After you perform each action, write the value of the paycheck variable on the page.

 10. Save the HTML and JavaScript files and view the HTML file in your browser to see the results.

 11. A possible solution for the JavaScript file is shown in the following code, but keep in mind
there are several ways to achieve the same results:

var paycheck=2000;
document.write(paycheck+"
");
paycheck+=2000;
document.write(paycheck+"
");
paycheck=paycheck-500;
document.write(paycheck+"
");
paycheck=paycheck*0;

pr5_1.html
prjs5_1.js

 Chapter 5: JavaScript Operators 101

document.write(paycheck+"
");
paycheck=paycheck+500;
document.write(paycheck+"
");
paycheck-=80;
document.write(paycheck+"
");

Try This Summary
In this project, you were able to use your knowledge of mathematical and assignment operators
to display the results of several calculations on a Web page. This project could have been
completed in numerous ways, depending on your preferences on the use of the various operators.

Understanding Comparison Operators
Comparison operators are often used with conditional statements and loops in order to perform
actions only when a certain condition is met. Since these operators compare two values, they
return a value of either true or false, depending on the values on either side of the operator.
In later chapters, you will learn how to create a block of code to be performed only when the
comparison returns true.

Table 5-3 summarizes the comparison operators, which are discussed in more detail in the
following sections.

Operator Symbol Function

Is equal to == Returns true if the values on both sides of the operator are
equal to each other

Is not equal to != Returns true if the values on both sides of the operator are
not equal to each other

Is greater than > Returns true if the value on the left side of the operator is
greater than the value on the right side

Is less than < Returns true if the value on the left side of the operator is
less than the value on the right side

Is greater than or equal to >= Returns true if the value on the left side of the operator is
greater than or equal to the value on the right side

Is less than or equal to <= Returns true if the value on the left side of the operator is
less than or equal to the value on the right side

Strict is equal to === Returns true if the values on both sides are equal and of the
same type

Strict is not equal to !== Returns true if the values on both sides are not equal or not
of the same type

Table 5-3 The Comparison Operators

 102 JavaScript: A Beginner’s Guide

The Is-Equal-To Operator (==)
For the == operator to return true, the values or statements on each side must be equal. They
cannot just be close; they must return as equal. If the values do not return as equal, the ==
operator returns false. Note that a statement such as “4”==4 will return true because JavaScript
will convert the number 4 to the string “4” for you. If you want this statement to return false,
you should use the strict is-equal-to operator (===), discussed later in this chapter.

The following table shows examples of statements that use the is-equal-to operator, their
return values, and the reason why they return true or false.

Comparison Return Value Reason

4==4 True Two equal numbers

(4+2)==(3+3) True Result on both sides is 6, and 6 is
equal to 6

“my socks”==“my socks” True Both strings are exactly the same

(“my ”+“socks”)==(“my”+ “ socks”) True Results of string additions return
equal string values

4==5 False 4 and 5 are not equal numbers

(4+3)==(2+2) False Result on left is 7, result on right is
4, and these are not equal

“My socks”==“my socks” False Strings are not exactly alike
(capitalization)

(“my”+ “socks”)==(“my ” +“socks”) False Result on left has no space
character; result on right does,
causing the strings to be unequal

NOTE
You will notice the addition of parentheses around some of the statements in the
previous table, as well as in some of the tables that come later. Here, they are used
mainly for readability. You will learn more about parentheses and the order of
operations near the end of this chapter.

As with the other operators, you can use variables with comparison operators. If the values
of the variables are equal, the comparison will return true. Otherwise, it will return false.
Suppose that you have declared the following variables:

var num1=2;
var num2=5;
var num3=5;

 Chapter 5: JavaScript Operators 103

The following comparison would return true:

num2==num3

The next comparison would return false:

num1==num3

CAUTION
Remember that the is-equal-to operator (==) is for comparison. Be careful not to
accidentally use the assignment operator (=) in its place, because it can cause your
scripts to work incorrectly.

The Is-Not-Equal-To Operator (!=)
The != operator is the opposite of the == operator. Instead of returning true when the values on
each side of the operator are equal, the != operator returns true when the values on each side of
it are not equal. The only way this operator returns a false value is if it finds that the values on
both sides of the operator are equal. The following table shows some examples of statements
that use the != operator, their return values, and the reason they return true or false.

Comparison Return Value Reason

4!=3 True 4 and 3 are not equal numbers

“CooL”!=“cool” True Strings do not have the same capitalization,
so they are not equal

4!=4 False 4 is equal to 4

“cool”!=“cool” False Strings are exactly alike, so they are equal

The Is-Greater-Than Operator (>)
When the is-greater-than operator is used, the comparison returns true only if the value on the
left side of the operator is greater than the value on the right side. Like the other operators, the
> operator works with string values as well as numeric ones. But how can one string be greater
than another string?

In the case of strings, a lowercase letter is greater than an uppercase letter, and an
uppercase letter is greater than a number. When comparing strings, JavaScript first checks
the first letter of the string for a difference. If there is no difference, it moves on to the next
character, then the next one, and so on, until it finds a difference or reaches the end of the
string. If the two values on each side of the > operator are equal, it returns false. If the value

 104 JavaScript: A Beginner’s Guide

on the right side is greater, this also returns false. The following table shows some examples of
statements that use the is-greater-than operator.

Comparison Return Value Reason

5>2 True 5 is greater than 2

0>–2 True 0 is greater than negative numbers, such as –2

“a”>“A” True Lowercase letters in strings are greater than uppercase
letters in strings

“A”>“1” True Letters in strings are greater than numbers in strings

5>7 False 5 is less than 7, not greater

–1>0 False Negative numbers are less than 0, not greater

“Q”>“q” False Uppercase letters in strings are less than lowercase
letters in strings

“3”>“B” False Letters are greater than numbers, not less than numbers

2>2 False These are equal, so the value on the left is not greater

The Is-Less-Than Operator (<)
The is-less-than operator works in reverse from the is-greater-than operator. Rather than
returning true when the value on the left is greater, the is-less-than operator returns true
when the value on the left side of the operator is less than the value on the right side of the
operator. This comparison operator returns false if the value on the left side of the operator
is greater than or equal to the value on the right side. Again, you can see how this works by
looking at the examples in this table.

Comparison Return Value Reason

2<10 True 2 is less than 10

“A”<“a” True Uppercase letters in strings are less than lowercase
letters in strings

10<2 False 10 is greater than 2, not less

“a”<“A” False Lowercase letters in strings are greater than
uppercase letters in strings, not less

10<10 False These are equal, so the value on the left is not less

The Is-Greater-Than-or-Equal-To Operator (>=)
The >= operator is slightly different from the comparison operators you’ve read about so
far. This operator adds an option for the values on both sides to be equal and still have the
comparison return true. So, to return true, the value on the left side of the operator must be
greater than or equal to the value on the right side. An is-greater-than-or-equal-to comparison

 Chapter 5: JavaScript Operators 105

will return false only if the value on the left side is less than the value on the right side. The
following table shows some examples of statements that use the is-greater-than-or-equal-to
operator.

Comparison Return Value Reason

5>=2 True 5 is greater than 2

2>=2 True 2 is equal to 2

“a”>=“A” True Lowercase letters are greater than uppercase letters

“A”>=“A” True The strings are equal

1>=2 False 1 is less than 2

“A”>=“a” False Uppercase letters are less than lowercase letters, not
greater or equal to

The Is-Less-Than-or-Equal-To Operator (<=)
Much like the >= operator, the <= operator adds the possibility for the values on each side to
be equal. With the is-less-than-or-equal-to operator, a value of true is returned if the value on
the left side of the operator is less than or equal to the value on the right side of the operator.
The following table shows examples of statements that use the is-less-than-or-equal-to
operator.

Comparison Return Value Reason

2<=5 True 2 is less than 5

2<=2 True 2 is equal to 2

“A”<=“a” True Uppercase letters are less than lowercase letters

“A”<=“A” True The strings are equal

5<=2 False 5 is greater than 2, not less than or equal to

“a”<=“A” False Lowercase letters are greater than uppercase letters,
not less than or equal to

The Strict Is-Equal-To Operator (===)
This operator was added in JavaScript 1.5, so in order for it to work, your browser needs to
support JavaScript 1.5 (refer to Chapter 1, Table 1-1). For the === operator to return true, the
values or statements on each side must be equal and must be of the same type. This means
that if you use a statement such as 3===“3”, the operator will return false because the value
on the left is a number and the value on the right is a string; the values are of different types.
Whereas the is-equal-to (==) operator first attempts to convert the values on each side of the
operator to the same type and then determines if they are equal, the strict is-equal-to operator

 106 JavaScript: A Beginner’s Guide

automatically returns false if the values are not of the same type. The following table shows
examples of statements that use the === operator.

Comparison Return Value Reason

4===4 True Two equal numbers

(4+2)===(3+3) True Result on both sides is 6, and both values
are numbers

“my socks”===“my socks” True Both values are strings, and are exactly
the same

(“my ”+ “socks”)===(“my”+“ socks”) True Results of string additions return equal
string values

4===5 False 4 and 5 are not equal numbers

(4+3)===“7” False Result on left is 7, but the 7 on right is a
string, so the values are of different types
and thus are not equal

“My socks”===“my socks” False Strings are not exactly alike
(capitalization)

“2”===(1+3) False The values are of different types, and 3+1
does not equal 2

The Strict Is-Not-Equal-To Operator (!==)
This operator was added in JavaScript 1.5, so in order for it to work, your browser needs to
support JavaScript 1.5 (refer to Chapter 1, Table 1-1). For the !== operator to return true, the
values or statements on each side must not be equal or must not be of the same type. This
means that if you use a statement such as 3!==“3”, the operator will return true because the
value on the left is a number and the value on the right is a string; the values are of different
types (and thus not strictly equal). Whereas the is-not-equal-to (!=) operator first attempts to
convert the values on each side of the operator to the same type and then determines if they are
not equal, the strict is-not-equal-to operator (!==) automatically returns true if the values are
not of the same type. The following table shows some examples of statements that use the !==
operator.

Comparison Return Value Reason

4!==3 True 4 and 3 are not equal numbers

“4”!==4 True Values on each side are of different types

4!==4 False 4 is equal to 4

“cool”!==“cool” False Strings are exactly alike, so they are equal

You’ll get some practice using this and the other comparison operators when you learn
about conditional statements and loops in Chapter 6. Next up are the logical operators, which
are also used to check conditions.

 Chapter 5: JavaScript Operators 107

Understanding Logical Operators
The three logical operators allow you to compare two conditional statements to see if one
or both of the statements is true and to proceed accordingly. The logical operators can be
useful if you want to check on more than one condition at a time and use the results. Like the
comparison operators, the logical operators return either true or false, depending on the values
on either side of the operator.

Table 5-4 summarizes the logical operators, which are discussed in the following sections.

The AND Operator (&&)
The logical operator AND returns true if the comparisons on both sides of the && operator
are true. If one or both comparisons on either side of the operator are false, a value of false is
returned. Some statements that use the AND operator are shown in the following table.

Statement Return Value Reason

(1==1)&&(2==2) True Comparisons on both sides are true: 1
is equal to 1, and 2 is equal to 2

(2>1)&&(3<=4) True Comparisons on both sides are true: 2
is greater than 1, and 3 is less than 4

(“A”<=“A”)&&(“c”!=“d”) True Comparisons on both sides are true:
“A” is equal to “A”, and “c” is not
equal to “d”

(1==1)&&(2==3) False Comparison on the right is false

(“a”!=“a”)&&(“b”!=“q”) False Comparison on the left is false

(2>7)&&(5>=20) False Comparisons on both sides are false

The OR Operator (||)
The logical operator OR returns true if the comparison on either side of the operator returns
true. So, for this to return true, only one of the statements on one side needs to evaluate to true.

Operator Symbol Function

AND && Returns true if the statements on both sides of the operator are true

OR || Returns true if a statement on either side of the operator is true

NOT ! Returns true if the statement to the right side of the operator is not true

Table 5-4 The Logical Operators

 108 JavaScript: A Beginner’s Guide

To return false, the comparisons on both sides of the operator must return false. The following
table shows some examples of comparisons using the OR operator.

Statement Return Value Reason

(2==2)||(3>5) True Comparison on the left is true

(5>17)||(4!=9) True Comparison on the right is true

(3==3)||(7<9) True Both comparisons are true

(4<3)||(2==1) False Both comparisons are false

(3!=3)||(4>=8) False Both comparisons are false

The NOT Operator (!)
The logical operator NOT can be used on a single comparison to say, “If this is not the case, then
return true.” Basically, it can make an expression that would normally return false return true, or
make an expression that would normally return true return false. The following table shows some
examples of this operator at work.

Comparison Return Value Reason

!(3==3) False 3 is equal to 3 is true, but the NOT operator makes this
statement false

!(2>5) True 2 is greater than 5 is false; the NOT operator makes the
statement true

Now that you have the regular logical operators down, take a quick look at the bitwise
logical operators.

The Bitwise Operators
Bitwise operators are logical operators that work at the bit level, where there is a bunch of ones
and zeros. You will not be using them in the examples presented in this book, but you may see
them in some scripts on the Web. The following table lists some of the bitwise operators and
their symbols. This list is by no means complete, but it should help you spot a bitwise operator
if you see one.

Operator Symbol

AND &

XOR ^

OR |

NOT ~

Left Shift <<

Right Shift >>

Right Shift (Zero-Fill) >>>

 Chapter 5: JavaScript Operators 109

Special Operators
There are a number of special operators in JavaScript that are used to perform specific tasks, or
to aid in shortening code. Table 5-5 lists the special operators and their purposes.

Don’t be discouraged if many of the terms used in this table look unfamiliar. Objects,
arrays, and other unfamiliar terms are discussed in later chapters. Many of these operators
will be reintroduced at the appropriate point in the later chapters, where their purpose can be
expressed more clearly.

Operator Symbol Purpose

Conditional ?: Often used as a short if/else type of statement. A condition is placed
before the question mark (?) and a value is placed on each side of
the colon (:).

Comma , Evaluates the statements on both sides of the operator, and returns
the value of the second statement.

Delete delete Used to delete an object, a property, or an element in an array.

In in Returns true if a property is in a specified object.

Instanceof instanceof Returns true if an object is of a specified object type.

New new Creates an instance of an object.

This this Refers to the current object.

Typeof typeof Returns a string that tells you the type of the value being evaluated.

Void void Allows an expression to be evaluated without returning a value.

Table 5-5 Special Operators

Q: Why are there so many assignment operators? If I can write x=x+1 instead of x+=1,
why do I need to know about the extra assignment operators?

A: They are provided as shortcuts, so that you don’t need to type the variable name a second
time in the same line. They also cut down the overall size of the script a bit, which helps
with the loading time of the Web page. You can use either method; it just depends on how
much you want to trim the script size or avoid extra typing. Also, it is good to know what
these assignment operators do, so that you can recognize their purpose in scripts.

Q: Can I use more than one operator at a time in a statement? What will happen if I do that?

A: Yes, you can use multiple operators in a single statement. The operators will be executed
according to their precedence in the order of operations, which is covered in the next section.

Ask the Expert

(continued)

 110 JavaScript: A Beginner’s Guide

Understanding Order of Operations
In JavaScript, the operators have a certain order of precedence. In a statement with more than
one operator involved, one may be executed before another, even though it is not in that order
in the statement. For instance, look at this example:

var answer=8+7*2;

If you remember how this works in mathematics, you will know that the multiplication is
performed first on the 7*2 part of the statement, even though it does not look like that is the
right order when you read from left to right. The reason the multiplication is performed first
is that the multiplication operator has a higher precedence in the order of operations than the
addition operator. So, any multiplication done within a statement will be performed before any
addition, unless you override it somehow.

As with math problems, in JavaScript, the way to override the order of operations is
through the use of parentheses to set off the portion of the statement that should be executed
first. Thus, if you wanted to be sure the addition was performed first in the preceding example,
you would write it as shown here instead:

var answer=(8+7)*2;

If you use more than one set of parentheses or operators of the same precedence on the
same level, then they are read from left to right, as in this example:

var answer=(8+7)-(4*3)+(8-2);

Since the parentheses are all on the same level (not nested), they are read from left to right.
The addition and subtraction operators outside the parentheses have the same precedence, and
thus are also read from left to right.

Q: What is with all of the parentheses? Why are they used in some cases but not in others?
Is there a reason for them?

A: The parentheses used so far have been added for the readability of the statements. In some
cases, it is necessary to use parentheses to get a desired result. This is something else that is
covered in the next section.

Q: Are there any common typos that are made with all of these operators?

A: Often, the assignment operator (=) gets used in place of the comparison operator (==)
because the second equal sign is left off by accident. Also, forgetting to use && and typing
just & is another common typo that can cause trouble in a script. The same sort of mistake
can occur with the logical OR (||) and bitwise OR (|) operators.

 Chapter 5: JavaScript Operators 111

Try This 5-2

The precedence of the JavaScript operators is shown in Table 5-6, ranked from highest
precedence (done first) to lowest precedence (done last).

As you can see in Table 5-6, parentheses override the other operators. Parentheses are
handy when you are unsure of the precedence of various operators or if you want to make
something more readable.

 True or False?
This project will allow you to experiment with some of the comparison operators
to see how they work. You will create a script that shows an alert stating whether
or not a statement or comparison will return true. The script will use a conditional
if/else statement, which is explained in detail in the next chapter.

Table 5-6 Operator Precedence, from Highest to Lowest

Type of Operator Example of Operators

Parentheses (overrides others) ()

Unary (mathematical, logical, or bitwise) – ++ – – ! ~ typeof void delete

Multiplication, division, modulus * / %

Addition, subtraction + –

Shifts (bitwise) >>> >> <<

Relational comparison > >= < <= in instanceof

Equality comparison == != === !==

AND (bitwise) &

XOR (bitwise) ^

OR (bitwise) |

AND (logical) &&

OR (logical) ||

Conditional ?:

Assignment = += –= *= /= %= <<= >>= >>>= &= ^= |=

Comma ,

(continued)

pr5_2.html
prjs5_2.js

 112 JavaScript: A Beginner’s Guide

Step by Step
 1. Create an HTML file and save it as pr5_2.html.

 2. Create an external JavaScript file and save it as prjs5_2.js. Use this file for editing in
steps 3–13.

 3. Insert the code that follows into your JavaScript file:

var num1=0;
var num2=0;
if(num1==num2) {
 window.alert("True");
}
else {
 window.alert("False");
}

 4. Open the HTML page in your browser. You should instantly see an alert saying “True.”

 5. Change the value of the variable num1 to 5. Resave the JavaScript file and refresh your
browser. You should now get an alert saying “False.”

 6. In the following line of code, change the == operator to the > operator:

if(num1==num2) {

 7. Resave the JavaScript file and refresh your browser. You should get “True” again.

 8. Change the value of the variable num2 to 7.

 9. Resave the JavaScript file and refresh your browser. You should now get “False” again.

 10. In the following line (which you changed in step 4), change the operator to the < operator:

if(num1>num2) {

 11. Resave the JavaScript file and refresh your browser. You should get “True” again.

 12. Try to change the value of the num1 variable so that you get an alert that says “False” instead.

 13. Try your own tests with the other comparison operators to see what the results will be.

Try This Summary
In this project, you were able to use your knowledge of the comparison operators to create
an alert that displayed “True” or “False” depending on whether the comparison statement
would return true or false. You were also able to try testing your own variations of values and
operators if you desired.

 Chapter 5: JavaScript Operators 113

 Chapter 5 Self Test
 1. A(n) __________ is a symbol or word in JavaScript that performs some sort of calculation,

comparison, or assignment on one or more values.

 2. __________ operators are most often used to perform mathematical calculations on two
values.

 3. The __________ operator adds two values.

 4. When the increment operator is placed __________ the operand, it increases the value of
the operand by 1, and then the rest of the statement is executed.

 5. Which of the following is not a JavaScript operator?

 A =

 B ==

 C &&

 D $#

 6. What does an assignment operator do?

 A Assigns a new value to a variable

 B Gives a variable a new name

 C Performs a comparison

 D Nothing, because assignment operators are useless

 7. The add-and-assign (+=) operator adds the value on the __________ side of the operator to
the variable on the __________ side and then assigns to the variable that new value.

 8. What does a comparison operator do?

 A Performs a mathematical calculation

 B Deals with bits and is not important right now

 C Compares two values or statements, and returns a value of true or false

 D Compares only numbers, not strings

 9. Which of the following comparisons will return true?

 A 4!=3

 B 4==3

 C 4<3

 D 4<=3

✓

 114 JavaScript: A Beginner’s Guide

 10. Which of the following comparisons will return false?

 A 4!=3

 B 3==3

 C 4>3

 D 4<=3

 11. The __________ operators allow you to compare two conditional statements to see if one
or both of the statements are true and to proceed accordingly.

 12. Which of the following statements will return true?

 A (3==3)&&(5<1)

 B !(17>=20)

 C (3!=3)||(7<2)

 D (1==1)&&(2<0)

 13. Which of the following statements will return false?

 A !(3<=1)

 B (4>=4)&&(5<=2)

 C (“a”==“a”)&&(“c”!=“d”)

 D (2<3)||(3<2)

 14. __________ operators are logical operators that work at the bit level.

 15. In JavaScript, the operators have a certain order of __________.

115

Chapter 6
Conditional Statements
and Loops

 116 JavaScript: A Beginner’s Guide

Key Skills & Concepts

● Defining Conditional Statements

● Using Conditional Statements

● Defining Loops

● Using Loops

Now that you have seen how the various operators work in JavaScript, this chapter will
instruct you in how to put them to good use. Conditional statements and loops enable you

to make use of the mathematical, comparison, and logical operators because they enable you
to specify in your code that an action should occur only when a condition is met (conditional
statements) or should occur repeatedly (loops).

This chapter begins by introducing you to conditional statements. You will discover
what they are and why they are useful to you in scripts. Then, you will learn about all the
conditional statement blocks and how to use them. After that, you will learn what loops are
and why they are useful to you in scripts. Finally, you will find out about each type of loop and
learn how to use it within your scripts.

Defining Conditional Statements
In order to use conditional statements, you need to know what they are and why they are useful
to you in your scripts.

What Is a Conditional Statement?
A conditional statement is a statement that you can use to execute a bit of code based on a
condition or to do something else if that condition is not met. You can think of a conditional
statement as being a little like cause and effect. Perhaps a good way to parallel it would be to
use something a parent might say, as in the following text:

"If your room is clean, you will get dessert. Otherwise, you will go
to bed early."

The first cause would be a clean room, which would have the effect of getting dessert. The
second cause would be an unclean room, which would have the effect of an early bedtime.

In your scripts, you may want to create a similar statement. Perhaps something more like
the following line:

"If a variable named mymoney is greater than 1000, send an alert that
says my finances are OK. Otherwise, send an alert saying I need more
money!"

 Chapter 6: Conditional Statements and Loops 117

In this case, the first cause would be a variable having a value greater than 1000, which would
have the effect of an alert that says things are OK. The second cause is the variable being 1000
or less. If this happens, you get an alert saying you need more money.

As you can see, if you can create statements like these in your scripts, you will be able to
do quite a bit more than you have with your scripts in the past.

Why Conditional Statements Are Useful
As you saw in the previous section, a conditional statement can be quite useful to you. Rather
than executing every single line of code in the script as is, you could have certain sections of the
script only be executed when a particular condition is met. You could even expand that single
condition into a combination of conditions that need to be met for parts of the code to run.

With conditionals, you can tell JavaScript to do things such as the following:

● If a variable named yourname is equal to John, then write a line to the page that says hello
to John. Otherwise, write a line to the page that says hello to Unknown Surfer and have it
be in bold type.

● If a variable named mycar is equal to Corvette or Mustang, then send an alert saying “Cool
Car” to the browser. Otherwise, send an alert that says “My car is cooler” to the viewer.

● If a variable named yourname is equal to John and a variable named mycar is equal to
Corvette or Mustang, then send an alert that says “John drives a cool car” to the browser.
Otherwise, send an alert that says “Unknown Surfer drives a car of some sort” to the viewer.

I don’t really drive a Corvette or a Mustang, so that leaves me out of the cool crowd here;
however, these examples do show how you can make your scripts more useful by adding a
way to check for certain conditions before an action takes place in the script.

You can make statements (such as the preceding statements) as simple or complex as you
need them; however, the trick is in how to code all these statements so that JavaScript will
interpret them as you intend them to be interpreted. You will learn how to do this shortly, when
you read about the various types of conditional statements you can use in your scripts.

Using Conditional Statements
Now that you know what conditional statements are, it’s time to look at them in more detail
and learn how to code them. You will be looking at the two types of conditional statement
blocks used in JavaScript: the if/else statement blocks and the switch statement blocks. To
begin, you will look at the if/else statement blocks, which are used quite often in JavaScript.

Using if/else Statement Blocks
While using conditional statements, you will see that they are similar to functions in some
ways. Most notable are the curly brackets ({}) that surround the sections of code that will
be executed given a condition. To give you a better understanding of how this works, I will
explain the basic structure of an if/else statement block: its block structure, block nesting, and
complex comparisons.

 118 JavaScript: A Beginner’s Guide

The if/else Statement Block Structure
The first thing you must deal with in an if/else statement is the first line, which tells the
browser to continue or move along. You begin an if/else statement with the JavaScript
keyword if, followed by a comparison in parentheses. The following line shows a sample of
the format of the first line:

if (comparison here)

You replace the comparison here text with an actual comparison. To do this, you need to
remember the comparison operators from the previous chapter. Suppose you want to see if a
variable named boats is equal to 3. The following is how you write the first line of the if/else
block:

if (boats==3)

Remember that a comparison will return a value of true or false. This is where the return value
becomes useful. If the comparison of boats==3 returns true, the browser can go on to the next
line. If it returns false, the browser begins looking for the else keyword, or the first line of
script after the block following the if line is completed.

If the comparison returns true, you need to make a block of statements after the if line
that will be executed. To do this, you use the curly brackets similarly to the way you enclose
commands for a function. The following code shows how to add the brackets to enclose the
code that will execute if the comparison returns true:

if (boats==3) {
 JavaScript Statements Here
}

If the comparison of boats==3 returns true, the code you place within the brackets will be
executed. If it returns false, the code inside the brackets is ignored and the line of code after
the closing curly bracket is executed.

If you wish to use an else block to execute a certain bit of code when the comparison
returns false, you place the else keyword on the next line and then follow it with its own set of
curly brackets, as in the following code:

if (boats==3) {
 JavaScript Statements Here
}
else {
 JavaScript Statements Here
}

Now you can see the entire if/else block and how it works to execute one of the two blocks
of code within curly brackets. If the comparison returns true, the block of code following the
if statement is executed. If the comparison returns false, the block of code following the else
keyword is executed.

The comparison is on the first line
This is where JavaScript code will be added

The if block begins with the if
keyword and the comparison

The else block begins with the else keyword

 Chapter 6: Conditional Statements and Loops 119

You can now create an entire block with code. Suppose you want to send an alert that says
“You have the right number of boats” if the variable boats is equal to 3. If it is not, you want to
send an alert that says “You do not have the right number of boats” instead. The code for this is
shown in the following example:

if (boats==3) {
 window.alert("You have the right number of boats");
}
else {
 window.alert("You do not have the right number of boats");
}

Now that you have the statements set up, you need to know whether or not the comparison
returns true so that you can determine which block of code is executed. To do so, you need to
declare the boats variable and assign it a value before the comparison takes place. This will
give you the value to determine what happens in the script. See if you can guess which block
of code is executed (first or second) if you use the following code:

var boats=3;
if (boats==3) {
 window.alert("You have the right number of boats");
}
else {
 window.alert("You do not have the right number of boats");
}

If you guessed the first code block would be executed, you got it! Since the variable boats is
equal to 3, the comparison boats==3 returns true. Since it returns true, the first code block is
executed and the code block after the else keyword is ignored. You get the alert that says “You
have the right number of boats” and nothing else.

CAUTION
Be careful when typing the variable assignments (=) and the is-equal-to comparisons
(==), as they can be easily reversed by accident and cause problems with your scripts.

Now take look at how to set up the statement so that you have the opposite result. The
following code will cause the comparison to return false:

var boats=0;
if (boats==3) {
 window.alert("You have the right number of boats");
}
else {
 window.alert("You do not have the right number of boats");
}

Assigning the variable a value of 0 will
cause the comparison to return false

This alert is executed if the comparison on the first line returns false

This alert is executed if the comparison on the first line returns true

 120 JavaScript: A Beginner’s Guide

With the value of the variable boats at 0, the comparison boats==3 will return false; thus, the
first code block is ignored and the code block after the else statement is executed instead. This
time you get the alert that says “You do not have the right number of boats,” while the alert in
the first block is ignored.

Now that you know the basic structure of the if/else statement block, you are ready to look
at the technique of nesting one block within another.

Block Nesting
If you nest something, you are basically putting one structure inside another structure of the
same or a similar nature. With the if/else statement blocks, you are able to nest other if/else
statements within the first block after the comparison (the “if block”) or within the second
block after the else keyword (the “else block”).

For example, maybe you would like the browser to execute a statement such as the
following: “If a variable named have_cookbook is equal to yes, and if a variable named
meatloaf_recipe is equal to yes, send an alert that says ‘Recipe found’ to the browser. If have_
cookbook is equal to yes, but meatloaf_recipe is not equal to yes, then alert ‘Have the book
but no recipe’ to the viewer; otherwise, send an alert that says ‘You need a cookbook’ to the
browser.”

This is a somewhat long and complex statement, but you can accomplish what you are
after by nesting an if/else statement within the if block of another if/else statement.

To see how this works, consider the following example, which puts the previous statement
into JavaScript form:

if (have_cookbook=="yes") {
 if (meatloaf_recipe=="yes") {
 window.alert("Recipe found");
 }
 else {
 window.alert("Have the book but no recipe");
 }
}
else {
 window.alert("You need a cookbook");
}

Oh no, nesting an if block requires curly brackets all over the place! To help you figure out
what is going on with this piece of code, I will break it down into its individual parts.

The first thing you get is the main (first, or outermost) if block. You use it to find out
whether the variable have_cookbook is equal to yes or not. If this comparison returns true, you
move along into the if block; however, the next thing you find is another if block! This is the
nested if block, which means it is inside the outside if block. In the nested block, you check
whether the variable meatloaf_recipe is equal to yes or not. If this returns true, you finally are
able to do something, which is to send the “Recipe found” alert.

This if/else block is nested
within an outside if block

 Chapter 6: Conditional Statements and Loops 121

When the nested if block is finished, you see that it has an else block to go with it in
case the comparison meatloaf_recipe==“yes” returned false. If it had returned false, the
browser would then go to this else block and execute the code within it. In the preceding code
example, the comparison on the outside block (have_cookbook==“yes”) returned true, but the
comparison on the nested block (meatloaf recipe==“yes”) returned false. So, the nested else
block is executed, sending the “Have the book but no recipe” alert.

After this nested else block, you see what looks like an extra closing curly bracket;
however, this closing bracket is actually used to close the outside if block that contains all
of this nested code. Looking at how the code is indented will help you see which brackets
are closing which blocks. This is where using indentions or tabs can be helpful in your code,
because—as opposed to the code being all in a straight line up and down—indentions can
make the code easier to read.

Finally, you get to the outside else block. This is the block that is executed only if the first
comparison (have_cookbook==“yes”) returns false. If that comparison returns false, all the
code within that outside if block is ignored (you never get to the nested if/else block) and the
browser moves on to this outside else block. In this case, you get the “You need a cookbook”
alert sent to the viewer.

The following example uses the same if/else code used in the preceding code example,
but this time the variables are defined that will be used by the conditional statements. Both
variables are given a value of yes. See if you can follow the code and name the alert that will
show up on the screen when it is executed.

var have_cookbook="yes";
var meatloaf_recipe="yes";

if (have_cookbook=="yes") {
 if (meatloaf_recipe=="yes") {
 window.alert("Recipe found");
 }
 else {
 window.alert("Have the book but no recipe");
 }
}
else {
 window.alert("You need a cookbook");
}

The alert you should have chosen is the “Recipe found” alert. When the first comparison
returns true, you are sent to the nested if block. Since the comparison for the nested if block
also returns true, you execute the code within that block, which sends the “Recipe found” alert
to the browser.

You can nest if/else statements within the outside else block, or you can even nest
statements inside both the outside if block and the outside else block. If you want nested
statements inside both blocks, you could expand your script a bit. The following example code

 122 JavaScript: A Beginner’s Guide

expands on the code you already have, but adds an additional nested if/else statement within
the outside else block:

if (have_cookbook=="yes") {
 if (meatloaf_recipe=="yes") {
 window.alert("Recipe found");
 }
 else {
 window.alert("Have the book but no recipe");
 }
}
else {
 if (have_web_access=="yes") {
 window.alert("Find the recipe on the Web");
 }
 else {
 window.alert("You need a cookbook");
 }
}

Although it hasn’t been declared, you will notice the addition of a new variable: have_
web_access. This is used to determine whether the script should tell the viewer to find the
recipe on the Web or to buy a cookbook. Keep in mind that in a live script, all the variables
need to be declared before being used.

This time, if the first comparison (have_cookbook==“yes”) returns false, you are sent
to the outside else block; however, the outside else block now has a nested if/else statement
within it, so the browser now goes to the inside if block and looks at that comparison (have_
web_access=“yes”). If it returns true, the code within the nested if block is executed and you
get the “Find the recipe on the Web” alert. If the comparison returns false, the browser moves
on to the nested else block and executes that code instead. In that case, you would get the “You
need a cookbook” alert.

The last thing you should know about nesting is that you can nest as many blocks as you
want inside of other blocks. Rather than just nesting one if/else statement inside another, you
could have a second nesting inside that statement, a third, or as many as you can track without
going insane. To keep the example from getting out of hand, the following code just nests one
more time within the if block of the previous code:

if (have_cookbook=="yes") {
 if (meatloaf_recipe=="yes") {
 if (is_moms_meatloaf=="yes") {
 window.alert("Recipe found");
 }
 else {
 window.alert("Recipe found, but not like what mom makes");
 }
 }

This if/else block is nested
within an outside if block

This if/else block is nested
within an outside else block

This if/else block is nested within a nested if block

 Chapter 6: Conditional Statements and Loops 123

 else {
 window.alert("Have the book but no recipe");
 }
}
else {
 if (have_web_access=="yes") {
 window.alert("Find the recipe on the Web");
 }
 else {
 window.alert("You need a cookbook");
 }
}

Now there is an if/else block within an if block within an if block. As you can see, yet
another variable, is_moms_meatloaf, was added to check for an even more specific recipe. You
could keep going on and on like this, until you cannot take it anymore; however, this should be
enough to allow you to build on it later if you need to do so.

Now that you know a bit about nesting, you need to look at one more detail before
you leave the if/else topic in this section. You need to learn about making more complex
comparisons in your if/else statements.

Complex Comparisons
In addition to making a simple comparison such as x==2 or y<3, you can also build more
complex comparisons using the logical operators discussed in Chapter 5. As you may recall,
that chapter presented some of these comparisons in a form similar to the following example:

(2==2)||(3<5)

In Chapter 5, the only concern was whether the comparison would return true or false, and
not with how to add it to an if/else statement. Notice the parentheses around each comparison.
They are there mainly for organization; but given the order of operations, you could write the
comparison as

2==2||3<5

The problem here is that this is harder to read, so it would be difficult to determine whether
there is a problem with the code if you need to debug it later.

Recall that the first line of the if/else statement uses parentheses to enclose the comparison.
If you write your complex comparisons without the organizational parentheses, as in the
previous example, you could have the first line look like the line of code shown here:

if (2==2||3<5)

Although this is easy to type, it’s pretty difficult to read because you are not sure if it should be
read as “if 2 is equal to 2 or 3 and is less than 5” or as “if (2 is equal to 2) or (3 is less than 5).”
If you add the parentheses for organization, it becomes easier to read; but you must be careful

 124 JavaScript: A Beginner’s Guide

that you nest them correctly. The following example code shows the addition of parentheses
for organization:

if ((2==2)||(3<5))

Which form you use will come down to personal preference. For now, this chapter uses the
method with the extra parentheses for organization. It should make reading the code from the
book easier for you.

Now you can create scripts that allow for more values to be included or allow a specific
range of values that will return true. Suppose you want to show an alert when a variable named
num1 is greater than 2 but less than 11, and another alert when num1 is not in that range. You
could use the following code:

if ((num1>2)&&(num1<11)) {
 window.alert("Cool number");
}
else {
 window.alert("Not a cool number");
}

Your comparison is saying, “If num1 is greater than 2 and num1 is less than 11.” If that
comparison returns true, then you see the “Cool number” alert. If it returns false, you get the
“Not a cool number” alert instead.

Of course, you can make the comparison line as complex as you want it to be. You can add
and and or logical operators in one long line until you get what you need…or have a nervous
breakdown. The following example adds an extra stipulation to the comparison to see if num1
is equal to 20:

if ((num1>2)&&(num1<11)||(num1==20)) {
 window.alert("Cool number");
}
else {
 window.alert("Not a cool number");
}

Now, the comparison allows the numbers greater than 2, the numbers less than 11, and the
number 20 to give the “Cool number” alert. The comparison now reads, “If num1 is greater
than 2 and num1 is less than 11 or num1 is equal to 20.” You could keep adding information to
create more numbers that will return true, or even additional number ranges that will return true.

Of course, to see the preceding code in action, you would need to declare the num1
variable and assign it a value. See if you can figure out which alert will show up if the
following code is used:

var num1=1;
if ((num1>2)&&(num1<11)||(num1==20)) {
 window.alert("Cool number");
}

This complex comparison allows a
specific range of values to return true

This complex comparison adds an
additional number that would cause the
comparison to return true

 Chapter 6: Conditional Statements and Loops 125

else {
 window.alert("Not a cool number");
}

Yes, you are stuck with the “Not a cool number” alert because the number 1 just doesn’t cut it
here (1 is not within the accepted range of numbers for the condition to return true). Of course,
you can change it to something that fits to get the “Cool number” alert instead.

CAUTION
Complex expressions using && and || can cause unintended results in your script if not
grouped correctly. For instance, the comparison ((u==v && w==x) || y==z) is going
to be different than if it were grouped as (u==v && (w==x || y==z)). The first one will
return true if u is equal to v and w is equal to x, or if y is equal to z. The second one will
return true if u is equal to v and if either w is equal to x or y is equal to z.

Now that you have the if/else statement down, take a look at another conditional block you
can use to make some things a bit easier.

Using the switch Statement
The switch statement allows you to take a single variable value and execute a different block
of code based on the value of the variable. If you wish to check for a number of different
values, this can be an easier method than the use of a set of nested if/else statements.

The first line of a switch statement would have the following syntax:

switch (varname)

You replace varname with the name of the variable you are testing. You could also replace
it with some other sort of expression, such as the addition of two variables or some similar
calculation, and have it evaluate. For now, you will just use a variable that has been assigned
a value before the switch statement begins. In your later scripts, you may use some more
complex switch statements.

Now, you need to see the general syntax for a full switch statement. The following code is
an example of how a switch statement looks:

var thename="Fred";
switch (thename) {
 case "George" :
 window.alert("George is an OK name");
 break;
 case "Fred" :
 window.alert("Fred is the coolest name!");
 window.alert("Hi there, Fred!");
 break;
 default :
 window.alert("Interesting name you have there");
}

The switch statement begins based on
the value of the thename variable

A case is given with code to
execute below it if it is true

This is the case that is true and will be executed

The break statement tells the browser
to leave the switch code block

The default is used when none of the cases is true

 126 JavaScript: A Beginner’s Guide

First, this example declares and assigns a variable named thename; it is given a value of
Fred. Next, the switch statement begins, using the variable thename as the basis for comparison.
Then, the block is opened with a curly bracket, followed by the first case statement. Written like
this, it is saying, “If thename is equal to George then execute the commands after the colon at
the end of this line.” If thename were equal to George, you would get an alert.

Next you see the break statement, which tells the browser to exit the code block and move
on to the next line of code after the block. You use the break statement in the switch block to
be sure only one of the case sections is executed; otherwise, you run the risk of having all the
cases executed following the one that returned true, because, by default, the browser would
continue to the next statement rather than exit the block entirely even though it finds one of the
cases to be true. To be sure that the browser exits the block, you add the break statement.

If you get back to the script, you see that thename is not equal to George, so this case is
skipped; however, the next comparison returns true because thename is equal to Fred in the
script. Thus, the set of statements in this case block will be executed. Note that two lines of
JavaScript code appear before the break statement here. This shows that you could have any
number of lines within a case, as long as you remember to end with the break statement.

Finally, you see the keyword default. This is used in the event that none of the case
statements returns true. If this happens, the default section of code will be executed. Notice
that you don’t need the break statement after the default section of code, because it is at the
end of the switch block anyway, so the browser will exit the block afterward, eliminating the
need for the break statement.

Sometimes you want the browser to execute the statement afterward. A common use is to
have multiple case statements before the code to be executed:

case "Fred":
case "Frederick":
case "Freddie":
alert("Fred is an OK name");
break;

This use of the break statement allows you to execute several cases before breaking, rather
than being limited to a single case and then breaking.

Now that you have learned how to use the switch statement, take a look at the conditional
operator (which was introduced in Table 5-5, “Special Operators,” in Chapter 5 and will make
more sense now that you have experience with if/else blocks).

Using the Conditional Operator
The conditional operator (often called the ternary operator) is one that can be used as a short
way to assign a value based on a condition. For instance, you might decide you want to assign
a value to a variable based on the result of a conditional statement. You could do it using the
following code:

var mynum=1;
var mymessage;
if (mynum==1) {
 mymessage="You win!";

 Chapter 6: Conditional Statements and Loops 127

}
else {
 mymessage="Sorry! Try again!";
}

This works, and gives mymessage a value of “You win!” since mynum is equal to 1. However,
the conditional operator allows you to shorten the amount of code required for this type of test.
It allows you to place a condition before the question mark (?) and place a possible value on
each side of the colon (:), like this:

varname = (conditional) ? value1 : value2;

JavaScript evaluates the conditional statement and if the statement returns true, the value on
the left side of the colon (value1 here) is assigned to the variable. If the statement returns false,
the value on the right side of the colon (value2 here) is assigned to the variable.

To apply this to our previous example, we could rewrite the entire piece of code as follows:

var mynum=1;
var mymessage;
mymessage = (mynum==1) ? "You win!" : "Sorry! Try Again!";

This works the same way as the previous if/else block, but allows you to write the code with
a lot less typing (lessening the size of the script).

It should be noted that you can also use another method to shorten the script if using the
conditional operator is not comfortable for you. Since JavaScript is lenient, you can omit the
curly braces anytime you have only one statement to execute in a code block.

For instance, the following code could also be used as a shorter version of the script:

var mynum=1;
var mymessage;
if (mynum==1)
 mymessage="You win!";
else
 mymessage="Sorry! Try again!";

Also, since JavaScript is not concerned with white space or line breaks between tokens, you
can also further shorten this to have the entire if/else block on one line:

var mynum=1;
var mymessage;
if (mynum==1) mymessage="You win!"; else mymessage="Sorry! Try again!";

For now, you will want to use the method that you feel most comfortable using. As you
gain scripting experience, the conditional operator will be a handy way to shorten your code
and help you optimize the size of your scripts when this type of comparison is needed.

The conditional statements you have used in this chapter will allow you to do much more
with your scripts now that you know how to use them. You will be using these extensively in
later chapters, because they can help you code more complex scripts that perform more tasks
than you could without them.

 128 JavaScript: A Beginner’s Guide

Q: Do I need to use curly brackets on every if/else block? I have seen them used in code
on the Web without the brackets. Why?

A: There is a shortcut that allows you to omit the curly brackets if you are only going to
execute a single JavaScript statement in the if block and the else block. If you are going to
execute more than one statement, the curly brackets should be used. For example, look at
the following code:

if (x==2) {
 window.alert("Hi");
}
else {
 window.alert("Bye");
}

 Since only one JavaScript statement is used inside the code blocks, you can use a
shortcut that allows you to omit the brackets:

if (x==2)
 window.alert("Hi");
else
 window.alert("Bye");

 As you can see, it can save you some typing (which is why you see this technique often in
scripts on the Web). Keep in mind, however, that if you decide to add more statements within
one of the blocks, you will need to add the brackets back around the code in that block.

Q: Why I am bothering with conditional statements if all I can do is assign the variable
a value and then test it? If I already know what the value of the variable is, why use a
conditional?

A: In later chapters, you will get to the point where you are getting information from the
viewer. This information can vary depending on the viewer (for example, if the viewer
needs to enter his/her name into a text box or a prompt), thus making the conditional blocks
more useful since you will be able to perform one action for one viewer, and another task
for a different user. With user input, you won’t know the value of the variable beforehand,
and you will need to handle the possibilities using conditional blocks.

Ask the Expert

 Chapter 6: Conditional Statements and Loops 129

Try This 6-1 Construct an if/else Block
This project will help you learn how to construct an if/else block of your own. You
will be given some variables to test, but you will need to write the if/else block.

Step by Step
 1. Create an HTML page and save it as pr6_1.html. Add script tags to point to an external

JavaScript file named prjs6_1.js.

 2. Create an external JavaScript file and save it as prjs6_1.js. Use this file for steps 3–6.

 3. Create a variable named thesport and assign it the following string value: Golf

 4. Create a variable named myfood and assign it the following string value: Pizza

 5. Based on the thesport variable, create a block of code that will send an alert saying “Cool
Sport!” if the variable is equal to “Football”; otherwise, it will send an alert that says “That
sport might be cool.”

 6. Based on the myfood variable, create a block of code that will send an alert saying “My
favorite food!” if the variable is equal to “Pizza”; otherwise, it will send an alert that says
“That food sounds OK I guess.”

 7. Save the JavaScript file and the HTML file and view the HTML page in your browser.

 8. You should get an alert saying “That sport might be cool.” When you click OK, you should
then get another alert saying “My favorite food!”

Q: Why is the conditional operator often referred to as the ternary operator?

A: The conditional operator is the only JavaScript operator that takes three operands. Because
of this, it is often called the ternary operator rather than one of several ternary operators.
If JavaScript makes changes to add new operators in the future, this reference to the
conditional operator may change.

Q: I don’t like the idea of nesting one block inside of another. Can I just forget about it
and never nest anything?

A: You could do that, but it will severely limit the scripts you code later because you won’t
be able to use one comparison statement within another (which is sometimes necessary in
more complex scripts). Nesting allows you to perform more complex tasks, as you will see
in later scripts. It is best to learn nesting so that you can make use of it when you need to.

(continued)

pr6_1.html
prjs6_1.js

 130 JavaScript: A Beginner’s Guide

Try This Summary
In this project, you used your new skills with if/else conditional statements to create a script
that pops up different alerts based on the value of a variable. You did this with two different
variables: the first conditional returns false and gives the alert in the else statement, while the
second conditional returns true and gives the alert in the if statement.

Defining Loops
To begin using loops, you will want to know what loops are, what they can do, and why they
can be useful to you in your scripts.

What Is a Loop?
A loop is a block of code that allows you to repeat a section of code a certain number of times,
perhaps changing certain variable values each time the code is executed. By doing this, you
are often able to shorten certain tasks into a few lines of code, rather than writing the same line
over and over again within the script and tiring your fingers.

Why Loops Are Useful
Loops are useful because they allow you to repeat lines of code without retyping them or using
cut and paste in your text editor. This not only saves you the time and trouble of repeatedly
typing the same lines of code, but also avoids typing errors in the repeated lines. You are also
able to change one or more variable values each time the browser passes through the loop,
which again saves you the time and trouble of typing a line that is only slightly different than
the previous line.

As a simple example, suppose you wanted to write a sentence onto a Web page ten times
in a row using JavaScript. To do this normally, you might have to write something like the
following:

document.write("All this typing gets tiring after a while!
");
document.write("All this typing gets tiring after a while!
");
document.write("All this typing gets tiring after a while!
");
document.write("All this typing gets tiring after a while!
");
document.write("All this typing gets tiring after a while!
");
document.write("All this typing gets tiring after a while!
");
document.write("All this typing gets tiring after a while!
");
document.write("All this typing gets tiring after a while!
");
document.write("All this typing gets tiring after a while!
");
document.write("All this typing gets tiring after a while!
");

Ouch! Cut and paste can make the task easier, but it would still be a bit tedious, especially
if you decide to write the sentence 50 times instead. With a loop, you could write that
document.write() statement just one time and then adjust the number of times you want it to

 Chapter 6: Conditional Statements and Loops 131

be written. It would be something like the following example. This is not actual code, but you
will see the actual code needed to repeat a statement multiple times when you look at the loop
structures in more detail in the next section, “Using Loops.”

Do this block 10 times {
 document.write("I only had to type this once!
");
}

Of course, you will replace the “Do this block 10 times” text with an actual statement that
JavaScript will understand. You will see what statements you can use to form loops in the
following section.

Using Loops
In order to see how loops can really be helpful to you, you need to take a look at the different
loop structures that you can use in JavaScript. The loop structures covered in this section are
the for, while, and do while loops.

for
To use a for loop in JavaScript, you need to know how to code the basic structure of the loop
and how to nest a for loop within another for loop. To begin, take a look at the basic structure
of a for loop.

Structure of a for Loop
The structure of a for loop is very similar to that of the conditional blocks. The only major
differences are that a loop serves a different purpose and, as a result, the first line is different.
After that, you use the familiar curly brackets to enclose the contents of the loop.

The first line of a for loop would look similar to the following line:

for (var count=1;count<11;count+=1)

The first thing you see is the for keyword. This is followed by a set of parentheses with three
statements inside. These three statements tell the loop how many times it should repeat by
giving it special information.

The first statement (var count=1) creates a variable named count and assigns it an initial
value of 1. This initial value can be any number. This number is used as a starting point for the
number of times the loop will repeat. Using the number 1 will help you see more easily the
number of times the loop will repeat. The preceding code begins the loop with count having
a value of 1. Note that if the count variable had been initialized earlier in the script, the var
keyword would not be needed here.

The next statement (count<11) tells the loop when to stop running. The loop will stop
running based on this conditional statement. The condition here is to stop only when the
variable count is no longer less than 11. This means that if you add 1 to the value of count each
time through the loop, the loop’s last run-through will be when count is equal to 10. When 1 is
added to 10, it becomes 11; and that doesn’t pass the conditional test, so the loop stops running.

 132 JavaScript: A Beginner’s Guide

The last statement in the set (count +=1) determines the rate at which the variable is
changed and whether it gets larger or smaller each time. In the preceding code, you add 1 to
the variable each time you go back through the loop. Remember, the first time through, the
variable has been set to 1. Since you add 1 each time, the variable will have a value of 2 the
second time through, 3 the third time through, and so on, until the variable is no longer less
than 11.

To finish the structure, you insert the curly brackets to enclose the code that you wish to
use within the loop. An example of the full structure of a for loop is shown in the following
code:

for (count=1; count<11; count+=1) {
 JavaScript Code Here
}

Now, you just need to add a real variable and some JavaScript code to be executed, and
you will have a full for loop put together. To do this, you’ll begin with a script to write a
sentence to the page ten times. Now that you can use a loop, you need to write the sentence
itself only once, rather than ten times in a row. The following example code shows how this
can be done using a for loop:

for (var count=1;count<11;count+=1) {
 document.write("I am part of a loop!
");
}

The count variable is going to begin counting at 1, since it is assigned an initial value of 1.
You are adding 1 to it each time through the loop. When the count variable has a value that
is no longer less than 11, the loop will stop. In this case, the count will run from 1 to 10, thus
running the loop ten times.

When 1 is added the next time the for statement is hit, the value of the count variable is
11, which is no longer less than 11; thus, the browser will skip over the loop and continue to
the next line of code after the closing curly bracket for the loop. The
 tag is used in the
document.write command to be sure that each sentence will have a line break after it and will
not write the next sentence on the same line.

To see this work on a page, you can add the script tags and insert an external JavaScript
file into the body section of an HTML page. Create a JavaScript file named loops01.js, add
the following code, and save the file. Add the necessary script tags to an HTML document and
save it as loops01.html.

document.write("Get ready for some repeated text.
");
for (var count=1;count<11;count++) {
 document.write("I am part of a loop!
");
}
document.write("Now we are back to the plain text.");

Here, a slight change was made to increment the count variable. Rather than typing count+=1,
the increment operator (++) was used. When simply adding one to the variable, the increment

This line determines how many
times the loop will run

This loop will display the text
repeatedly in the HTML document

The JavaScript code for the loop
will be inside the brackets here

This line of code is looped
through ten times

 Chapter 6: Conditional Statements and Loops 133

operator can be a handy way to shorten the code. However, if you wanted to increment
the variable by 2 or more, the add-and-assign operator would still need to be used (that is,
count+=2).

The page represented by the preceding code has a short line of text that is followed by
your repeating line of text. The page ends with a note, “Now we are back to the plain text.”
Figure 6-1 shows how this will appear in the browser window when viewed. Notice that the
sentence “I am part of a loop!” is repeated ten times.

Now that you can do a basic loop, you are ready to add something to it that will make
the loop even more useful. Within the loop, you can use the value of the count variable (or
whatever variable is used) to do various things.

One thing you can do (this will become more apparent when you get to arrays later) is to
make use of the fact that the variable is changing each time. With the variable going up by 1

Figure 6-1 The loop displays the line of text ten times

 134 JavaScript: A Beginner’s Guide

each time through, you could use a loop to number the sentences from 1 to 10 and make the
lines more readable. The following code does this:

document.write("Get ready for some repeated text.
");
for (var count=1;count<11;count++) {
 document.write(count+". I am part of a loop!
");
}
document.write("Now we are back to the plain text.");

In the preceding code, you just added the value of the count variable to your string at the
beginning. The period before the sentence will make the line of text appear with a period after
the number, a space, and your sentence on each line. Figure 6-2 shows how the script would
look in the browser with this addition.

Before you move on to the while loop, you need to learn one more thing about the for
loop. Just as with the if/else blocks, a for loop can be nested within another for loop.

Now the variable is used to add line numbers
each time the code is repeated

Figure 6-2 Now the repeated lines are numbered from 1 to 10

 Chapter 6: Conditional Statements and Loops 135

Block Nesting
Yes, you now have to deal with nested loops. As with if/else blocks, you can nest as many
levels deep as you can handle. For now, you will just nest one loop within another. The
following example shows a for loop within a for loop:

for (var count=1;count<11;count++) {
 document.write(count+". I am part of a loop!
");
 for (var nestcount=1;nestcount<3;nestcount+=1) {
 document.write("I keep interrupting in pairs!
");
 }
}

CAUTION
Be careful when you nest loops to be sure that each nested loop has its own counter on
its first line, such as for(count=1;count<11;count+=1). A counter will need to be unique
to its own loop in most cases. Also, many errors may occur if the curly brackets are not
included or paired correctly.

Now you get a loop that interrupts your outer loop text with text of its own. Each time you
go through the outer loop, you write out the “I am part of a loop!” line. Then, you encounter
another loop that writes out “I keep interrupting in pairs!” to the screen.

The inner loop is set up to repeat twice; so each time you have one sentence from the
outside loop, it is immediately followed by two sentences from the inside loop. In order to see
this more clearly, consider the following example, which updates the code you used earlier in
the loops01.js file:

document.write("Get ready for some repeated text.
");
for (var count=1;count<11;count++) {
 document.write(count+". I am part of a loop!
");
 for (var nestcount=1;nestcount<3;nestcount++) {
 document.write("I keep interrupting in pairs!
");
 }
}
document.write("Now we are back to the plain text.");

Figure 6-3 illustrates how this nested loop affects the appearance of the page in the
browser. You can now see how nested loops are useful to add even more information along the
way if you need to do so.

To further complicate matters, you can also nest different types of blocks inside one
another. For example, you can put an if/else statement block inside a loop, or a loop inside
the if block or the else block of an if/else statement. The following example creates an if/else
block within a for loop:

for (var count=1;count<11;count++) {
 if (count==5) {
 document.write("The loop is halfway done!
");

This nested loop interrupts
the outside loop

 136 JavaScript: A Beginner’s Guide

 }
 else {
 document.write("I am part of a loop!
");
 }
}

In this case, the browser will check whether or not the count variable has a value of 5. If it
does, the browser will print a different message to the screen than the browser would otherwise.
You can best see the effects of this by adjusting your JavaScript file to have the following code:

document.write("Get ready for some repeated text.
");
for (var count=1;count<11;count++) {
 if (count==5) {
 document.write("The loop is halfway done!
");
 }
 else {
 document.write("I am part of a loop!
");
 }
}
document.write("Now we are back to the plain text.");

Figure 6-3 The nested loop inserts text within the outside loop’s text

 Chapter 6: Conditional Statements and Loops 137

Figure 6-4 shows the result of this code when run in the browser. Notice how the fifth line
is different based on the conditional statement within the loop.

As you can see, you can do quite a bit with nesting. Using the same techniques you just
learned, you can nest all the other statement blocks covered in this book; therefore, I won’t be
as detailed about the nesting techniques with the rest of the statements that are covered.

Now that you have seen how to use a for loop, take a look at how you can loop a little
differently using a while loop.

while
A while loop just looks at a short comparison and repeats until the comparison is no longer
true. To begin, take a look at the general syntax for the first line of a while loop:

while (count<11)

The while statement does not create a variable the way a for statement can. When using a
while loop, you must remember to declare the variable you wish to use and assign it a value
before you insert it into the while loop.

Figure 6-4 The nested if/else block causes the fifth line to be different from the other lines

 138 JavaScript: A Beginner’s Guide

Although the less-than comparison is probably the most common, you can use any
other type of comparison you wish. This includes the complex comparisons with the logical
operators. So, you could have a first line like the following example:

while ((count>4)&&(count<11))

This time, the loop runs only while the variable is greater than 4 and less than 11. For the loop
to run at all, the initial value of the variable would need to be within that range; otherwise, the
loop would be skipped entirely.

The following code shows the general structure of a full while loop so that you can see
how it looks:

var count=1;
while (count<6) {
 JavaScript Code Here
 count++;
}

First, notice that the value of 1 is assigned to the variable count before the loop begins.
This is important to do so that the loop will run the way you expect it to run. This loop is set
up to repeat five times, given the initial value of the variable and the increase in the value of
the variable by 1 each time through (count++).

In a while loop, you must also remember to change the value of the variable you use so
that you do not get stuck in a permanent loop. If the previous sample loop had not included the
count++ code, the loop would have repeated indefinitely, and you do not want that to happen.
So, the main things you must remember with a while loop are to give the variable an initial
value before the loop and to adjust the value of the variable within the loop itself.

For an example of the while loop in action, you can recode your sentence-repeat script to
work with a while loop:

document.write("Get ready for some repeated text.
");
var count=1;
while (count<11) {
 document.write(count+". I am part of a loop!
");
 count++;
}
document.write("Now we are back to the plain text.");

The preceding code will produce the same result as your for loop did, just with a different
look, as shown in Figure 6-5. In many cases, you can choose to use a for loop or a while loop
based on personal preference, since they can perform many of the same tasks.

As far as nesting with while loops, it works the same as with the for loops. You can insert
another while loop, a for loop, or an if/else block within a while loop. You can also insert a
while loop within the other statement blocks if you wish.

A variable is assigned a value to count the loop

The count variable is adjusted so that
you do not have an endless loop

The while statement begins with a comparison

This line is written on the page ten times, just as with the for loop

 Chapter 6: Conditional Statements and Loops 139

Now that you know how while loops work, take a look at a loop that has a special feature
added to it.

do while
The do while loop is special because the code within the loop is performed at least once, even
if the comparison used would return false the first time. A comparison that returns false in
other loops on the first attempt would cause them never to be executed. In the case of a do
while loop, the loop is executed once, and then the comparison is used each time afterward to
determine whether or not it should repeat.

The following is an example of a do while loop that will run five times:

var count=1;
do {
 document.write("Hi!");
 count++;
} while (count<6);

Figure 6-5 A line of text is repeated ten times using a while loop

The while statement runs the comparison
each time after the first run-through

The do keyword begins the do while loop

 140 JavaScript: A Beginner’s Guide

Notice the keyword do and the opening curly bracket are the only things on the first line of the
block in the preceding code. Then, when the block is complete, you see the while statement
and comparison. The do keyword is how you ensure the code block is executed at least once.

After that, the browser checks to see that the comparison returns true before repeating.
In this case, the loop repeats five times since the variable count starts at 1 and is increased by
1 each time through. When the value of count reaches 6, the loop is skipped and no longer
executed.

To see an example of a do while loop that gets executed at least once even though the
initial comparison would return false, look at the following example code:

var count=11;
do {
 document.write("Hi!");
 count++;
} while (count<10);

Since the count variable has an initial value of 11, the loop in the preceding code will
only run the first time through. When the comparison is checked (count will be 12 by this
time, since 1 is added to it in the execution of the loop), it returns false and the loop is no
longer run.

A do while loop is most useful when you have some code that you need to have executed
at least once but need repeated only if certain conditions are met; otherwise, one of the other
two loops would be sufficient for the task.

for in
The for in loop allows you to loop over all the names of the properties of an object and execute
statements for each property using a variable to hold the name of the property. The general
format for a for in loop is shown here:

for (varname in objectname) {
 JavaScript Code Here
}

Since you have not looked at JavaScript objects, this won’t be useful to you yet. The for in
loop will be covered in more detail in Chapter 8.

for each in
The for each in loop is very similar to the for in loop, but rather than looping through the name
of each property it allows you to loop through the value of each of the properties. It is only
supported in JavaScript 1.6 and higher. Again, this will be covered in more detail when objects
are introduced in Chapter 8.

This is only written to the page once,
since the comparison will return false

 Chapter 6: Conditional Statements and Loops 141

Using break and continue
The break and continue statements allow you to stop what a loop is currently doing, but work
in different ways. As you will recall from the use of a break statement within a switch block
earlier in the chapter, the break statement stops the loop at that point and completely exits the
loop, moving on to the next JavaScript statement after the loop. For instance, break could be
used in this manner:

for (count=1;count<11;count++) {
 if (count==5) {
 document.write("The loop is halfway done, and I am done with
it!
");
 break;
 }
 else {
 document.write("I am part of a loop!
");
 }
}

This loop will go through normally until count is equal to 5. When this happens, a
special message is written to the page and the break statement is used to end the loop
entirely. Thus, rather than going through the loop ten times, the loop will only be executed
five times.

If you decided that you did not want to completely leave the loop when that condition
occurs, you could modify the loop to use the continue statement. The continue statement will
stop the loop from executing any statements after it during the current trip through the loop.
However, it will go back to the beginning of the loop and pick up where it left off, rather than
exiting the loop entirely. For example, you could use the following code:

for (count=1;count<11;count++) {
 if (count==5) {
 continue;
 }
 document.write(count+". I am part of a loop!
");
}

This time, nothing is written to the page when count is equal to 5. Instead, the loop is told
to go back to the beginning and continue from there. The result is that the “I am part of a
loop!” message will be written to the page only nine times (since nothing happens when
count is equal to 5). The loop is allowed to continue where it left off, rather than being left
completely.

The break and continue statements will prove helpful to you when special situations
come up that require you to stop the loop entirely or to stop the loop and restart it at the
beginning.

This will end the loop when count is equal to 5,
rather than allowing the loop to complete

 142 JavaScript: A Beginner’s Guide

Q: Are loops useful for anything other than writing a line of text to the page repeatedly?

A: Yes, you will see their usefulness more as you progress through the chapters. You will see
that they can be useful when dealing with arrays and for repeating various actions that, in
turn, create certain effects on the page.

Q: Is it really okay to use inside the loop the variable I have counting the loop? Couldn’t
that lead to problems?

A: It is okay to use that variable within the loop, as long as you do not somehow assign it
a new value when using it. If you are worried that you might do this, assign its value
to another variable and use that one in the code instead. For example, take a look at the
following code:

for (count=1;count<11;count++) {
 var thenum=count;
 document.write(thenum+". I am part of a loop!
");
}

 Here, you assign the value of the count variable to a variable named thenum. You then use
the thenum variable in the code instead of the count variable.

 Note, however, that it is okay to assign a new value to a count variable if that is what
you intend to do. The preceding idea is only a method you can use if you do not intend to
change the count variable and want to be sure you don’t accidentally do so.

Q: Should I use a for loop or a while loop when I want to use a loop? Which one is better?

A: Use the type of loop you personally prefer. Often, the type of loop used depends upon the
situation at hand. One type of loop might seem to make more sense than the other type
under different circumstances.

 A for loop is more common, though, simply because the risk of an infinite loop exists
with a while loop—which is one of the worst things that can happen in JavaScript. A while
loop is more useful when you don’t know in advance how many times you need to loop.

Q: Will the do while loop ever be useful to me?

A: Although the do while loop does have its usefulness, it is unlikely that you will use it often
unless you use scripts that need to have a loop run at least once before it is checked. You
will not encounter any such scripts in this book. However, the knowledge you gained about
the do while loop in this chapter will help you if you should encounter a script that uses it
on the Web or elsewhere.

Ask the Expert

 Chapter 6: Conditional Statements and Loops 143

Try This 6-2 Work with for Loops and while Loops
In this project, you work with for loops and while loops to see how they can
perform similar tasks.

Step by Step
 1. Create an HTML page and save it as pr6_2.html. Add the script tags to point to a script

named prjs6_2.js.

 2. Create an external JavaScript file and save it as prjs6_2.js. Use it to complete steps 3–5.

 3. Using a for loop, create some code that will write the following sentence to the page 15
times (be sure to number each line from 1 to 15):

 This is getting way too repetitive.

 4. Save the JavaScript file and view the HTML page in the browser. You should see the
sentence 15 times, numbered from 1 to 15.

 5. Edit the code so that it will do the same thing as in step 3, but use a while loop instead.

 6. Save the JavaScript file again and view the HTML page in the browser. It should appear the
same as before.

Try This Summary
In this project, you used your new skills to build two different HTML pages using two
different types of loops. The first page used a for loop, and the second page used a while loop.
Since both loops perform the same task, the page appeared the same both times when viewed
in a browser.

 Chapter 6 Self Test
 1. A conditional statement is a statement that you can use to execute a bit of code based on a

__________, or do something else if that __________ is not met.

 2. You can think of a conditional statement as being a little like __________ and __________.

 3. Rather than executing every single line of code within the script, a conditional statement
allows certain sections of the script to be executed only when a particular condition is met.

 A True

 B False

✓

pr6_2.html
prjs6_2.js

 144 JavaScript: A Beginner’s Guide

 4. Which of the following would be valid as the first line of an if/else statement?

 A if (x=2)

 B if (y<7)

 C else

 D if ((x==2 &&)

 5. What do you use to enclose the blocks of code in conditionals and loops?

 A Parentheses

 B Square brackets

 C Curly brackets

 D Less-than and greater-than characters

 6. The __________ statement allows you to take a single variable value and execute
a different line of code based on the value of the variable.

 7. A __________ is a block of code that allows you to repeat a section of code a certain
number of times.

 8. A loop is useful because it forces you to type lines of code repeatedly.

 A True

 B False

 9. Which of these would be valid as the first line of a for loop?

 A for (x=1;x<6;x+=1)

 B for (x==1;x<6;x+=1)

 C for (x=1;x=6;x+=1)

 D for (x+=1;x<6;x=1)

 10. A __________ loop looks at a comparison and repeats until the comparison is no
longer true.

 11. Which of these would not be valid as the first line of a while loop?

 A while (x<=7)

 B while (x=7)

 C while (x<7)

 D while (x!=7)

 Chapter 6: Conditional Statements and Loops 145

 12. A do while loop is special because the code within the loop is performed at least once, even
if the comparison used would return false the first time.

 A True

 B False

 13. The first line of a do while block contains the keyword do and a comparison.

 A True

 B False

 14. The last line of a do while block contains only a curly bracket.

 A True

 B False

 15. How many times can you nest a code block within another?

 A None

 B Once

 C Three times, but no more

 D As many times as you like (though enough nesting could run the browser out of
memory)

This page intentionally left blank

147

Chapter 7
Event Handlers

 148 JavaScript: A Beginner’s Guide

Key Skills & Concepts

● Understanding Event Handler Locations and Uses

● Learning the Event Handlers

● Creating Scripts Using Event Handlers

● Other Ways to Register Events

When creating scripts, you will often find that there are user “events” (such as a user moving
a mouse over a certain element or clicking a particular element) to which you want your

script to react. The way you do this is through the use of event handlers.
To learn how the event handlers work, you need to learn what they are and why they are

useful to you. You will then learn where event handlers are placed in a document and how to
use them. Finally, you will see the various events in JavaScript and the event handlers that take
care of each event. To get started, this chapter presents a general overview of event handlers.

What Is an Event Handler?
An event handler is a predefined JavaScript property of an object (in most cases an element in
the document) that is used to handle an event on a Web page.

You may ask the question “What is an event?” An event is something that happens when
the viewer of the page performs some sort of action, such as clicking a mouse button, clicking
a button on the page, changing the contents of a form element, or moving the mouse over a
link on the page. Events can also occur simply by the page loading or other similar actions.

When events occur, you are able to use JavaScript event handlers to identify them and
then perform a specific task or set of tasks. JavaScript enables you to react to an action by the
viewer and to make scripts that are interactive, and more useful to you and to the viewer.

Why Event Handlers Are Useful
Event handlers are useful because they enable you to gain access to the events that may occur
on the page. For instance, if you wanted to send an alert to the viewer when he or she moves
the mouse over a link, you could use the event handler to invoke the JavaScript alert you have
coded to react to the event. You are now making things happen based on the actions of the
viewer, which enables you to make more-interactive Web pages.

Creating this interactivity is where many people find that JavaScript starts to become a
little more fun to code and to use. With event handlers, you can create some surprises for the
viewer or make some scripts that will simply add more functionality to the page. JavaScript
can make a number of things happen on a Web page that will make the page more interesting
than a static HTML document.

 Chapter 7: Event Handlers 149

Understanding Event Handler Locations and Uses
To see how event handlers work, you need to know where you can place them in a document
and how to use them to add JavaScript code for an event.

Event handlers can be used in a number of locations. They can be used directly within
HTML elements by adding special attributes to those elements. They can also be used within
the <script> and </script> tags or in an external JavaScript file.

To understand better where event handlers are located, you need to learn how to add event
handlers to your script.

Using an Event Handler in an HTML Element
To use an event handler directly in an HTML element, you need to know the keyword for the
event handler and where to place the event handler within the HTML code. To give you an
example, I will introduce the onclick event handler, which is used to make something happen
when the viewer clicks a specific area of the document.

One element that can be clicked is a form button. So, suppose you want to alert the viewer
to something when the user clicks a form button. You would write something similar to the
following code:

<input type="button" value="Click Me!" onclick="JavaScript code here" />

To use an event handler, you add it as an additional attribute to an HTML tag. The only
difference between an event handler “attribute” and an HTML attribute is that you can add
JavaScript code inside an event handler attribute rather than just an attribute value. In the
previous code, you would replace the JavaScript code here text with some actual JavaScript code.

So, to make an alert pop up when the user clicks the button, you can add the necessary
JavaScript code right inside your onclick attribute, as shown in the following example:

<body>
<form>
<input type="button" value="Click Me!" onclick="window.alert('Hi!');" />
</form>
</body>

When the viewer clicks this plain button, an alert will pop up with a greeting. Notice
that the rules on the quote marks apply here. Using the onclick event handler as an attribute
requires you to use double quotes around all of your JavaScript code, so when you need quote
marks for the alert, you use single quotes in order to avoid possible errors.

Also notice that the alert command ends with a semicolon. This enables you to add
additional JavaScript code after the alert, which enables you to perform multiple actions on
the click event rather than just a single JavaScript statement.

The opening form tag is used

Notice how the onclick event handler
works much like an HTML attribute

The closing form tag ends the form

 150 JavaScript: A Beginner’s Guide

You could code in two alerts if you wanted to do so. All you have to do is remember to
include the semicolons to separate the alert commands. This will be a little different because
all of the code will be on one line rather than separate lines, as you normally see:

<body>
<form>
<input type="button" value="Click Me!"
 onclick="window.alert('Hi!');window.alert('Bye!');" />
</form>
</body>

This example is able to perform two JavaScript statements on the same event by using
semicolons to separate them. When using event handlers, you can execute multiple commands
this way. It is important, however, to keep everything between the event handler keyword (in
this case, onclick) and the ending set of quotes (in this case, after the last semicolon in the
code) on one line in your text editor; otherwise, a line break in the code could cause it not to
run properly or to give a JavaScript error.

If the code you want to use becomes really long, you may wish to put the code in a function
instead. The event handler can be used for any JavaScript code, so you can use it to call a
function you have defined elsewhere. For example, you could place your two alerts within
a function inside an external JavaScript file, and call the function from an event handler in the
HTML code. First, code the external JavaScript file (here it will be saved as js_event_01.js)
as follows:

function hi_and_bye() {
 window.alert('Hi!');
 window.alert('Bye!');
}

Next, add the script tags and the event handler to your HTML code:

<body>
<form>
<input type="button" value="Click Me!" onclick="hi_and_bye();" />
</form>
<script type="text/javascript" src="js_event_01.js"></script>
</body>

Notice how the function is called using the event handler just like a normal function call
within a script. This enables you not only to shorten the code within the event handler, but also
to reuse the function on another button click or event later in the page instead of writing the
two alerts out again. The use of a function can help you quite a bit, especially when the code
you want to use becomes extremely long.

Notice how the semicolons separate
the JavaScript statements

Notice how the function is called using the event handler

 Chapter 7: Event Handlers 151

Using an Event Handler in the Script Code
You can also use an event handler within the script code (whether using the script tags in
the HTML document or using an external JavaScript file). One way to do this is to give the
element an id attribute and then use the JavaScript method document.getElementById() to
access the element. Once that is done, you can tie an event to the element.

Add the id Attribute
To use the previous script in this way, you will first add an id attribute to the HTML tag for the
input button, as shown here:

<body>
<form>
<input type="button" value="Click Me!" id="say_hi" />
</form>
<script type="text/javascript" src="js_event_01.js"></script>
</body>

Notice that the button input element was given an id of say_hi. You will use this to access the
button and tie it to an event in your script.

Access the Element
The document.getElementById() method allows you to access any element in the HTML
document that has an id attribute using the value of its id attribute. In order to access the button
input element you have been using with an id of say_hi, you could use the following code:

document.getElementById("say_hi");

This simply tells the browser you want to access the element with the id of say_hi in the HTML
document. This method could be used directly in the script to access the element, but oftentimes
you will want to assign this expression to a variable to save typing if you use it repeatedly. Thus,
you could use the following code:

var hi_button = document.getElementById("say_hi");

Now, grab the rest of the code from the JavaScript file (js_event_01.js) and add the new line of
script to it, as shown here:

function hi_and_bye() {
 window.alert('Hi!');
 window.alert('Bye!');
}
var hi_button = document.getElementById("say_hi");
hi_button.onclick = hi_and_bye;

There is now also an additional line of code. The last line of code takes the variable
used for the input button element and gives it the onclick event handler by adding it after

The function and
its statements

The button input element is
accessed via its id (say_hi) and
assigned to a variable (hi_button)

The onclick event handler is used to assign the function
(hi_and_bye) to the onclick event for the button input element

 152 JavaScript: A Beginner’s Guide

the variable name and a dot (.). The function hi_and_bye (which displays the two alerts) is
assigned to handle the click event on the input button. Thus, when the button is clicked, the
viewer will see the two alerts!

NOTE
Some of these statements (such as the use of dots (.) in the code and the document.
getElementById() method) will be explained in more detail in Chapter 8 and Chapter 9.

To help make more sense of this, the last two lines could also be written in the following
manner:

document.getElementById("say_hi").onclick = hi_and_bye;

Both achieve the same result, but the first method is helpful when you need to deal with the
same element more than once in the code (perhaps to add other events such as onmouseover,
onmouseout, or others).

You will also notice that when the function is assigned to handle the event, the parentheses are
not used after the function name. This is because you want to assign the execution of the function
to the event rather than the result of the function (which is what you did when you used the return
statement to assign the result of a function to variables in previous chapters—this particular
function would not return anything). Rather than just assigning a value, you want the function to
be executed, so the whole function is assigned to the event by using just the function name.

Q: Is there a JavaScript event for everything a viewer could do on a Web page?

A: No, but many of the actions a viewer may take are covered by one of the events in JavaScript.
It would be difficult to cover every possibility.

Q: You mean I can just write some JavaScript by using an event handler like an HTML
attribute?

A: Yes, but keep in mind that giving an element an id attribute and responding to the event in
the JavaScript code will help keep your HTML code cleaner.

Q: If I add the event as an HTML attribute, how do I decide when to use a function and
when to just add the code directly into the event handler?

A: If your JavaScript code is short and you won’t be repeating it multiple times with other tags
and/or events, then you’ll probably want to add the code straight into the event handler as an
attribute. If your code is really long or you will be repeating it numerous times, you’ll probably
want to use a function instead to make things easier to read and to make the code reusable.

Ask the Expert

 Chapter 7: Event Handlers 153

Try This 7-1

This method of handling events allows you to place all of your JavaScript code outside
of your HTML elements, which keeps your HTML code cleaner and (especially if an external
JavaScript file is used) more likely to validate. Later in this chapter, you will see that newer
methods with particular differences are also available to handle events (but may not work
cross-browser). For now, you will use the method described in this section when reacting to
events within the script code.

 Create a Button
In this project, you create a button that will send the viewer three alerts when it is
clicked. This project will help you to master calling a function to handle an event in
the JavaScript code.

Step by Step
 1. Create an HTML page and save it as pr7_1.html. Add the necessary script tags to point to

an external JavaScript file named prjs7_1.js.

 2. Create an external JavaScript file and save it as prjs7_1.js. Use this for step 3 and step 5.

 3. Write a function named send_alerts() that will send three alerts to the viewer. The following
are the three alerts:

Alert 1: Hi there, and welcome to my page!
Alert 2: Please sign the guest book before you leave!
Alert 3: Are these alerts annoying you yet? Ha, Ha!

 4. In the HTML document, create a button with an id of get_alerts. Add a value=“Click Me”
attribute to the button tag so that it has text.

 5. In the JavaScript file, write the code so that the send_alerts function will execute when a
click event occurs on the input button element.

 6. Save the HTML and JavaScript files, and load the HTML page in your browser. You should
have a button that says “Click Me” on it. Click the button, and you should get the three
alerts—one after another.

Try This Summary
In this project, you used your new skills with the onclick event handler to create a script that
reacts to the viewer. When the viewer clicks a button, the script uses that event to send three
alerts to the viewer.

pr7_1.html
prjs7_1.js

 154 JavaScript: A Beginner’s Guide

Learning the Event Handlers
Now that you know what event handlers are and how to use them, you need to see which event
handlers are used for various events on a page. Begin by looking at Table 7-1, which lists the
most common events, their event handlers, and samples of what actions might trigger each event.

Event Event Handler Event Trigger

Abort onabort An image is stopped from loading before loading has completed

Blur onblur Viewer removes focus from an element

Change onchange Viewer changes the contents of a form element

Click onclick Viewer clicks an element

ContextMenu oncontextmenu Viewer opens the context menu

Copy oncopy Viewer uses the copy command on part of a page

Cut oncut Viewer uses the cut command on part of a page

Dblclick ondblclick Viewer double-clicks the mouse

Error onerror Viewer’s browser gets a JavaScript error or an image that
does not exist

Focus onfocus Viewer gives focus to an element

Keydown onkeydown Viewer presses down a key on the keyboard

Keypress onkeypress Viewer presses a key on the keyboard, and releases or holds
the key down

Keyup onkeyup Viewer releases a key on the keyboard

Load onload Web page finishes loading

Mousedown onmousedown Viewer presses the mouse button

Mousemove onmousemove Viewer moves the mouse (moves the cursor)

Mouseout onmouseout Viewer moves the mouse away from an element

Mouseover onmouseover Viewer moves the mouse over an element

Mouseup onmouseup Viewer releases the mouse button

Paste onpaste Viewer uses the paste command on part of the page

Reset onreset Viewer resets a form on the page

Resize onresize A window is resized

Scroll onscroll Viewer scrolls an area which is scrollable

Select onselect User makes a selection

Submit onsubmit Viewer submits a form on the page

Unload onunload Viewer leaves the current page

Table 7-1 The Events and Event Handlers

 Chapter 7: Event Handlers 155

NOTE
Some of these events, such as the copy event, will only work with certain browsers
(which may need to be running in their latest versions). There are also events that
work only in Internet Explorer (see http://msdn.microsoft.com/en-us/library/
ms533051(VS.85).aspx) or that are not necessarily cross-browser as of yet
(see www.w3.org/TR/DOM-Level-3-Events/events.html#Events-EventTypes-complete).

Now that you have a general idea about event handlers, you will take a look at some of the
most often used ones in detail to see how they work.

The Abort Event (onabort)
The abort event occurs when a viewer stops (aborts) the loading of an image. The event
handler used for this is onabort. For example, if you wanted to display a message when the
viewer stopped an image from loading, you could use the following code:

<img src="myimage.jpg" alt="my picture"
 onabort="window.alert('Why don\'t you want to see my picture?');" />

This will ask the viewer why your picture wasn’t loaded. It probably would not convince the user
to load the image anyway, but it lets the user know that you intended for that image to be loaded.

The Blur Event (onblur)
The blur event is the opposite of the focus event, and it occurs when the viewer takes the focus
away from a form element or a window. To take the focus off something, the viewer usually
gives focus to something else. For instance, the viewer could move from one form element to
another, or from one window to another.

The onblur event handler is used to handle this event, and it can be used in such places as
a form element’s tag or in the opening body tag (for windows). The onblur event handler also
has a related method called blur(), which will be covered in Chapter 10 and Chapter 14.

NOTE
The blur event is triggered only when the viewer gives focus to another area, which is
the only way the browser will know the viewer released the focus from the first area. For
example, when the viewer presses the ENTER key in an input field, the focus goes from the
input field to the document window.

To see the blur event in action, you can also use a text box. The following example uses
two text boxes: clicking the first text box gives it focus, and clicking the second text box
invokes the blur event in the first text box.

<form>
Give this box focus:

<input type="text" onblur="window.alert('Hey! Come back!');" />

then give this box focus to blur the first one:

<input type="text" />
</form>

Clicking this text box after giving the focus to the first
one will trigger the blur event on the first text box

The onblur event in a text box

www.w3.org/TR/DOM-Level-3-Events/events.html#Events-EventTypes-complete
http://msdn.microsoft.com/en-us/library/ms533051(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms533051(VS.85).aspx

 156 JavaScript: A Beginner’s Guide

When viewers click the second text box, they get the alert from the first one telling them to
come back.

Figure 7-1 shows the result of the preceding code when run in the browser. Notice that the
focus is in the second text box when the alert pops up. By clicking the second text box, the
viewer invoked the blur event in the first text box.

The Change Event (onchange)
The change event occurs when a viewer changes something within a form element. For
instance, the viewer might change the text in a text box or make a selection from a select box.
You handle this event with the onchange event handler.

You can see how this works by setting up a select box. You can give the viewer some
choices within the select box. If the user changes the default option by choosing a new one,
you send an alert to ask why it was changed, as shown in the following example:

<form>
Are you cool?

<select onchange="window.alert('Why did you change that?');">
<option selected="selected">Yes</option>
<option>No</option>
<option>Undecided</option>
</select>
</form>

Figure 7-1 This alert pops up when the viewer takes the focus off a text box

Making a new selection from the list will
invoke the onchange event handler here

 Chapter 7: Event Handlers 157

If the viewer tries to change the default answer of Yes, an alert pops up and gives the viewer a
message. If the select box is left alone or the viewer chooses the default option, nothing will
happen.

The Click Event (onclick)
The click event occurs when a viewer clicks on an element in a Web page. Often, these are
form elements and links. In modern browsers, the click event also works for more general
areas, such as within a table cell or within a set of <div> and </div> tags. This chapter
concentrates on the form elements and links, as they are commonly used.

The easiest way to see the click event in action is to use a form button. When the button
is clicked, you want an event to occur. To make this happen, you can place the onclick event
handler inside the button input tag, as shown in the following example:

<body>
<form>
<input type="button" value="Do not Click Here"
 onclick="window.alert('I told you not to click me!');">
</form>
</body>

This will send the viewer an alert once the button has been clicked. Figure 7-2 shows the result
of this code when the viewer clicks the button.

The onclick event
handler is used
on a button

Figure 7-2 This alert pops up when the viewer clicks the button

 158 JavaScript: A Beginner’s Guide

To use this event handler to do the same thing with a link, you might be tempted to do
something similar to the following:

<body>

Don't Click Me
</body>

The problem with this code is that the alert will work, but the browser will try to continue the
original action of the link tag and attempt to go to http://none. This would probably cause a
“Server not found” error in the browser.

One way you can avoid a “Server not found” error is to link to an actual page (which is
good for accessibility); however, it may take a viewer with JavaScript on away from the current
page. To keep the link from being followed (if JavaScript is on), you need to add an extra
statement to the JavaScript in the click event. You need to tell the browser not to continue after
you have shown the viewer your alert. To do this, you will add a return statement.

Recall from Chapter 4 on functions that you used a return statement to return a needed
value to a script. Here, you are going to do essentially the same thing. You are going to return
the Boolean value of false, which tells the browser that the event has been handled and no
further action is required for the event. This will keep the browser from following the link after
the alert has been shown. The following code shows how to add in the return statement:

<body>
<a href="http://none"
 onclick="window.alert('Hey! You clicked me!'); return false;">
Don't Click Me
</body>

With this code in place, the click event will be taken care of by the onclick event handler,
and the browser will not need to worry about attempting to follow the link in the hypertext
reference (href) attribute.

NOTE
You can also code JavaScript for a link by using the javascript: command—for example,
Click—but this method is not recommended
for accessibility reasons (if JavaScript is off the link doesn’t go anywhere).

The Focus Event (onfocus)
The focus event occurs when the viewer gives focus to an element on a Web page. A viewer
gives focus to something by clicking somewhere within the item, by using the keyboard to move
to the item (often via the TAB key), or via a script. For instance, a viewer who clicks a text input
box (before entering anything) gives that text box the focus. Also, clicking an inactive window
and making it the active window gives the window the focus.

Oh no! This will give you problems because the browser will try to follow the link

The return false statement keeps the
browser from trying to follow the link

 Chapter 7: Event Handlers 159

The event handler used with this event is onfocus, and it can be used in places such as a
form element or in the opening body tag on a Web page (for focus on a window). The onfocus
event handler also has a related method called focus(), which is covered in Chapter 10 and
Chapter 14.

To see the focus event in action, you can create a text input box, which is one of the form
elements that will enable you to give the element focus. The following example shows how to
do this, as well as how to code a reminder alert to pop up when the viewer gives focus to the
text box:

<form>
Enter Your Name:
<input type="text" onfocus="window.alert('Don\'t forget to capitalize!');" />
</form>

This code will give the viewer an alert before he or she can begin typing. The alert serves as
a reminder to capitalize the name. Figure 7-3 shows the result of the preceding code in the
browser when the viewer gives focus to the text box.

Later chapters will examine better uses for the focus event, but this gives you an idea of
how it works.

The Keydown Event (onkeydown)
The keydown event occurs when the viewer presses down a key on the keyboard. To handle
this event, you use onkeydown. You can place this event handler in almost any HTML tag on
a Web page.

The onfocus event in a text box

Figure 7-3 This alert pops up when the text box receives focus from the viewer

 160 JavaScript: A Beginner’s Guide

The Keypress Event (onkeypress)
The keypress event occurs when a viewer presses down a key on the keyboard and the
corresponding character is typed. This occurs between the kedown and the keyup events. To
take care of this event, you use the onkeypress event handler, which can be placed in almost
any HTML tag on a Web page.

The Keyup Event (onkeyup)
The keyup event occurs when the viewer lets go of a key on the keyboard, releasing the key.
The event handler for this is onkeyup, and it can be placed in almost any HTML tag on
a Web page.

NOTE
For more information on the keydown, keypress, and keyup events, go to
www.quirksmode.org/js/keys.html. This will give you a better idea of how the events
work in different browsers and the type of coding you will need to use to work with
keystrokes cross-browser. Since these are supported somewhat inconsistently from
browser to browser, they will not be covered in detail in this book at this time.

The Load Event (onload)
The load event occurs when a Web page finishes loading. To handle this event, you use the
onload event handler.

Keep in mind the load event occurs at a slightly different time than the alert scripts you
placed in your pages in earlier chapters. Those started your tasks before the remainder of the
page began loading. With the load event, however, your tasks will be executed as soon as the
page finishes the loading process.

If you want an alert to be shown when the page has finished loading, you could use the
following code:

<body onload="window.alert('I\'m done loading now!');">
Text for the body of the page...
</body>

When the page has finished loading, viewers will get an alert that tells them it is finished.
It will be hard to distinguish the timing of the load event from the preceding code from the
timing of the instant alerts in earlier scripts because the page will load very quickly, since it is
all text. Figure 7-4 shows how the preceding code example would appear in the browser.

If you want to use the onload event handler in the script code rather than in the body tag,
you could write this code into an external JavaScript file (save it as load_alert.js):

window.onload = function() {
 window.alert('I\'m done loading now!');
};

Notice that the onload event handler is added in the body tag

www.quirksmode.org/js/keys.html

 Chapter 7: Event Handlers 161

This will capture the load event for the current window (the window object will be explained
in more detail in Chapter 10). Notice the use of the anonymous function here to combine the
steps of creating a function and assigning it to the event (for further information on functions,
refer to Chapter 4). You can now point the Web page to the JavaScript file without the need to
alter the body tag in the HTML code, as shown here:

<body>
<script type="text/javascript" src="load_alert.js"></script>
Text for the body of the page...
</body>

In order to see the difference in timing between an alert executed immediately and one
executed in the onload event handler, you may want to add some images to the body of the
page and then put the page and images on the Web. This way, the page will take some time
to load, and you will see that the alert pops up when the page has finished loading instead of
showing up instantly.

The Mousedown Event (onmousedown)
The mousedown event occurs when a viewer presses the mouse button down but before the
click is complete (doesn’t need to be released). To handle this event, you use the onmousedown
event handler, which can be placed within almost any HTML tag on a Web page.

The Mousemove Event (onmousemove)
The mousemove event occurs when the viewer moves the mouse cursor. The event handler for
this is onmousemove, and it can be placed within almost any HTML tag on a Web page.

Figure 7-4 This is displayed in the browser window after the page has finished loading

 162 JavaScript: A Beginner’s Guide

The Mouseover Event (onmouseover)
The mouseover event occurs when a viewer moves the mouse cursor over an element on the
page such as a text link, linked image, or linked portion of an image map. The mouseover
event will also work in numerous other areas such as table cells and <div> and </div> tags.
The mouseover event is handled with the onmouseover event handler.

The quickest way to use an onmouseover event handler is to set up a text link. When you
add the onmouseover event handler to the link, you have the option to perform JavaScript
commands when the viewer passes the cursor over the link. Thus, if you want an alert to pop
up when the viewer moves the mouse over a link, you could code something like the following:

<a href="http://www.pageresource.com"
 onmouseover="window.alert('I told you not to try to click me!');">
Don't Try Clicking Me!

This time the visitor doesn’t even get to click the link before being greeted with an alert. Keep
in mind that a script like this could annoy your visitors if it is overused. Figure 7-5 shows the
result of this script in a browser. The alert pops up as soon as the mouse cursor moves over
the link.

Since there is no need to click the link for something to happen, the browser won’t try to
follow the link afterward. In fact, with this script in place, it is quite difficult to click the link at
all because the alert keeps popping up when you move your mouse over to click it!

The onmouseover event handler in a link tag

Figure 7-5 This alert pops up when the mouse cursor moves over the link

 Chapter 7: Event Handlers 163

The mouseover event will become much more useful to you in later chapters when you
learn more things about what you can do with the various parts of a page.

The Mouseout Event (onmouseout)
The mouseout event occurs when a viewer moves the mouse cursor away from an area on the
page such as a link, linked image, or linked area of an image map. As with the mouseover
event, most browsers will support the mouseout event in numerous areas. You take care of a
mouseout event by using the onmouseout event handler.

Again, you can see the mouseout event most easily by setting up a link and adding the
onmouseout event handler to the link. This time, you can make an alert pop up once the user
moves the mouse away from the link after passing over it (assuming it has not been clicked).
To do this, you could use the following code:

<a href="http://www.pageresource.com"
 onmouseout="window.alert('What, you didn\'t like my link?');">
Click Me!

This time the alert pops up when the viewer moves the mouse off the link and asks the viewer
a question. Notice also the escaped quote mark (\’) used in the word didn’t, which keeps you
from getting a string error. Figure 7-6 shows this script in action.

The mouseout event will become more useful for you as you progress, especially when
used in tandem with the mouseover event.

The onmouseout event handler in a link tag

Figure 7-6 This alert pops up when the mouse is moved off the link

 164 JavaScript: A Beginner’s Guide

The Mouseup Event (onmouseup)
The mouseup event occurs when the viewer releases the mouse button after pressing it down.
The onmouseup event handler is used for this event, and it can be placed within almost any
HTML tag on a Web page.

The Reset Event (onreset)
The reset event occurs when a viewer uses a form reset button to reset the form fields in a
form. To take care of this event, you use the onreset event handler, which can be added to the
opening form tag in a form. The onreset event handler also has a related method called reset(),
which is covered in Chapter 14.

The Submit Event (onsubmit)
The submit event only occurs when the viewer submits a form on a Web page. This event uses
the onsubmit event handler, which can be called from an opening form tag in a document. The
onsubmit event handler also has a related method called submit(), which will be covered in
Chapter 14.

To see the submit event at work, you have to create a form that can be submitted with a
submit button. You will then add the onsubmit event handler to the opening form tag. The
following code will give a “Thank You” alert to the viewer once the submit button is clicked:

<form onsubmit="window.alert('Thank You');">
What's your name?

<input type="text" id="thename" />

<input type="submit" value="Submit Form">
</form>

The submit event doesn’t do you much good now (especially with the contents of the form
not really going anywhere), but this event will become more useful when you get to form
validation in Chapter 14.

The Unload Event (onunload)
The unload event occurs when a viewer leaves the current Web page. The viewer could leave
by clicking a link, typing another address in the browser, or closing the window. The event
handler used for the unload event is onunload.

This event is known to annoy viewers, because it enables the site owner to do something
while visitors are trying to move on to another page or another Web site (forcing them to wait).
To have an alert pop up when the user leaves the page, you could write the following code:

<body onunload="window.alert('Be sure to come back, OK?');">
Other HTML code goes here...
</body>

onsubmit used in the
opening form tag

The submit button triggers the
submit event when it is clicked

The onunload event handler is added to the body tag

 Chapter 7: Event Handlers 165

Try This 7-2

Figure 7-7 shows the result of the preceding script. As viewers try to leave the page that
contains this script, an alert pops up telling them to be sure to come back. Of course, this could
cause a viewer to become quite inconvenienced if it is used on an index page or on a number
of pages within a Web site.

As with the onload event handler, you can use the onunload event handler in the script
code rather than as an attribute of the body tag by using window.onunload.

Overall, be sure to think twice before using the unload event on a live page. There can be
good uses for it, but be careful because it does annoy most Web users.

 Use Events to Send Out Alerts
This project enables you to practice using a few of the event handlers you have
learned so far in this chapter. You will be creating a page with various links and
form elements that will use events to send out alerts.

Step by Step
 1. Create an HTML page and save it as pr7_2.html.

 2. Add a link to the page that links to the URL http://www.yahoo.com. Add an event handler
to the link tag so that when the viewer moves the mouse cursor over the link, an alert pops
up that says, “Sorry, I’m not in the mood for you to leave yet!”

 3. Add a
 tag after the link.

Figure 7-7 This alert pops up when the viewer tries to leave the page

pr7_2.html

(continued)

http://www.yahoo.com

 166 JavaScript: A Beginner’s Guide

 4. Add the <form> and </form> tags to the page below the
 tag, and then add the form
elements in the following steps between these tags.

 5. Add a text box that asks the viewer for a phone number. Set it up so that when the viewer
gives the text box focus, an alert pops up that says, “Format is xxx-xxxx.”

 6. Add a second text box that asks for the viewer’s name. Set it up so that when a blur event
occurs, an alert pops up that says, “Thanks, if that is your real name!”

 7. Add a third text box that asks for the viewer’s e-mail address. Don’t set it to react to any
events.

 8. Add a submit button that says, “Click Here to Submit.” Set it up so that when the viewer
clicks it, an alert pops up that says, “Hey! I’m just a button. Leave me alone!”

 9. Save the file, and open it in your browser.

 10. Move your mouse over the first link. You should get the first alert.

 11. Click inside the text box that asks for a phone number. You should get an alert.

 12. Click the text box that asks for your name, and type in a name if you’d like.

 13. Click the text box that asks for an e-mail address. You should get an alert about your name
since you gave focus to this new text box, taking it away from the previous one. Note that if
you have not clicked the text box for the name, you won’t be removing focus from it; so be
sure to give the name box focus, and then give this box focus right afterward.

 14. Click the submit button so that it gives you an alert letting you know it doesn’t want any
company.

Try This Summary
In this project, you used your skills with several of the event handlers outlined in this chapter.
You created an HTML page that reacts to a number of possible actions of the viewer, such as a
mouseover, a click, or giving focus to something on the page.

Q: Why are there so many events?

A: There are so many things that a viewer (or the browser itself) can do while on a Web page
that you end up with a bunch of events. The events in this chapter are only a small subset of
all the events.

Ask the Expert

 Chapter 7: Event Handlers 167

Creating Scripts Using Event Handlers
Now that you have tackled the long list of event handlers, it’s time to have a little fun. In this
section, you are going to learn two new properties that will do things other than write to the
page and send an alert.

After you have seen all of those examples with alerts, the alert is probably a little stale
now. Thus, you are going to try two new scripts. One will place a message inside a text box
and the other will make a form button into a button that acts like a link. To begin, try placing a
message in a text box.

The Text Box Message
Since you have learned the mouseover and mouseout events, you can use them in addition to
other knowledge you have acquired in this chapter to build a script that will display a message
in a text box when you move your mouse over a link located above the text box (it could be
located anywhere you like, but for this example the link will be placed above the text box).

First, you will need to create an HTML document (save it as textbox_message.html). In
this document, you will set up a link and give its anchor tag an id. Then, you will set up a text
box and give its input tag an id. For example, you could use the following code:

<body>
Get Message

<form>
<input type="text" id="msg_box" />
</form>
<script type="text/javascript" src="textbox_message.js"></script>
</body>

From this little bit of HTML code, you can use JavaScript to make this simple page go
from static to interactive.

Q: Do I need to memorize all of these events?

A: You probably only need to memorize them if you have a test, are doing this for a job and
need to know things quickly, or if you just like knowing the events off the top of your head;
otherwise, you can just refer to Table 7-1 in this chapter if you are not sure which event
needs to be used.

Q: Will I be using every single event in this book?

A: Since this book is a beginner’s guide, you will not get to the point where you use every
single event.

 168 JavaScript: A Beginner’s Guide

TIP
For accessibility purposes, it is good to point all hyperlinks to an actual URL with
content (in this case, you might simply have the message text). This allows those without
JavaScript to access the content in the script, while allowing those with JavaScript to
simply use the mouseover event to access the message.

Since the text box is going to display a message when the mouse moves over the link,
you’ll first need to set up some variables in your JavaScript file (save it as testbox_message.js
as referenced in the script tag in the preceding code). You will set up variables for the message
text, the link element, and the text box element, as follows:

var message_text = "Help! I'm in a box!";
var message_link = document.getElementById("msg_link");
var message_box = document.getElementById("msg_box");

The message_text variable holds the text for the message you will display on the mouseover
event, the message_link variable grabs the link element by its id (msg_link), and the message_box
variable grabs the text box element by its id (msg_box).

Now that you have this information set up, you can use it along with the onmouseover
event handler to display the message to the viewer in the text box:

var message_text = "Help! I'm in a box!";
var message_link = document.getElementById("msg_link");
var message_box = document.getElementById("msg_box");

message_link.onmouseover = function() {
 message_box.value = message_text;
};

Most everything should be familiar here. The onmouseover event handler is assigned an
anonymous function that handles the event. The function tells the browser to change the value
of the text box so that it displays the message text. You’ll notice the use of message_box.value.
The value property holds the current value of an element. In the case of a text box, it holds the
value of whatever is currently displayed in the text box (if it is empty, its value would be an
empty string). Using this property, you can change the value to something of your choosing,
as was done here.

If you save the HTML and JavaScript files and load the HTML file in your browser, you
will see the result. Move your mouse over the “Get Message” link and the “Help! I’m in a
box!” message should display in the text box.

Now, if you don’t want that message to remain in the text box indefinitely, you can use
another event to clear the text box of the message. You could use any event of your choice
(on any element of your choice). One solution is to simply clear the message when the viewer

The onmouseover event handler is
assigned an anonymous function

The value of the text box is changed to display the message text

 Chapter 7: Event Handlers 169

moves the mouse off the link using the onmouseout event handler. Thus, you could now use
the following code in your JavaScript file:

var message_text = "Help! I'm in a box!";
var message_link = document.getElementById("msg_link");
var message_box = document.getElementById("msg_box");

message_link.onmouseover = function() {
 message_box.value = message_text;
};
message_link.onmouseout = function () {
 message_box.value = "";
};

Notice that in the function for the onmouseout event handler, the message_box.value is changed
to an empty string, which clears the message from the text box.

Save the JavaScript file and then refresh the HTML page in your browser. You should now
be able to move the mouse over the link to receive the message and move your mouse off the
link to have the message disappear. Figures 7-8 and 7-9 show the completed script in action.

The next script will make form buttons act like hyperlinks.

The Button Link
Using JavaScript, you can send the viewer to another URL. To do this, you need to use another
new property: window.location. This property enables you to change the URL address of the
window in which you use it. The following is the general syntax for the command:

window.location="http://someplace.com";

Figure 7-8 The script will display the message when the mouse moves over the link

 170 JavaScript: A Beginner’s Guide

You replace the URL http://someplace.com with the address you wish to use in its place, such
as http://www.yahoo.com or some other Web address.

To get started, you will again need to create an HTML document (save it as button_link.
html). In this page, you will create an input button and give it an id, as shown here:

<form>
<input type="button" value="Go Searching!" id="btn1" />
</form>

Now, to make a button work like a link, all you need to do is use the location property with
the onclick event handler. Create an external JavaScript file (save it as button_link.js) and use
the following code:

var web_page1 = "http://www.yahoo.com";
var b1 = document.getElementById("btn1");

b1.onclick = function() {
 window.location = web_page1;
};

Much like the previous script, this grabs the necessary values and then uses an anonymous
function to execute a JavaScript command. When the viewer clicks the button, the browser
goes to the new Web page.

Figure 7-9 The message will go away when the mouse moves off the link

The URL to go to is assigned to the web_page1 variable

The input button element is
assigned to the b1 variable

A function is assigned to the onclick
event handler for the input buttonThe location of the viewer is

changed to the new URL

http://someplace.com
http://www.yahoo.com

 Chapter 7: Event Handlers 171

Of course, you can do this for any number of buttons. If you want three buttons to link to
three places, you could use the following HTML and JavaScript code:

<form>
<input type="button" value="Go Searching!" id="btn1" />

<input type="button" value="HTML Help" id="btn2" />

<input type="button" value="JavaScripts" id="btn3" />
</form>

With the extra buttons, add the necessary code and events for each element:

var web_page1 = "http://www.yahoo.com";
var web_page2 = "http://www.pageresource.com";
var web_page3 = "http://www.javascriptcity.com";
var b1 = document.getElementById("btn1");
var b2 = document.getElementById("btn2");
var b3 = document.getElementById("btn3");

b1.onclick = function() {
 window.location = web_page1;
};
b2.onclick = function() {
 window.location = web_page2;
};
b3.onclick = function() {
 window.location = web_page3;
};

This code creates three buttons that link to three different sites. Of course, if you decide to use
a large number of these, it might be easier to work with arrays. Arrays will be discussed in
Chapter 11.

CAUTION
This type of button link is an accessibility issue (since those without JavaScript will have
the button do nothing). If you need to make accessible pages, you will need to provide
the links with normal anchor tags in addition to having the buttons to ensure they are
available to all users. Some additional scripting can handle this, and you will see how
this can be done in Chapter 16.

Now you can do a few more things and have a little more fun with your examples. The
window.location property will become quite useful to you as you move through the later chapters.

Other Ways to Register Events
There are two other methods for registering events in addition to the method you have used.
As of the time of this writing, neither of these methods works cross-browser (which is a bit
of a drawback since using them requires you to register the same event multiple times, but if

 172 JavaScript: A Beginner’s Guide

certain parts of their functionality are needed they can be helpful to achieve the task at hand).
These methods allow you to more easily add multiple functions for handling the same event
and to more easily remove event handling functions that are not needed for a particular script.
For now, you will just get a brief introduction to their use, which may prove helpful if they are
needed or if one of the methods begins to work in all the major browsers.

First, you will look at the model from the World Wide Web Consortium (W3C). Next, you
will look at the model from Microsoft.

The addEventListener() Method
The addEventListener() method is the one from W3C. It allows you to specify an event, a
function to execute for the event, and a value of true or false depending on how you want the
event handler function to be executed in the capturing (true) or bubbling (false) phase. The
general format looks like this:

element.addEventListener('event_type', function_name, true_or_false);

Thus, if you want to create a linked input button as you did earlier in this chapter, you could
adjust the JavaScript code to look like this:

var web_page1 = "http://www.yahoo.com";
var b1 = document.getElementById("btn1");
b1.addEventListener('click', function() { window.location = web_page1;
}, false);

Notice that rather than using the event handler, this method uses the name of the event (instead
of onclick you simply use click). Also, this method will accept a function name without
parentheses, or allows you to use an anonymous function (as shown above).

The capturing and bubbling matter when you have elements inside other elements that
both have the same event type registered to them. Which event occurs first will depend on
which method is used. If capturing is used, then the outermost element’s event occurs first
and the innermost element’s event will occur last. If bubbling is used, the opposite is the case.
The capturing phase occurs before the bubbling phase, so keep that in mind when using both
phases in a script.

To remove an event, you would use the removeEventListener() method:

element.removeEventListener('event_type', function_name, true_or_false);

The attachEvent() Method
The attachEvent() method works in a similar way to addEventListener(). However, it only
works with event bubbling and does not currently (as of the time of this writing) have a way to
use event capturing. It is used like this:

element.attachEvent(event_handler, function_name);

 Chapter 7: Event Handlers 173

Thus, if you want to use the same script you have been using, you could write it like this:

var web_page1 = "http://www.yahoo.com";
var b1 = document.getElementById("btn1");
b1.attachEvent(onclick, function() { window.location = web_page1; });

Notice that this method does use the name of the event handler (onclick). Also, it does not
have the third option; it just uses event bubbling.

To remove an event, you would use the detachEvent() method:

element.detachEvent(event_handler, function_name);

For the time being, you will continue to use in your scripts the method you have used
previously in this book.

 Chapter 7 Self Test
 1. An event handler is a predefined JavaScript property of an object that is used to handle an

event on a Web page.

 A True

 B False

 2. Event handlers are useful because they enable you to gain __________ to the __________
that may occur on the page.

 3. To use an event handler, you need to know the __________ for the event handler and where
to place the event handler in the HTML code.

 4. Which of the following correctly codes an alert on the click event?

 A <input type=“button” onclick=“window.alert(“Hey there!”);”>

 B <input type=“button” onClick=“window.alert(‘Hey there!”);”>

 C <input type=“button” onclick=“window.alert(‘Hey there!’);”>

 D <input type=“button” onChange=“window.alert(“Hey there!”);”>

 5. The __________ event occurs when a Web page has finished loading.

 6. A mouseover event occurs when:

 A The viewer clicks the mouse while the cursor is over a button.

 B The viewer moves the mouse cursor away from a link.

 C The viewer clicks a link, linked image, or linked area of an image map.

 D The viewer moves the mouse cursor over an element on the page.

✓

 174 JavaScript: A Beginner’s Guide

 7. A mouseout event occurs when a viewer clicks an element on the page.

 A True

 B False

 8. The __________ event occurs when the viewer leaves the current Web page.

 9. The blur event is the opposite of the __________ event.

 10. Which of the following correctly calls a function named major_alert() inside the onfocus
event handler?

 A <input type=“text” onfocus=“major_alert();”>

 B <input type=“text” onfocus=“major alert();”>

 C <input type=“text” onfocus=“major_alert();’>

 D <input type=“text” onFocus=‘major_alert()”>

 11. The __________ event occurs when a viewer changes something within a form element.

 12. The submit event occurs when the viewer __________ a __________ on a Web page.

 13. The keydown event occurs when a viewer presses down a key on the keyboard.

 A True

 B False

 14. The mousedown event uses what keyword as its event handler?

 A onmouseout

 B onmousepress

 C onmousedown

 D mousedown

 15. The __________ method and the __________ method are two new ways to register events.

175

Chapter 8
Objects

 176 JavaScript: A Beginner’s Guide

Key Skills & Concepts

● Defining Objects

● Creating Objects

● Understanding Predefined JavaScript Objects

Since JavaScript is an object-based language, you need to look at objects to understand what
they are and how you can use them. The predefined objects in JavaScript are very useful;

however, to use them effectively, it is a good idea to learn how objects work in general and
how to create your own objects if you need them.

This chapter begins by defining what objects are and how objects can be useful to you in
your scripts. You will then discover how to create and name your own objects that you can
use in your code. Finally, this chapter introduces the properties and methods of the predefined
navigator and history objects.

Defining Objects
To begin using JavaScript objects, you need to find out what they are and how they can be useful
to you in your scripts. First take a look at what JavaScript objects are.

What Is an Object?
An object is a way of modeling something real, even though the object is an abstract entity.
When you think of an object, you’ll probably want to visualize something general, such as a car.
When you see a car, you notice that it has certain features, or properties. You might see that the
car has a radio with a CD player, leather seats, and a V-8 engine. All of these things are features
of the car, or, in terms of objects, properties of the car object.

You could break this down further by making the radio have properties, or you could go
the other way and make the car part of a larger object. For instance, you could say the CD
radio has certain features, such as touch volume control, radio station presets, and a digital
interface. If you go the other way, you could say that a car is part of an automobile object,
which could include cars, vans, trucks, and various other motor vehicles as properties.

By doing this, you could create a visualization that could be followed down from the top.
If you have an automobile that is a car, it would have properties of its own such as color, year,
make, and model. It would also be made up of other objects such as tires, a radio, a steering
wheel, and a dashboard, each of which could have properties and objects of its own.

If you follow the car down the path of the radio, you could suppose it has a CD radio with
a digital interface, and you would see a pattern like the following:

Automobile -> Car -> CD Radio -> Digital Interface

 Chapter 8: Objects 177

You could instead have a truck, but leave the other features the same. Then you would have the
following pattern:

Automobile -> Truck -> CD Radio -> Digital Interface

The preceding example works a little bit like a family tree, with the top level starting
everything. Each level after the top level may have brothers and sisters (objects on the same
level). Then the tree can continue expanding. The visualization can get confusing, but you
shouldn’t be confused when you work with the actual JavaScript objects. Many objects go just
one level deep, so you probably won’t need to worry about the “family tree” very much. The
main thing you want to learn is that an object can hold a number of properties inside it that you
can access from the outside to use in your scripts.

Why Objects Are Useful
Objects are useful because they give you another way to organize things within a script. Rather
than having a bunch of similar variables that are out there on their own, you can group them
together under an object.

If you take your car object and create variables to represent the features of the car, you can
begin to see how this type of grouping works. You could create variables with the names seats,
engine, and theradio. You will not create the car object until later in the chapter, so for now
assume that the car object exists and that it has the properties of seats, engine, and theradio.
Since these properties are variables, they can have values. The question is, how do you access
these properties to get their values?

In JavaScript, you access object properties through the use of the dot operator, which is
just a dot or period. For instance, if you wanted the value of the seats property of the car, you
could access it with the following line:

var chtype= car.seats;

Don’t let the assigning of the value of the seats property to a variable (chtype) be confusing.
What you want to see here is the car.seats part of the code. The name of the object is written
first, then the property you want to access is connected to it on the right using the dot operator.

The seats property doesn’t currently have a value (since you haven’t created the car
object). You will see how to give it and other properties values when you begin creating
objects in the next section.

Creating Objects
Now that you understand what objects are and their usefulness, you can begin creating your
own JavaScript objects. To do this, you will learn about naming conventions, the structure of
an object, and how to include methods in your objects.

Naming
As with variables and functions, there are certain rules you have to follow when naming your
objects in JavaScript. They are essentially the same rules you follow for naming variables and
functions, so I will just discuss them briefly here since you have been through this twice already.

 178 JavaScript: A Beginner’s Guide

Case Sensitivity
As with previous naming, object names are case sensitive. Thus, an object named car would be
different from an object named Car, CAR, or caR. In order to access the right object, you have
to be sure to use the proper case when you use it in the script; otherwise, you will receive an
error such as “Car is not an object” when you try to run the script.

Avoiding Reserved Words/Objects
The other thing to remember when naming your own objects is that you cannot use a JavaScript
reserved word (refer to the table of reserved words in the section “Avoiding Reserved Words” in
Chapter 3); thus, trying to make an object named switch could give you problems because that
word is used for the JavaScript switch statement.

Object Structure
There are two ways to create objects in JavaScript: by using a constructor function or by using
an object initializer. First, you will learn how to use constructor functions to create objects.
That is followed by a brief discussion of how to use the object initializers.

Constructor Functions
A constructor function allows you to build an object using the same basic syntax as a regular
function. The only difference is the code you place inside of the function and how you access
its contents.

For example, to create your car object, you would create a constructor function named
car() and then add your properties within the function. The following example shows an
outline of the car() function:

function car() {
 Properties go here.
}

To complete the preceding function, you need to add your properties to the function.
Recall that you want to create an object named car with the properties of seats, engine, and
theradio. The following code shows how this is done:

function car(seats,engine,theradio) {
 this.seats=seats;
 this.engine=engine;
 this.theradio=theradio;
}

In this code, on the first line, you see that the function takes three parameters, which is the
number of properties you want the car object to have. The next thing you see is that the values
of the parameters are assigned to the properties you want the car object to have; however, there
is a new keyword named this. The keyword this in JavaScript is used to represent the current
object being used, or “this object,” so to speak.

The constructor function is defined

The properties will be listed here for the object you are creating

The function takes in three parameters

The parameter values are assigned
to the properties of the object

 Chapter 8: Objects 179

Once you have the object’s properties set with the constructor function, you need to create
what is called an instance of the object in order to use it, because a constructor function creates
only the structure of an object, not a usable instance of an object. To create an instance of an
object, you use another JavaScript keyword: new.

The use of the new keyword to create an instance of your car object is shown in the
following code:

var work_car= new car("cloth","V-6","Tape Deck");

The first thing you see is that you are creating a new variable named work_car. This variable
will be a new instance of the car object due to the value you are assigning to it.

You next see that the work_car variable is assigned the result of the car constructor function,
with a twist. In front of the call to the car function is the new keyword, which makes sure you
are creating a new instance of the constructor function object.

Next, you see that the car function is called with values sent as parameters. These are the
values you want to use for this instance of the car object. Given the order, you are saying that
you want the seats to be cloth, the engine to be V-6, and the radio to be Tape Deck.

You can now access the work_car instance of the car object. If you want to know what
type of engine the work_car has, you can access it with the dot operator:

var engine_type= work_car.engine;

This assigns the value of the engine property of the work_car instance of the car object to the
variable engine_type. Since you sent V-6 as the engine parameter to the constructor function,
the engine_type variable is assigned a value of V-6.

Putting the Pieces Together To help you visualize this process, it’s time to put all these parts
together so that you can see how it works. The following code combines all the code of the
previous examples to make things easier to see:

function car(seats,engine,theradio) {
 this.seats=seats;
 this.engine=engine;
 this.theradio=theradio;
}
var work_car= new car("cloth","V-6","Tape Deck");
var engine_type= work_car.engine;

Now you can see the constructor function, the creation of an instance of the car object, and the
assignment of one of the properties of the object to a variable. When the work_car instance
of the car object is set, it gets the values of cloth for the property work_car.seats, V-6 for the
property work_car.engine, and Tape Deck for the property work_car.theradio.

The constructor function

An instance of the object is
created, sending parameters
to be used as property values

A property of the new instance of the object is assigned to an independent variable

 180 JavaScript: A Beginner’s Guide

In order to see how an instance of an object works, you need to add another instance of the
car object to your code. The following code uses two instances of the car object, one named
work_car and a new one named fun_car:

function car(seats,engine,theradio) {
 this.seats=seats;
 this.engine=engine;
 this.theradio=theradio;
}
var work_car= new car("cloth","V-6","Tape Deck");
var fun_car= new car("leather","V-8","CD Player");
var engine_type= work_car.engine;
var engine_type2= fun_car.engine;

Notice how the new instance of the object uses the same constructor function, but with
different values. You also have a new variable named engine_type2, which is given the value
of the engine property of the fun_car instance of the car object.

By assigning the property values of the different instances of the car object to variables,
you could now write out the features you would like to have in a custom car that combines
features from each type of car. For example, take a look at the following code, which writes
out the features you might like in a custom car:

function car(seats,engine,theradio) {
 this.seats=seats;
 this.engine=engine;
 this.theradio=theradio;
}
var work_car= new car("cloth","V-6","Tape Deck");
var fun_car= new car("leather","V-8","CD Player");
var engine_type= work_car.engine;
var seat_type= fun_car.seats;
var radio_type= fun_car.theradio;

document.write("I want a car with "+seat_type+" seats.
");
document.write("It also needs a "+engine_type+" engine.
");
document.write("Oh, and I would like a "+radio_type+" also.");

Using the variable values that grab what you want from each instance of the car object,
you are able to print to the screen the description of the car you would like to have. Save this

The constructor function

Two object instances
are created

One property value from each instance of the object gets assigned to two independent variables,
which contain different values because they are from two different object instances

The part of the script with the constructor function,
instance creations, and variable assignments

The document.write() commands are used in the
body section so that they display in the browser

 Chapter 8: Objects 181

file as objects_01.js and create an HTML file with the following body code and save it as
objects_01.html:

<body>
<script type="text/javascript" src="objects_01.js"></script>
</body>

Open the objects_01.html file in your Web browser. The results of this script are shown in
Figure 8-1.

You could also achieve the result of the preceding example by creating a new instance of
the car object with your choices and then printing those to the screen. If you create an instance
named custom_car, you could use the following code:

function car(seats,engine,theradio) {
 this.seats=seats;
 this.engine=engine;
 this.theradio=theradio;
}
var work_car= new car("cloth","V-6","Tape Deck");
var fun_car= new car("leather","V-8","CD Player");
var custom_car= new car(fun_car.seats,work_car.engine,fun_car.theradio);

document.write("I want a car with "+custom_car.seats+" seats.
");
document.write("It also needs a "+custom_car.engine+" engine.
");
document.write("Oh, and I would like a "+custom_car.theradio+" also.");

Figure 8-1 The features you like from each type of car are printed in the browser

A new instance of the object is created, sending the values
of the properties of other object instances as parameters

The properties of the new instance of the object are
used like variables in the document.write() statements

 182 JavaScript: A Beginner’s Guide

Notice how the creation of the custom_car instance of the car object sends parameters
that happen to be the properties of the other instances of the car object. You are able to use
object properties like variables in many cases, so this cuts the amount of code you need to
write. Also notice that the document.write() commands were changed to use the properties of
the custom_car instead of the old variables. The output of the script is the same, as shown in
Figure 8-2.

Property Values While this isn’t real estate, you can alter your property values. In your
scripts, you can change the value of an object property on-the-fly by assigning it a new
value, just like a variable. For example, if you wanted to change the value of the work_car.
engine property from the previous examples, you could just assign it a new value of your
choice. The following example shows the assignment of a new value to the work_car.engine
property:

work_car.engine= "V-4";

While perhaps not a good change, it could save you money on insurance (and gas)!
It is important to note that the preceding assignment will change the value of the work_

car.engine property for any calls made to it after the change. Anything you do with its value
before the change would not be affected. So, to have an effect on the outcome of your script,
you would have to change the value of the work_car.engine property before you create your
custom_car instance of the car object, which uses this property.

Figure 8-2 Although coded differently, the output is the same as that of Figure 8-1

 Chapter 8: Objects 183

The following code gives a new assignment to the property before the new instance of the
object is created:

function car(seats,engine,theradio) {
 this.seats=seats;
 this.engine=engine;
 this.theradio=theradio;
}
var work_car= new car("cloth","V-6","Tape Deck");
var fun_car= new car("leather","V-8","CD Player");

work_car.engine="V-4";

var custom_car= new car(fun_car.seats,work_car.engine,fun_car.theradio);

document.write("I want a car with "+custom_car.seats+" seats.
");
document.write("It also needs a "+custom_car.engine+" engine.
");
document.write("Oh, and I would like a "+custom_car.theradio+" also.");

The work_car.engine property is originally set to V-6, but it is changed to V-4 just before
the custom_car instance of the car object is created. This means that when you use the
work_car.engine property while creating your custom_car instance, it will use the changed
value of V-4 because it is used after the change was made. Figure 8-3 shows the results of this
changed code.

One of the properties of an object is changed, which
alters that property for anything using it afterward

Figure 8-3 One of the property values is changed, changing the output of the script

 184 JavaScript: A Beginner’s Guide

To drive home the point, you could use the property both before and after it is changed to
see how it affects the script. The following code shows this:

function car(seats,engine,theradio) {
 this.seats=seats;
 this.engine=engine;
 this.theradio=theradio;
}
var work_car= new car("cloth","V-6","Tape Deck");
var fun_car= new car("leather","V-8","CD Player");

var first_engine=work_car.engine;

work_car.engine="V-4";

var custom_car= new car(fun_car.seats,work_car.engine,fun_car.theradio);

document.write("At first, I wanted a "+first_engine+" engine.
");
document.write("But after thinking about it a bit:
");
document.write("I want a car with "+custom_car.seats+" seats.
");
document.write("It also needs a "+custom_car.engine+" engine.
");
document.write("Oh, and I would like a "+custom_car.theradio+" also.");

Notice how the work_car.engine value is assigned to the first_engine variable. It is then
changed before you create your custom_car instance of the car object. When you write the
value of the first_engine variable to the browser, it has the old value of the work_car.engine
property since it was assigned before the change was made.

When you write the values of your custom_car properties, you can see that the change was
made sometime before you created the custom_car instance of the car object. Figure 8-4 shows
the results of this script in a browser.

Now that you know how to use constructor functions, take a look at the object initializer
method.

Object Initializers
An object initializer is a little bit shorter than a constructor function. The following is the
syntax of an object initializer:

object_name={property:value}

In the preceding code, you would replace object_name with the name you want to give your
object; replace property with the name you want to use for a property of the object; and replace
value with the value of the property that precedes it. You can add more properties and values
by separating each with a comma.

An object created with the initializer function is already an instance of the object, so you
can just use the properties without the need to create a new instance of the object.

The original value of the property is
assigned to an independent variable

The property is changed, changing
the value of it when used afterward

 Chapter 8: Objects 185

Next, you will create a work_car object by using the initializer method. You want the
object name to be work_car, and you will have three sets of properties and values. The
following code shows how to create the object by using the object initializer method:

work_car= {seats:"cloth",engine:"V-6",theradio:"Tape Deck"}

Since there is no need to create an instance of the object, you can use its properties just as you
did before, and assign them to variables or write them to the page. For instance, the property of
work_car.seats would be cloth.

If you want the fun_car object back as well, you can use another initializer, as shown in the
following example code:

work_car= {seats:"cloth",engine:"V-6",theradio:"Tape Deck"}
fun_car= {seats:"leather",engine:"V-8",theradio:"CD Player"}

You can then write out what you want to have in a car using those properties, as shown in the
following code:

work_car= {seats:"cloth",engine:"V-6",theradio:"Tape Deck"}
fun_car= {seats:"leather",engine:"V-8",theradio:"CD Player"}

document.write("I want a car with "+fun_car.seats+" seats.
");
document.write("It also needs a "+work_car.engine+" engine.
");
document.write("Oh, and I would like a "+fun_car.theradio+" also.");

Figure 8-4 The change in the property value affects the statements that use it after the
change, but not those that use it before the change

Properties of the objects are used in document.write() statements

Objects are created using object initializers

 186 JavaScript: A Beginner’s Guide

This prints what you like from each type of car to the browser screen. Figure 8-5 shows the
results of this script in a browser.

This method can cut the coding a bit, at least if you only want to use one or two instances
of the same type of object.

Adding Methods
A method is a function call that is part of an object. The function called can perform various
tasks that you might want to execute with the properties of the object.

Consider the car object that you created with a constructor function earlier in the chapter.
You might want to have functions for the car to stop, accelerate, or turn. You might also decide
to make a calculation of some sort, like a payment. If you wanted to add a function for that
object that would calculate the monthly payments on the various types (instances) of cars that
you sent to it, you could create a function like the following:

function get_payment() {
 var the_payment=250;
 if(this.seats == "leather") {
 the_payment+=100;
 }
 else {
 the_payment+=50;
 }

Figure 8-5 The properties you like from each type of car are shown in the browser

Function to be used as a method is defined The payment variable is created
and given an initial value

An if/else statement decides how much to
add to the payment variable based on the
value of the seats property of an object

 Chapter 8: Objects 187

 if(this.engine == "V-8") {
 the_payment+=150;
 }
 else {
 the_payment+=75;
 }
 if(this.theradio == "CD Player") {
 the_payment+=35;
 }
 else {
 the_payment+=10;
 }
 return the_payment;
}

Well, the previous function is really long. It can be shortened by using the conditional
operator for each if/else statement here (for further information on the conditional operator,
refer to Chapter 6):

function get_payment() {
 var the_payment=250;
 the_payment += (this.seats == "leather") ? 100 : 50;
 the_payment += (this.engine == "V-8") ? 150 : 75;
 the_payment += (this.theradio == "CD Player") ? 35 : 10;
 return the_payment;
}

After you have defined the function, you need to assign it to your object within your object
constructor function. Using your trusty car object constructor function, you would assign it as
shown in the following code:

function car(seats,engine,theradio) {
 this.seats=seats;
 this.engine=engine;
 this.theradio=theradio;
 this.payment=get_payment;
}

Notice that this example defines a method named payment that calls the get_payment()
function from outside the constructor function. Also notice that when the function is called
here, the parentheses are not used on the end of the function call. This is how your outside
function becomes a method of the object (by assigning it the function rather than the result of
the function).

An if/else statement decides how much to
add to the payment variable based on the
value of the engine property of an object

An if/else statement decides how much to
add to the payment variable based on the
value of the theradio property of an object

The value of the_payment is returned

The conditional operator is used in place of the
if/else statements to make the code shorter

The get_payment() function is assigned like a property,
making it a method of the current object; notice that the
parentheses are not used in the assignment

 188 JavaScript: A Beginner’s Guide

In order to call the payment() method of the object, you need an instance of the car object.
If you add the three instances you made earlier, you will be able to do some things with your
new method. So, add those instances to the code you already have:

function get_payment() {
 var the_payment=250;
 the_payment += (this.seats == "leather") ? 100 : 50;
 the_payment += (this.engine == "V-8") ? 150 : 75;
 the_payment += (this.theradio == "CD Player") ? 35 : 10;
 return the_payment;
}
function car(seats,engine,theradio) {
 this.seats=seats;
 this.engine=engine;
 this.theradio=theradio;
 this.payment=get_payment;
}
var work_car= new car("cloth","V-6","Tape Deck");
var fun_car= new car("leather","V-8","CD Player");
var custom_car= new car(fun_car.seats,work_car.engine,fun_car.theradio);

Now you have the function that is used to create the payment() method of the car object,
the creation of the payment() method within the car object constructor function, and three
instances of the car object.

To find the monthly payments for work_car, you would call the payment() method using
the following syntax:

var work_car_payments= work_car.payment();

The value of the work_car_payments variable will be the value returned from the payment()
method, which is what is returned from the get_payment() function when run with the values
used for the work_car instance of the car object.

Since the seats are cloth, the_payment is increased by 50 (if they were leather it would
have been 100). Since the engine is a V-6, the_payment is increased by 75. Finally, since the
theradio property has a value of Tape Deck, the the_payment variable is increased by 10. This
gives you a payment of 250 (initial value) + 50 (nonleather seats) + 75 (non-V-8 engine) +10
(radio without CD player), which turns out to be 385.

Using the payment() method, you could now write a script to display the payment amount for
each type of car in the browser so the viewer can decide what type of car to buy. You would just
expand on your previous code to include in the body of the page some document.write() commands
that use the values returned from the payment() method. Save the JavaScript file as objects_02.js
and create an HTML file with the following body code and save it as objects_02.html:

<body>
<script type="text/javascript" src="objects_02.js"></script>
</body>

The function that is used as a method

The constructor function, which makes
the function a method function

Instances of the object are created
and can use the method if needed

 Chapter 8: Objects 189

The following JavaScript code for the objects_02.js file gives an example of the payment()
method when used for each instance of the car object:

function get_payment() {
 var the_payment=250;
 the_payment += (this.seats == "leather") ? 100 : 50;
 the_payment += (this.engine == "V-8") ? 150 : 75;
 the_payment += (this.theradio == "CD Player") ? 35 : 10;
 return the_payment;
}
function car(seats,engine,theradio) {
 this.seats=seats;
 this.engine=engine;
 this.theradio=theradio;
 this.payment=get_payment;
}

var work_car= new car("cloth","V-6","Tape Deck");
var fun_car= new car("leather","V-8","CD Player");
var custom_car= new car(fun_car.seats,work_car.engine,fun_car.theradio);

var work_car_payment= work_car.payment();
var fun_car_payment= fun_car.payment();
var custom_car_payment= custom_car.payment();

document.write("<h2>The information on the cars you requested:</h2>");
document.write("Work Car: ");
document.write(work_car.seats+","+work_car.engine+","+work_car.theradio);
document.write("
");
document.write("Payments: $"+work_car_payment);
document.write("<p>");
document.write("Fun Car: ");
document.write(fun_car.seats+","+fun_car.engine+","+fun_car.theradio);
document.write("
");
document.write("Payments: $"+fun_car_payment);
document.write("</p>");
document.write("<p>");
document.write("Custom Car: ");
document.write(custom_car.seats+","+custom_car.engine+",");
document.write(custom_car.theradio);
document.write("
");
document.write("Payments: $"+custom_car_payment);
document.write("</p>");

The script is quite long compared to most of the scripts you have done up to this point.
The result of the preceding script is a listing of each type of car, its features, and the payment
amount for the car.

The returned value of the method function
for each of three instances of the object is
assigned to three independent variables

Various object properties and variables are used in the document.write() statements
to create a listing of the cars, their features, and the payment amounts

 190 JavaScript: A Beginner’s Guide

Some of the document.write() statements in the previous code are being used to continue
the statement preceding them, because of the limited space available to show the code. In
your text editor, you don’t have such space limitations, so you could put as much code in one
document.write() command as you like. Figure 8-6 shows the results of the code when run in a
browser. You are starting to make some scripts that are more useful!

Object Manipulation Statements
JavaScript allows you to use the for-in loop to help you manipulate objects and the with
statement to access particular objects more easily.

The for-in Loop
The for-in loop allows you to cycle through the properties of an object to display them or to
manipulate their values. The following code shows the structure of a for-in loop:

for (var variable_name in object_name) {
 JavaScript statements
}

Figure 8-6 A listing of the types of cars, their features, and their calculated monthly payments

The loop begins by naming a variable to represent the property
names in the object, along with the name of the object

JavaScript statements go here

 Chapter 8: Objects 191

Suppose you wanted to cycle through the properties of a work_car instance of a car object in
order to display the values of each property on the page. The for-in loop allows you to do this
without the need to type each property name, as in this code:

function car(seats,engine,theradio) {
 this.seats=seats;
 this.engine=engine;
 this.theradio=theradio;
}
var work_car= new car("cloth","V-6","Tape Deck");
for (var prop_name in work_car) {
 document.write(work_car[prop_name]+"
");
}

You will notice that the work_car[prop_name] part of the script is unfamiliar. The for-in
loop uses an array to store the property values, which calls for this syntax. You will learn more
about arrays in Chapter 11, so don’t worry if this isn’t clear yet. Once you have learned how to
use arrays, the for-in loop will be a useful way to manipulate your objects. For now, you only
need to know the function of the for-in loop.

The with Statement
The with statement allows you to access or manipulate the properties and methods of an object
more easily if you plan to use a large number of statements that use the object. For instance, if
you want to write a number of statements about an object named car on a Web page, you might
grow weary of typing the object name (car), the dot operator, and then the property name.

The with statement allows you to leave off the object name and the dot operator for
statements inside the with block, so that you only need to type the property names to access the
properties you need. The following code shows the structure of a with statement:

with (object) {
 JavaScript statements
}

Suppose you have an object named car with the properties seats, engine, and radio, and
an instance of the object named work_car. You could use the with statement to avoid typing
work_car and the dot operator repeatedly, as in the following example:

function car(seats,engine,theradio) {
 this.seats=seats;
 this.engine=engine;
 this.theradio=theradio;
}
var work_car= new car("cloth","V-6","Tape Deck");
with (work_car) {

The object is created

An instance of the
object is created

The for-in loop begins

The value of each property of the work_car
instance of the car object is written on the page

The name of the object is placed inside the parentheses

JavaScript statements that use the object go here

The object is created

An instance of the
object is created

The with statement is used with the work_car instance of the object

 192 JavaScript: A Beginner’s Guide

 document.write("Seats: "+seats+"
");
 document.write("Engine: "+engine+"
");
 document.write("Radio: "+theradio);
}

This example writes the values of the properties of the work_car instance of the car object on
the page. Notice that while inside the with block, the property names could be used without the
need to type work_car and the dot operator in front of them.

Now that you have seen how to create objects, properties, and methods of your own,
you can better understand how some of the predefined JavaScript objects work. A number of
predefined JavaScript objects are discussed as you move through the rest of this chapter and
through several of the chapters to follow.

Now the properties of the work_car instance of the object can be accessed without
the need to type work_car and the dot operator each time a property is used

Q: Do I really have to create an instance of an object every time I want one when I use a
constructor function?

A: Yes. The constructor function only gives the browser the structure of an object. To use that
structure, you need to create an instance of the object. You will see in Chapter 12 that you
need to create instances with some of the predefined JavaScript objects as well.

Q: So what about object initializers? I don’t have to create instances with them?

A: Object initializers create an object rather than just giving it a structure like a constructor
function. So, the object created doesn’t need to have instances created.

Q: Will I need to use self-written objects a lot?

A: Probably not, but it depends on your script and what you want to do. Many of the scripts in
this book use predefined JavaScript objects; however, you may use a self-written object if it
helps you with your scripts later.

Q: Can an object have more than one method?

A: You can include as many methods as you like in an object by repeating what you did with
your method earlier in the chapter. For instance, you could have added another method to
calculate the insurance costs of each type of car based on the properties you had for the car
types.

Ask the Expert

 Chapter 8: Objects 193

Try This 8-1 Create a Computer Object
In this project, you create objects on your own and develop the skills involved in
object creation. The script will create a computer object and then use properties,
methods, and instances of the object to create feature lists and price lists for the
different types of computers.

Step by Step
 1. Create an HTML page and save it as pr8_1.html. Add the necessary script tags to point to

an external JavaScript file named prjs8_1.js.

 2. Create an external JavaScript file and save it as prjs8_1.js. Use it for steps 3–12.

 3. Create an object named computer that has three properties named speed, hdspace, and ram.

 4. Create an instance of the computer object and name it work_computer. Send the string
values of 2GHz for the speed parameter, 80GB for the hdspace parameter, and 1GB for the
ram parameter.

 5. Create an instance of the computer object and name it home_computer. Send the string
values of 1.5GHz for the speed parameter, 40GB for the hdspace parameter, and 512MB for
the ram parameter.

 6. Create an instance of the computer object and name it laptop_computer. Send the string
values of 1GHz for the speed parameter, 20GB for the hdspace parameter, and 256MB for
the ram parameter.

 7. Create a function named get_price() that will calculate the price of a computer. The base
price of a computer is 500 and should be assigned to a variable named the_price. If the
speed property of an object is equal to 2GHz, add 200 to the value of the_price; otherwise,
add 100 to the_price. If the hdspace property of an object is 80GB, add 50 to the value of
the_price; otherwise, add 25 to the_price. If the ram property of an object is 1GB, add 150
to the value of the_price; otherwise, add 75 to the_price. End the function with a return
statement that returns the value of the variable the_price.

 8. Add a call to the function created in step 6 to the computer object. Give the method the
name price.

 9. Assign the value returned by the price() method when used with the work_computer
instance of the object to a variable named work_computer_price.

 10. Assign the value returned by the price() method when used with the home_computer
instance of the object to a variable named home_computer_price.

 11. Assign the value returned by the price() method when used with the laptop_computer
instance of the object to a variable named laptop_computer_price.

(continued)

pr8_1.html
prjs8_1.js

 194 JavaScript: A Beginner’s Guide

 12. Write the features and price for each type of computer to the browser screen in the same
format you used in the car example earlier in the chapter.

 13. Save the JavaScript file and view the HTML file in your browser. You should have a list of
features and the price for each computer written on the screen.

Try This Summary
In this project, you were able to use your new knowledge of objects to create an object with
properties and a method function. You were able to create a Web page that displays the prices
of different computers in the browser.

Understanding Predefined JavaScript Objects
In JavaScript, there are many predefined objects you can use to gain access to certain properties
or methods you may need. You can make your scripts even more interactive once you learn the
various objects and what you can do with them.

This book will be covering a number of the major predefined objects. Some of them will
be the basis for an entire chapter, while others are smaller and may only need a portion of a
chapter. To get started, in this chapter, you are going to look at the navigator object and history
objects, and what you can do with them.

The Navigator Object
The navigator object gives you access to various properties of the viewer’s browser, such as its
name, version number, and more. It got its name from the Netscape Navigator browser, which
preceded Mozilla/Firefox.

The navigator object is part of the window object, which means you can access its properties
and methods using window.navigator.property_or_method_name, but it can also be shortened to
simply navigator.property_or_method_name. This is true even for direct properties or methods
of the window object as well (for example, window.alert(“Hi”); could be shortened to simply
alert(“Hi”); and it would still be valid). You’ll commonly see such properties and methods of the
window object shortened in this way to save extra typing or to help shorten the source code.

First, take a look at the properties of the navigator object.

Properties
The properties of the navigator object let you find out various things about the browser the
viewer is using. The properties of the navigator object cannot be changed, because they are set
as read-only. This is so you don’t try to change the user’s browser version from 6.0 to 7.0 or
something similar. Instead, you can just find out what the value of the property is and use it to
allow your scripts to do different things for different browsers.

Table 8-1 shows the properties of the navigator object and the values returned by each
property. Also, if a property only works in one or two of the three major browsers mentioned
in this book, there is a note in parentheses for that property.

 Chapter 8: Objects 195

Property Value

appCodeName The code name of the browser

appName The name of the browser

appMinorVersion A string representing the minor version of the browser (Internet Explorer only)

appVersion The version of the browser and some other information

browserLanguage The language of the browser being used (Internet Explorer and Opera)

buildID The build identifier of the browser being used (Firefox only)

cookieEnabled Specifies whether or not the browser has cookies enabled

cpuClass A string representing the class of the CPU (Internet Explorer only)

language The language of the browser being used (Firefox and Opera)

mimeTypes An array of MIME types supported by the browser

onLine Specifies whether or not the browser is in “global offline mode”

oscpu A string representing the operating system of the computer (Firefox only)

platform The machine type for which the browser was created

plugins An array of the plugins the browser has installed on it

product A string representing the product name of the browser being used (Firefox only)

productSub The build number of the browser being used (Firefox only)

securityPolicy An empty string—returned a value in Netscape 4.7 (Firefox only)

systemLanguage The default language used by the operating system (Internet Explorer only)

userLanguage The natural language of the operating system (Internet Explorer and Opera)

userAgent The user agent header for the browser

vendor An empty string—returned a string representing the vendor of the browser
being used (Firefox only)

vendorSub An empty string—returned the vendor version number of the browser being
used (Firefox only)

Table 8-1 Properties of the Navigator Object

Now that you know the properties of the navigator object, you can begin to use them in
your scripts. The following sections take a look at some of the more useful properties in more
detail.

The appCodeName Property This property holds the value of the application code name
of the browser, which is often something like Mozilla. Other than writing it to the screen or
sending an alert to the viewer, you don’t have much use for it at this time. The following code
shows how to send an alert to the viewer to tell him or her the appCodeName of the browser
being used to view the page:

window.alert("You are using "+navigator.appCodeName);

 196 JavaScript: A Beginner’s Guide

Notice that you use the object name followed by the dot operator and then the property name,
just like you did when you created your own objects. This is how you are able to access the
properties of the navigator object.

Note that with this property, most every browser returns Mozilla, which was used as the
code name for an early version of Netscape Navigator.

The appName Property This property allows you to find out which type of browser the
viewer is using to browse the page. If the browser is Firefox, the value of this property will be
Netscape. If the browser is Internet Explorer, then the value of this property will be Microsoft
Internet Explorer. Other browsers will have corresponding values.

If you need to know the value for a particular browser, you can create a script to alert the
value of this property, place the script inside script tags on a Web page, and then view the
page in that browser. You will then be alerted to the value of the property for that browser. The
following code shows how the alert can be coded:

window.alert("You have "+navigator.appName);

Since this enables you to find out the type of browser being used, you can create a simple
browser-detection script.

Suppose you want to send the viewer an alert based on your opinion of the browser being
used. You could use the navigator.appName property to create an if/else block and send the
appropriate comment to the viewer based on the browser type.

The following code shows an example of how you could perform this task:

<body>
<script type="text/javascript">
switch (navigator.appName) {
 case "Netscape" : window.alert("Firefox/Netscape is cool."); break;
 case "Microsoft Internet Explorer" : window.alert("Internet Explorer is Cool.");
 break;
 case "Opera" : window.alert("Opera is cool."); break;
 default : window.alert("What browser is this?");
}
</script>
Hi, and welcome!
</body>

As you can see, the viewer can now find out just what you think of the browser being used.
Figure 8-7 shows the alert you would get if you were using Firefox to view the page.

The appVersion Property This property has a value of the version number of the browser
and some additional information. For example, in Firefox 3 for Windows XP, you might see
the following text as the value of this property:

5.0 (Windows; en-US)

A switch block is used to determine the value of the navigator
.appName property and give the viewer the proper alert

 Chapter 8: Objects 197

This can be beneficial when you use techniques that should only be executed in browser
versions above a certain level. Note, though, that browsers return various results for this
property, as the value returned for Internet Explorer 7 on Windows Vista shown here:

4.0 (compatible; MSIE 7.0; Windows NT 6.0; SLCC1; .NET CLR 2.0.50727;
 Media Center PC 5.0; .NET CLR 3.5.30729; .NET CLR 3.0.30618)

The first part of the string is 4.0, and later it describes itself as MSIE 7.0. Thus, you must use
care when using this property as you will need to know what various browsers return to make
the best use of the information.

The cookieEnabled Property This property returns a Boolean value of true if cookies are
enabled in the browser, and returns a Boolean value of false if cookies are not enabled in the
browser. You will read about cookies in more detail in Chapter 16.

The onLine Property This property returns a Boolean value of true if the viewer’s system is
not in global offline mode (see http://msdn.microsoft.com/en-us/library/aa768170(VS.85).aspx
for details on this), and returns a Boolean value of false if the system is in global offline mode.

The platform Property This property holds the value of the type of machine for which the
browser was created. For example, on a Windows XP machine, the value would be Win32.

Figure 8-7 The alert you get when entering the page with Firefox

http://msdn.microsoft.com/en-us/library/aa768170(VS.85).aspx

 198 JavaScript: A Beginner’s Guide

There are different values for various types of machines. If you want to let the viewer know
the machine type being used, you could send an alert with this property:

window.alert("Your machine is a "+navigator.platform+" machine.");

While not very useful here, the property could be used to redirect viewers to an appropriate
page based on their machine type.

The plugins Property This array holds the values of all the plugins installed in the viewer’s
browser. You will find out more about arrays in Chapter 12.

The userAgent Property This property gives you another long string of information about
the browser. This string is the user agent header for the browser. For instance, in Firefox 3 for
Windows XP, you might see the following string:

Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.0.4)
Gecko/2008102920
 Firefox/3.0.4

It is pretty similar to the text you saw for the navigator.appVersion property, but with a little
more information.

Now that you know about the properties of the navigator object, you are ready to look at
the methods of the object.

Methods
The navigator object also has a number of methods you can use to perform various tasks.
Table 8-2 shows the methods available in the navigator object.

The following section looks at the javaEnabled() method and how it can be used.

The javaEnabled() Method This method returns a Boolean value of true if the viewer has
Java enabled in the browser; otherwise, it returns false. The javaEnabled() method could
be useful if you want to display a Java applet to the viewer, but only if the viewer has Java
enabled in the browser.

Table 8-2 Methods of the Navigator Object

Method Purpose

javaEnabled() Used to test whether or not Java is enabled in the browser

mozIsLocallyAvailable() Checks to see if a file at a certain address is available locally (Firefox only)

preference() Allows certain browser preferences to be set (requires signed script)

registerContentHandler() Allows a Web site to set itself as a potential handler of a certain MIME type

registerProtocolHandler() Allows a Web site to set itself as a potential handler of a certain protocol

taintEnabled() Returns false— because the method is no longer being in use. It was used
to specify whether or not data tainting was enabled in the browser

 Chapter 8: Objects 199

For now, you will just see how to send the viewer an alert, as an example. This way you
don’t need to mess with any Java syntax yet. The following code sends one alert if the viewer
has Java enabled and sends another if the viewer does not have Java enabled:

var hasJava= navigator.javaEnabled()
if (hasJava==true) {
 window.alert("Cool, you have Java!");
}
else {
 window.alert("Java disabled? You cannot see my Java Applet!");
}

This tests the value returned by the navigator.javaEnabled() method and gives the user
the correct alert. Again, this is more useful if you have a Java applet that you want to use
someplace on the page.

The History Object
The history object, which is also part of the window object, provides information on the
browser history of the current window.

Property
The history object has only one property, named length (in Firefox, a few more are available,
but they do not work with Web content). This property returns the number of pages in the
session history of the browser for the current window, which includes the currently loaded
page. It could be used in a manner similar to this:

<body>
<script type="text/javascript">
alert("Your current window has viewed "+history.length+" pages!")
</script>
</body>

This simply sends an alert to the viewer to say how many pages have been visited in the
current browser window.

Methods
There are three methods of the history object, listed in Table 8-3.

Table 8-3 Methods of the History Object

Method Purpose

Back() Sends the browser window back one page in the history list

Forward() Sends the browser one page forward in the history list

Go() Sends the browser to a specified page in the history list using an integer value

 200 JavaScript: A Beginner’s Guide

The following sections discuss each of these methods in more detail.

The back() Method The back() method sends the browser to the last page visited in the
history list before the current page, which is like using the browser’s “back” button. To use it,
you simply call the method in your script where desired. Thus, if you wanted your own “back”
button made from a form button, you could use something similar to the following code. First
is the HTML body section code (save as history_01.html):

<body>
<form>
<input type="button" value="Back" id="back_button" />
</form>
<script type="text/javascript" src="history_01.js"></script>
</body>

Next is the external JavaScript code (save as history_01.js):

var bb = document.getElementById("back_button");
bb.onclick = function() {
 history.back();
};

Loading the HTML page will display the “back” button. When you click it, the browser
will go to the last page visited before the current page. If the browser window has no previous
history, clicking the button will do nothing.

The forward() Method The forward() method sends the browser to the page visited in the
history list after the current page, which is like using the browser’s “forward” button. To use it, you
simply call the method in your script where desired. Using this, you could update your previous
script to add a “forward” button as well. The updated HTML and JavaScript code is shown next.

The HTML code:

<body>
<form>
<input type="button" value="Back" id="back_button" />

<input type="button" value="Forward" id="forward_button" />
</form>
<script type="text/javascript" src="history_01.js"></script>
</body>

The updated external JavaScript code:

var bb = document.getElementById("back_button");
var fb = document.getElementById("forward_button");
bb.onclick = function() {
 history.back();
};
fb.onclick = function() {
 history.forward();
};

 Chapter 8: Objects 201

Try This 8-2

Loading the HTML page will now display both buttons. As with the back() method, the
use of forward() without a forward page in the window’s history list will do nothing.

The go() Method The go() method takes in an integer as a parameter. The integer can be
a negative number to go back in the history list or a positive number to move forward in the
history list. For instance, the following code would go back two pages in the window’s history:

history.go(-2);

The following code would go three pages forward in the history list:

history.go(3);

As with the other two methods, if the page the viewer is attempting to access does not exist
(for example, something like history.go(15) may not exist in the window’s history), then the
method will simply do nothing.

The predefined JavaScript objects can be quite helpful. As you’ll see in the next chapter,
the document object gives you access to a number of additional properties and methods for
working with the HTML document.

 Practice with the Predefined Navigator
Object
This project allows you to practice using some of the properties and methods of
the predefined navigator object. You will create a page that alerts the viewer to
various types of information, based on the browser being used.

Step by Step
 1. Create an HTML page and save it as pr8_2.html.

 2. Create an external JavaScript file and save it as prjs8_2.js. Use it for steps 3–12.

 3. Code an alert that pops up when the viewer enters the page. The alert should say “Hi! You are
viewing my page with . . .” followed by the name of the browser being used by the viewer.

 4. If the user has Java enabled, send a new alert to the viewer that says “You have Java
enabled, that is cool!” If the viewer does not have Java enabled, send an alert that says “No
Java? Well, no fun stuff here then.”

 5. Send a new alert that tells the viewer what type of machine is being used. The alert should say
“You are using . . .” followed by the type of machine the viewer is using to view the page.

 6. Save the files and open the HTML file in one or more browsers (or other computers if you
can). See how the results vary based on what is being used while viewing the Web page.

(continued)

pr8_2.html
prjs8_2.js

 202 JavaScript: A Beginner’s Guide

Try This Summary
In this project, you used your knowledge of the properties and methods of the predefined
navigator object. You were able to create a Web page that sends different alerts to the viewer
based on the browser, the machine type, and whether or not Java is enabled.

 Chapter 8 Self Test
 1. An object is a way of modeling something __________, even though the object is a(n)

__________ entity.

 2. When you think of an object, you’ll probably want to visualize something __________.

 3. Objects are useful because they give you another way to __________ things within a script.

 4. In JavaScript, you access object properties through the use of the

 A addition operator

 B dot operator

 C multiplication operator

 D You can’t access the properties of an object

 5. The rules for naming objects are similar to those for naming __________ and __________.

 6. You can create JavaScript objects using either a _________ function or an object ________.

 7. A constructor function allows you to build an object using the same basic syntax as a
regular function.

 A True

 B False

 8. An object initializer is a little bit longer than a constructor function.

 A True

 B False

 9. What could you say about the following code:

var x=myhouse.kitchen;

 A It assigns the string myhouse.kitchen to the variable x.

 B It adds the values of myhouse and kitchen and assigns them to an object named x.

✓

 Chapter 8: Objects 203

 C Assuming the myhouse object exists, it assigns the value of the kitchen property of the
myhouse object to the variable x.

 D Assuming the kitchen object exists, it assigns the value of the myhouse property of the
kitchen object to the variable x.

 10. Which of the following lines correctly creates a method named cost from a function named
get_cost(), if this line is within a constructor function?

 A this.cost=get_cost();

 B cost=get_cost;

 C get_cost=this.cost();

 D this.cost=get_cost;

 11. Which of the following would send an alert to the viewer that tells the name of the browser
being used?

 A window.alert(“You are using ”+navigator.appVersion);

 B window.alert(“You are using ”+navigator.appName);

 C window.alert(“You are using ”+navigator.javaEnabled());

 D window.alert(“You are using navigator.appName”);

 12. What could you say about the following code?

myhouse.kitchen="big";

 A Assuming the kitchen object exists, the myhouse property is assigned a new string value.

 B Assuming the myhouse object exists, the value of the variable kitchen is added to the
string big.

 C Assuming the myhouse object exists, the kitchen property is assigned a new string value.

 D This wouldn’t do anything.

 13. In JavaScript, there are many __________ objects you can use to gain access to certain
properties and methods you may need.

 14. The __________ object gives you access to the various properties of the viewer’s browser.

 15. Which of the following is not a property of the navigator object?

 A appName

 B appCodeName

 C appType

 D appVersion

This page intentionally left blank

205

Chapter 9
The Document Object

 206 JavaScript: A Beginner’s Guide

Key Skills & Concepts
● Defining the Document Object

● Using the Document Object Model

● Using the Properties of the Document Object

● Using the Methods of the Document Object

● Creating Dynamic Scripts

Now that you know how objects work and how to use predefined JavaScript objects, it is
time to look at some of the major predefined objects in JavaScript.
This chapter covers the document object, which helps you to gather information about

the page that is being viewed in the browser. As you will find out in this chapter, some of the
document object’s properties and methods can be used to get information about the document
or to change information about the document. You will also be introduced to the Document
Object Model, and see how this can be used with style sheets to create dynamic scripts.

Defining the Document Object
The document object is an object that is created by the browser for each new HTML page
(document) that is viewed. By doing this, JavaScript gives you access to a number of properties
and methods that can affect the document in various ways.

You have been using the write() method of the document object for quite some time in this
book. This method allows you to write a string of text into an HTML document.

To begin your journey through the document object, you will take a look at the Document
Object Model (DOM) and the various properties you can access with this object. Many of these
properties will turn out to be quite useful when writing scripts.

Using the Document Object Model
The Document Object Model (DOM) allows JavaScript (and other scripting languages) to
access the structure of the document in the browser. Each document is made up of structured
nodes (for example, the body tag would be a node, and any elements within the body element
would be child nodes of the body element). With this structure in place, a scripting language can
access the elements within the document in a number of ways, allowing for the modification of
the elements within the document.

 Chapter 9: The Document Object 207

If you had the following HTML code, you could use JavaScript to access its structure:

<body>
 <h1>My Page</h1>

</body>

Figure 9-1 shows how the body element is a node, and how it can have child nodes and
attribute nodes.

The h1 and img elements are both child nodes of the body element. Each element also has
its own nodes. The h1 element contains a text node as its child node (the text “My Page”), while
the img element contains two attribute nodes (src=“myimage.jpg” and alt=“My Picture”). This
type of structure is available throughout the document, so while this is a simple example, much
more complex document structure trees could be drawn for most HTML pages.

You have already been accessing the DOM using the document.getElementById() method
to access elements in the document by their id attribute values. You can also get groups of
elements using such methods as getElementsByTagName() or getElementsByClassName().

Accessing the DOM with JavaScript allows you to create more dynamic scripts that can alter
elements within the document in reaction to user events. You are also able to create elements
and nodes using certain JavaScript methods of the document object (such as createElement() or
createTextNode()). These types of scripts will be covered later in the chapter.

First, you will look at the properties and methods of the document object.

Using the Properties of the Document Object
Table 9-1 lists the properties of the document object with a short description of each. Following
the table, some specific properties are discussed in more detail. Sample scripts are provided for
several of the properties. Note that a number of the properties use arrays to hold information. If
you would like to learn about arrays to better understand their use, see Chapter 11.

NOTE
Not all of these properties work cross-browser. Also, a number of them have been
deprecated (alinkColor, bgColor, fgColor, linkColor, and vlinkColor). You can see
more information on these properties by visiting http://developer.mozilla.org/
en/DOM/document#Properties and http://msdn.microsoft.com/en-us/library/
ms531073(VS.85).aspx.

Figure 9-1 An example of part of a document’s structure

http://developer.mozilla.org/en/DOM/document#Properties
http://developer.mozilla.org/en/DOM/document#Properties
http://msdn.microsoft.com/en-us/library/ms531073(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms531073(VS.85).aspx

 208 JavaScript: A Beginner’s Guide

Table 9-1 The Properties of the Document Object

Property Description

activeElement Returns a string holding the value of the active element in the document

alinkColor Returns the hexadecimal value of the active link color of the document

anchors An array of all the named anchors in the document

async Used to tell the browser whether to load a document with an asynchronous
request or a synchronous request

applets An array of all the Java applets in a document

bgColor Returns the hexadecimal value of the background color of the document

body Returns the body or frameset element of the document

characterSet Returns a string value that represents the character set used to encode the
document

charset Returns a string value that represents the character set used to encode the
document

childNodes An array of all of the child nodes of the document

compatMode Returns the string “BackCompat” if the document is rendered in Quirks mode or
the string “CSS1Compat” if the document is rendered in Strict mode

contentType Returns a string for the Content-Type from the MIME header of the document

cookie Used to set JavaScript cookies in a document

defaultCharset Returns a string value that represents the default character set used to encode
the document

defaultView References the window object for the document

designMode Returns a string value that provides information on whether or not the
document can be edited

dir Returns a string value that represents the reading direction of the document

doctype Returns the doctype declaration associated with the document

documentElement Returns a string representing the root node of the document

documentURIObject Returns an object representing the URI of the document (only available to
privileged JavaScript code)

domain Returns the domain name of the server for the document

embeds An array of all the embed tags in the document

expando Returns a Boolean value based on whether or not arbitrary variables can be
created within the document

fgColor Returns the hexadecimal value of the default text color of the document

fileCreatedDate Returns the date the document was created

 Chapter 9: The Document Object 209

Property Description

fileModifiedDate Returns the date the document was last modified

formName Not a property itself, but creates a new property with each named form placed
in the document

forms An array of all the form tags in a document

frames An array of all of the frames used in the document

height Returns the height, in pixels, of the body element of the document

images An array of all the image (img) tags in the document

implementation Returns a string value representing the implementation object of the document

inputEncoding Returns a string representing the document’s encoding

lastModified Returns the date of the last modification of the document

layers An array of all the layer tags on the page (Netscape Navigator 4 only)

all Allows access to all the objects on a page

linkColor Returns the hexadecimal value of the default link color for the document

links An array of all the link (<a>) tags in the document

location Returns the URI of the document

namespaces An array of all the namespaces in the document

parentWindow Returns a reference to the parent window (the parent window’s document object)

plugins An array of all the plugins used in the document

protocol Returns the protocol portion of the Web address (URL) of the document

readyState Returns a string value that represents the current state of the document

referrer Returns the URL of the document that referred the viewer to the current document

scripts An array of all the script tags used in the document

styleSheets An array of all the style sheets used in the document

tags Sets the style of an HTML tag in the document

title Returns the text used inside the title tags of the document

uniqueID Returns a string value that represents a unique ID given to the document

URL Returns the URL of the current document

URLUnencoded Returns the URL of the document without any encoding

vlinkColor Returns the hexadecimal value of the visited link color for the document

width Returns the width, in pixels, of the body element of the document

Table 9-1 The Properties of the Document Object (continued)

 210 JavaScript: A Beginner’s Guide

The Color Properties
The alinkColor, bgColor, fgColor, linkColor, and vlinkColor properties were often used to obtain
or change the color of various elements on the page. These properties are now recommended to
be set with CSS or changed using style properties (discussed later in the chapter).

The anchors Property (Array)
The anchors property is actually an array that is set by the browser for all the named anchors
in a document (such as). Since you haven’t studied arrays yet, this won’t be
very helpful to you for now; however, you will find out more on how arrays like this one can
be useful when you get to Chapter 11.

JavaScript gives you the length property to enable you to find out the number of named
anchors on the page. You can use the length property to write to the browser window how
many named anchors are on a page:

<body>

<h1>My Page</h1>

<h2>Section 1</h2>
This section is all about section 1 stuff...

<h2>Section 2</h2>
This section talks about all the section 2 issues and ...

<script type="text/javascript">
document.write("There are "+document.anchors.length+" named anchors");
</script>
</body>

This code creates two named anchors on the page and then writes the number of anchors
on the page to the screen afterward. Figure 9-2 shows the result of this script in the browser
window.

Again, this is more of an informational property for now. Once you learn arrays, you can
make more use of the anchors property.

The cookie Property
The cookie property is used to set a JavaScript cookie to store information for the viewer. A
cookie is a small text file saved to the viewer’s computer for a particular amount of time (a set
date or a browser session). Cookies can be helpful in allowing a site to remember and retrieve
information for a viewer (such as the contents of a shopping cart, special settings, or session
information).

The first named anchor is
set with the anchor tag

The second named anchor
is set with the anchor tag

The number of named anchors
is displayed on the page

 Chapter 9: The Document Object 211

To set a cookie, you set the value of the document.cookie property to a string that contains
the information you want to store for the viewer. The following is the syntax:

document.cookie=string;

You would replace string with a text string that contains the information you want to use.
Usually, this is in a format like the one shown in the following example setting of a cookie:

document.cookie="site=homepage";

You can see that there is one thing set by the cookie: the site is homepage. In between the two
the equal sign is used to help separate the site and homepage when the cookie is read.

You will need to get a handle on more advanced string-handling techniques before you
try to deal with cookies any further. You will see how to use the advanced string-handling
techniques and how to set and read cookies in more detail in later chapters. For now, you just
need to know that the document.cookie property is used to set cookies.

The dir Property
The dir property returns a string value that represents the reading direction of the document.
This value can be either ltr (left to right) or rtl (right to left). This property is useful for
displaying Web pages in languages that are read from right to left rather than left to right,

Figure 9-2 The number of named anchors on the page is displayed in the browser window

 212 JavaScript: A Beginner’s Guide

by setting the value to rtl. For fun, you can change the way your page looks on-the-fly with
this property, as in the following example code:

var the_button = document.getElementById("change_sides");
the_button.onclick = function() {
 document.dir = (document.dir!="ltr") ? "ltr" : "rtl";
}

Then, in your HTML file, you add a button to make the switch:

<body>
<form>
<input type="button" value="Change Sides" id="change_sides"
 onclick="switch_sides();" />
</form>
</body>

When the viewer clicks the button, the reading direction of the page will change. In this case,
your button starts out on the left side of the page and moves to the right side when the button is
clicked. Figure 9-3 shows the page before the button is clicked, and Figure 9-4 shows the page
after the button is clicked.

The domain Property
The domain property holds the value of the domain name that served the page to the viewer.
This value is whatever comes after http:// at the beginning of a Web address and before any
forward slashes. So, if you were looking at a page from http://www.pageresource.com, the
document.domain value would be www.pageresource.com.

The code checks for the values and changes them

Figure 9-3 The Web page before the button is clicked

http://www.pageresource.com
www.pageresource.com

 Chapter 9: The Document Object 213

To use the domain property, you send an alert to the viewer that identifies the domain.
Placing the following code in a document would pop up an alert with the value of the domain
property:

<body>
<script type="text/javascript">
window.alert("You have reached the "+document.domain+" domain!");
</script>
</body>

If this code were placed on any page at http://javascriptcity.com, an alert saying “You have
reached the javascriptcity.com domain!” would be sent to the viewer.

NOTE
When using this property locally without a Web server, the returned value may be an
empty string rather than a domain name.

The formname Property
The formname property isn’t actually a property itself. Any time you name a form, you create
a formname property, but the property is actually the name of the form and not formname. To
see the meaning of this, take a look at a page with a form on it. The following code will give
you an HTML page that includes a form:

<body>
<form name="funform">
<input type= "button" name="funb" value="You can click me I suppose" />
</form>
</body>

Figure 9-4 The Web page after the button is clicked

The form is given a name to create a property

http://javascriptcity.com

 214 JavaScript: A Beginner’s Guide

This code creates a document.funform property from the name=“funform” attribute in the
opening <form> tag. While this doesn’t do much on its own, it does allow you access to the
form elements within the form.

The funform property actually has properties under it, which are named after the elements
of the form. You could access the button you used in the form from its name=“funb” attribute
using document.funform.funb to get to it; however, even this doesn’t let you do much by itself.

You need to dig down one more level. The value property allows you to set or change the
value of the contents of a form element. These contents are usually set in the value attribute of
the form element’s tag. In the form here, you could change the value of the text on the button
by accessing its value property using document.funform.funb.value and assigning it a new
value.

The following example shows how you could use the onclick event handler to make the
button text change when the button is clicked:

<body>
<form name="funform">
<input type="button" name="funb" value="You can click me I suppose"
 onclick="document.funform.funb.value='Thanks, you clicked me!';" />
</form>
</body>

Figure 9-5 shows how the page and the button will look before the button is clicked. Notice
that the button shows the text that was set in the value attribute of its input tag. Now take a look
at the button in Figure 9-6, after it has been clicked. The text on the button has been changed!
The button lets you know that you clicked it, and it is displaying manners by saying “Thanks”
to you for the click.

It should be noted that while this will work, modern browsers can simply access each form
element and its value by assigning it an id and using the document.getElementById() method
instead of going through the form’s name first.

The button text is changed by giving it a new value

Figure 9-5 The browser display before the button is clicked

 Chapter 9: The Document Object 215

The forms Property (Array)
The forms property is an array that has an entry for each form on a Web page. The array gives
you an alternative to using the formname property; however, you still need to study arrays in
Chapter 11 before you can look into this array in more detail.

As with the other similar properties, you can use the length property in the form of
document.forms.length to find out how many forms are on the page.

The images Property (Array)
The images property is another array. This array has an entry for each image on a Web page.
As with the other similar properties, you can use the length property in the form of document.
images.length to find out the number of images that are in an HTML document.

Another thing this property can be used for is to detect what browsers support the Image
object in JavaScript. This is helpful if you wish to preload an image. Preloading an image is
a good idea when using image rollover scripts (which you will create in Chapter 16) and can
also be useful if you want to place in the viewer’s cache file an image that will be used on
another page within your Web site, to make that page load more quickly for the viewer.

To check whether a browser supports the Image object, you can place any code that needs
the Image object within an if block. The if block will test for the existence of the document.
images property, as shown in the following example code:

if (document.images) {
 JavaScript Statements
}

Notice that all you need inside the parentheses is document.images. If this property exists,
it returns true (since anything besides null would be treated as true—basically a short way

Figure 9-6 The browser display after the button is clicked

This is where you place the code that needs
the document.images property to work

 216 JavaScript: A Beginner’s Guide

of saying !=null), and the statements inside the block are executed. If the property does not
exist, the block is ignored, and the older browsers are happy that they don’t have to try any of
that code.

To preload an image, you first need to create a new instance of the JavaScript Image object.
The following code shows the syntax used for creating a new instance of the Image object:

var varname= new Image(width,height);

You replace varname with the name you want to give to this instance of the Image object. You
replace width with the width, in pixels, of the image you wish to use, and replace height with
the height, in pixels, of the image.

So, if you want to create an instance of the Image object named myimage, where the image
would have a width of 100 pixels and a height of 75 pixels, you could use the following code:

var myimage= new Image(100,75);

The width and height parameters are optional. You can simply create the instance of the object
without them as well:

var myimage= new Image();

Next, you need a way to define what image will be used (like the source [src] attribute in
an image tag). The Image object comes with an src property that allows you to do this. You
just have to set it by giving it a value. The following code shows how this is done:

var myimage= new Image();
myimage.src= "smile.gif";

Now the browser will try to load the image at the local address of smile.gif. You can also
use a full URL if you need to do so. Since the image tries to load here without the need to be
displayed, it is being preloaded.

TIP
Preloading is usually done in the head section of a document (or in an external script file
that is called in the head section) so that the image starts loading as soon as possible.

To put all of this together, you need to place this code inside your if block so that it does
not get run by browsers that don’t support the Image object. The following code puts both
pieces together and places the script inside the head section of a document. This will preload
the image for later use.

<head>
<script language="javascript">
if (document.images) {
 var myimage= new Image();
 myimage.src= "smile.gif";
}
</script>
</head>

This does the job of preloading your image so you can use it later.

A new instance of the Image object is created

The object is given a value for its
src property, preloading the image

 Chapter 9: The Document Object 217

To preload more than one image, you need to create an instance of the Image object for
each image you want to preload. So, if you want to preload three images, you could use the
following code:

<head>
<script type="text/javascript">
if (document.images) {
 var myimage= new Image();
 myimage.src= "smile.gif";
 var yourimage= new Image();
 yourimage.src= "friendly.gif";
 var herimage= new Image();
 herimage.src= "happy.gif";
}
</script>
</head>

This preloads three images for you. The new instance yourimage preloads an image with the
filename friendly.gif. The instance herimage preloads an image with the filename happy.gif.
You can add more images, using the same technique, if you’d like.

The lastModified Property
The lastModified property holds the value of the date and time the current document was
last modified. This is used mostly for informational purposes, such as displaying the date the
document was last modified so the viewer knows when you last updated your page. The value
of this property depends on your browser, as different browsers have different results if you
write the last modified date on the page.

Consider the following code, which writes the value of the document.lastModified
property into a Web page to display the last modified date and time:

<body>
<h1>My Always Updated Web Page!</H1>
<script type="text/javascript">
 document.write("Last Updated: "+document.lastModified);
</script>
</body>

Figure 9-7 shows the result of this when viewed in Mozilla Firefox.
When writing the date of the last modification on the page, the differences only matter in

terms of space on the page. Some layouts may need to have extra space arranged for the longer
version of the property.

The layers Property (Array)
The layers property, yet another array, has an entry for each layer tag on the page, and you can
use the length property in the form of document.layers.length to find the number of layers on
a page. The layer tag was used in Netscape Navigator 4 as a way to create different sections

The first image is preloaded

The second image is preloaded

The third image is preloaded

 218 JavaScript: A Beginner’s Guide

of a page (which could be layered) and access them for scripting. In modern browsers, it
is no longer used, as each element can be accessed by other means (such as the document.
getElementById() method).

Since this property is only available in version 4 of Netscape Navigator, you can use this
property to see whether the browser being used is Netscape Navigator 4. You can test for the
document.layers property in the same way you tested for the document.images property, which
is nice and short:

if (document.layers) {
 window.alert("You have Netscape Navigator 4!");
}

This is useful if you need to make certain scripts are backward-compatible with Netscape
Navigator 4.

The all Property
Whereas the layers property helps you to detect Netscape Navigator 4, the all property can
help you to detect Internet Explorer 4 or higher. The all property was created to give JavaScript
access to all the objects on a page. Again, this is better done in modern browsers using other
methods such as the document.getElementById() method.

So, to see if the viewer is using Internet Explorer 4 or higher, you could use the following
code:

if (document.all) {
 window.alert("You have Internet Explorer 4 or better!");
}

Figure 9-7 The last modified date when viewed in Mozilla Firefox

 Chapter 9: The Document Object 219

The links Property (Array)
The links property, another array, holds a value for each link (such as) and
linked area of an image map (such as <area href=“url”>) on a page. You can find out how
many links are on the page by using the document.links.length property.

The referrer Property
The referrer property is used for informational purposes and holds the value of the URL of
the page that the viewer was on before arriving at your page (the referring page). While this
can be useful, the viewer doesn’t always come in with a referring URL (such as when using
a bookmark or typing in the address), so the value could be nothing. Also, the value of this
property isn’t always correct, because different browsers may consider different types of things
as referring the viewer to the new page, rather than just links.

To use this property, you could send an alert to the viewers of a page telling them where
they were before they got to your page. Placing the code in the following example into the
document would do the trick:

<body>
<script type="text/javascript">
 window.alert("You came from "+document.referrer+"!");
</script>
</body>

So, if the referring page were http://www.pageresource.com/webdes.htm, an alert saying “You
came from http://www.pageresource.com/webdes.htm!” would be sent to the viewer.

The title Property
The title property holds the string value of the title of the HTML document. The title is set
inside the <title> and </title> tags of a page.

You can use the title property to display the title of the page to the viewer someplace other
than in the top bar of the window. The following code would allow you to do this:

<head>
<title>Lions, Tigers and Bears!</title>
</head>
<body>
<script type="text/javascript">
 document.write("<h1>" + document.title + "</h1>");
</script>
Lions and tigers and bears were what I saw when I went to ...
</body>

This displays your title as a heading on the page. Figure 9-8 shows the result of this when
viewed in a browser.

The title of the document is set here

The title is shown as a
heading to the viewer

http://www.pageresource.com/webdes.htm
http://www.pageresource.com/webdes.htm

 220 JavaScript: A Beginner’s Guide

The URL Property
The URL property holds the value of the full URL of the current document. This information
can be useful if you print it at the bottom of your HTML page, because it will show the page
URL for anyone who prints out your page.

While you could just type the URL at the bottom on your own, this could become tedious
when it needs to be done on numerous pages. This is where this property can be handy, because
you can cut and paste a little script to each page rather than type the various URL addresses
each time. An example of writing the URL address on the page is shown in the following code:

<body>
<h1>Buy Something!</h1>
If you don't buy something I will be really upset so you had better...

<script type="text/javascript">
 document.write("You are at: "+document.URL);
</script>
</body>

Figure 9-9 shows the result of the preceding code in a browser. The last line of the page
tells the viewer the current location. The figure shows a local file address, but it would show a
regular URL if the page were online.

The URLUnencoded Property
The URLUnencoded property returns the URL of the document without any encoding. For
instance, if there is a filename with a space in it, the property will return the space rather than
a %20 in its place. For the URL http://www.pageresource.com/my script.html, the document.

Figure 9-8 The title of the document is shown as a heading on the page

http://www.pageresource.com/myscript.html

 Chapter 9: The Document Object 221

URL property would return http://www.pageresource.com/my%20script.html. The document.
URLUnencoded property returns http://www.pageresource.com/my script.html, the URL
without the encoding for the space. Note that at the time of this writing this property was only
available in Microsoft Internet Explorer (of the three browsers mentioned in this book).

Figure 9-9 The URL of the document is shown at the end of the page contents

Q: So many of these properties were arrays that I couldn’t really use yet. Will I ever use
them for anything?

A: The reason the arrays weren’t discussed in more detail is that you haven’t yet learned
how arrays work. When you do, you will be able to make better use of the properties that
create arrays because you will know how to access the array and what you can do with the
elements of the array when you access them.

Q: The referrer property is cool! Is there any way I can write that information to a file
each time a visitor drops in so that I know where my visitors are coming from?

A: Unfortunately, client-side JavaScript cannot save information in a file (other than cookies,
which are only useful to an individual viewer); thus, you can’t use this property to track
the URL addresses of referring pages in a personal file. To do this, you would need to use a
server-side language to get the information and save it in a file on the server.

Ask the Expert

(continued)

http://www.pageresource.com/my%20script.html
http://www.pageresource.com/myscript.html

 222 JavaScript: A Beginner’s Guide

Using the Methods of the Document Object
The methods of the document object allow you to do some new things that you haven’t been
able to do yet. Table 9-2 lists the methods with a short description of each. Because a number
of these methods are browser-specific (as with the properties) at the time of this writing, only
some specific methods are described in more detail following the table.

Q: The creation of a formname property through naming a form was a little confusing.
Then, trying to change the value of a form element by using its name and a value
property made it more confusing. Can I see another example, perhaps with a text box
or something other than a button?

A: This method of accessing form elements is not used as often with modern browsers. More
often than not, a newer method such as getElementById() will be used, with which you are
already familiar. If it is still confusing, do not fear. You have an entire chapter on the use of
JavaScript with forms later in the book (Chapter 14).

Method Description

attachEvent() Attaches a function to an event, so that the function runs when the event
occurs (Internet Explorer only)

createAttribute() Creates an attribute with a name that is sent to it as a parameter

createAttributeNS() Creates a new attribute in a particular namespace

createCDATASection() Creates a new CDATA section

createComment() Creates a comment with the value that is sent to it as a parameter

createDocumentFragment() Creates a new document fragment

createElement() Creates an element of the type sent to it as a parameter

createElementNS() Creates an element in a particular URI and a particular type sent to it as
parameters

createEntityReference() Creates a new entity reference

createEvent() Creates an event

createEventObject() Creates an event object for the purpose of passing event information

createNodeIterator() Creates a node iterator object

createNSResolver() Creates a namespace resolver

createProcessingInstruction() Creates a processing instruction

Table 9-2 The Methods of the Document Object

 Chapter 9: The Document Object 223

Method Description

createRange() Creates a range object

createStyleSheet() Creates a style sheet for the document to use (Internet Explorer only)

createTextNode() Creates a text string from the value sent to it as a parameter

createTreeWalker() Creates a treewalker object

detachEvent() Detaches a function from an event (Internet Explorer only)

elementFromPoint() Returns the element object that appears at the location that is sent to it in
two parameter values (pixels from left and pixels from top)

evaluate() Returns a result based on the parameters sent to it

execCommand() Executes a command on the document when the document is in design
mode

getElementById() Returns a reference to the object with the ID attribute that is sent to it as
a parameter

getElementsByClassName() Returns references to the elements with the class name that is sent to it as
a parameter

getElementsByName() Returns references to the objects with the name attribute that is sent to it
as a parameter

getElementsByTagName() Returns references to the elements with the tag name that is sent to it as
a parameter

getElementsByTagNameNS() Returns references to the elements with the tag name and namespace
sent to it as parameters

getSelection() Returns the value of a string of selected text in the document

hasFocus() Returns a Boolean value based on whether or not the document has focus

load() Loads an XML document

mergeAttributes() Copies attributes from an object

open() Opens a new document that allows you to write its contents using write()
or writeln() statements

close() Closes a new document that has been opened with the open() method

queryCommandEnabled() Returns a Boolean value based on whether or not a command sent to it
as a parameter can be executed

queryCommandIndeterm() Returns a Boolean value based on whether or not a command sent to it
as a parameter is in the indeterminate state

queryCommandState() Returns a Boolean value based on whether or not a command sent to it
as a parameter has executed

queryCommandSupported() Returns a Boolean value based on whether or not a command sent to it
as a parameter is supported

Table 9-2 The Methods of the Document Object (continued)

 224 JavaScript: A Beginner’s Guide

NOTE
Not all of these properties work cross-browser. You can see more information on these
properties by visiting http://developer.mozilla.org/en/DOM/document#Methods and
http://msdn.microsoft.com/en-us/library/ms531073(VS.85).aspx.

The getElementById() Method
The getElementById() method is one that you have been using extensively in the book already.
It allows you access to an element by the value of its id attribute. As you already know, if you
have the following code, you can access the element with this method:

<div id="some_text">This is some text.</div>

Since the id attribute of the div element has the value of some_text, the document.
getElementById() method can access the div element using that value as a string parameter:

var text_element = document.getElementById("some_text");

As you have done before, you could make use of an event that occurs on this element and
script a reaction to the event.

The getElementsByClassName() Method
This method allows you to get an array filled with all the elements in the document that have
the specified class name (from a CSS class) sent as a parameter. For example, to obtain all of
the elements with a class name of number_one, you could use the following code:

var my_class = document.getElementsByClassName("number_one");

This can be a good way to access a particular group of elements on the page. Since it deals
with arrays, this method will be discussed in more detail in Chapter 11.

Method Description

queryCommandValue() Returns the current value of the document for the command that is sent to
it as a parameter

recalc() Recalculates the dynamic properties in the document

releaseCapture() Releases the mouse capture from the document

setActive() Sets an object as active, but does not give it focus

write() Allows you to write a string of text into an HTML document

writeln() Allows you to write a string of text into an HTML document, but ends the
line with a JavaScript newline character

Table 9-2 The Methods of the Document Object (continued)

http://developer.mozilla.org/en/DOM/document#Methods
http://msdn.microsoft.com/en-us/library/ms531073(VS.85).aspx

 Chapter 9: The Document Object 225

The getElementsByTagName() Method
This method allows you to get an array filled with all the elements in the document that have
the specified tag name sent as a parameter. For example, to obtain all of the image elements in
the document, you could use the following code:

var all_images = document.getElementsByTagName("img");

Since it deals with arrays, this method will be discussed in more detail in Chapter 11.

The open() and close() Methods
The open() method allows you to open a new document and create its contents entirely with
document.write() or document.writlen() statements. When the open() method is called, the
browser looks for these statements so that it can write the new page. Once the write() and/or
writeln() statements are completed, you need to use document.close() to finish the new page.

To get an example of the use of the open() method, suppose you want to write a new page
based on the name of the viewer. To do this, you not only need to use the open() and close()
methods, but also need to create a formName property to use so that you can grab the name
entered by the viewer in a text box.

Start with the code for the body section of the initial page. You need a form with a text box
and a way to invoke a function that will create the new document. The following code shows a
way that you can do this (save the file as document_open.html):

<body>
Enter your name in the box below, then click
 the button to see a personalized page!

<form id="newp" onsubmit="newpage();">
Name: <input type="text" id="yourname" size="25">

<input type="submit" value="Submit">
</form>
<script type="text/javascript" src="document_open.js"></script>
</body>

This sets up your script, giving you a form with an id of newp and a text box with an id of
yourname. It also has a button to submit the form. You now need to create the newpage()
function in your external JavaScript file so that this form will work.

The newpage() function needs to grab the contents of the text box and assign it to a variable.
It then needs to open your new customized page in the browser window. The following code
shows how this can be done (save the file as document_open.js):

function newpage() {
 var thename = document.getElementById("yourname").value;
 document.open();

The form is given an id

The text box is given an id

The value of the text box contents is assigned to a variable

A setup for a new document is opened

 226 JavaScript: A Beginner’s Guide

 document.write("<h1>Welcome!</h1>");
 document.write("Hello, "+thename+", and welcome to my page!");
 document.close();
}

The first thing the function does is to grab the contents of the text box. To get the contents of
the text box, you need to use the value property, which you add to the end to get document.
getElementById(“yourname”).value. This value is then assigned to the thename variable for
easy use within your document.write() commands.

Once you have that value, you are ready to open the new page. To do this, you use the
document.open() command, which allows you to use a series of document.write() statements
until the document.close() command is used. You use the document.write() statements to write
a greeting to the viewer on the page.

You can now try this out by opening the HTML page in your browser. Figure 9-10 shows
the initial page with the form (the page before the form button is clicked). This is where the
viewer can enter a name and click the button.

Figure 9-11 shows the result of entering the name “John” in the text box and clicking the
button. The new page appears with a greeting!

TIP
The open() and close() methods can be useful to make pages on-the-fly based on
variables like names, favorite foods, or other things for which you may want to
customize a new page.

The new document uses these
statements to know what to display

The setup for the new document is
closed, allowing it to be displayed

Figure 9-10 This is the page that allows the viewer to enter information

 Chapter 9: The Document Object 227

The write() Method
You started using the write() method early in the book, so you should know quite a bit about
how it works already; but here’s a brief description of this method, as a refresher.

The document.write() method is used to write a string value to the page. The following
code would write “hi there” in the body of an HTML document:

<body>
<script type="text/javascript">
document.write("hi there");
</script>
</body>

The writeln() Method
The writeln() method works the same way as the document.write() method, but adds a
JavaScript newline character (\n) at the end of the statement. Recall that Chapter 3 discussed
how the JavaScript newline character works—it only places a new line in the page source code
to make it easier to read.

TIP
While the newline character only affects the appearance of the source code when using
document.write(), it can be used to create new lines in display elements created by
JavaScript such as alert, prompt, and confirm boxes.

Figure 9-11 Once the button is clicked, the viewer will get a new page similar to this one

 228 JavaScript: A Beginner’s Guide

The appearance of the page itself is not affected by the JavaScript newline character.
Recall the example from Chapter 3 that split the code into two different lines with the newline
character:

<body>
<script type="text/javascript">
document.write("JavaScript Rules!\n This is fun.");
</script>
</body>

Since the document.writeln() method adds a newline character at the end of the statement, you
could rewrite the preceding code using the following document.writeln() statements:

<body>
<script type="text/javascript">
document.writeln("JavaScript Rules!");
document.writeln(" This is fun.");
</script>
</body>

This would put the lines of code on two different lines in the page source, but would not affect
the appearance of the page in the browser.

Creation Methods
There are also methods of the document object (such as createElement(), createAttribute(),
and createTextNode()) that allow you to create various elements or nodes on the page using
JavaScript. To make use of them, though, the new content must be appended as a child of an
existing node in the DOM. This is where DOM node properties and methods are needed.

DOM Node Properties
The DOM node properties are listed in Table 9-3.

Property Description

attributes An array of all of the attributes in the specified node; the name and value
properties of this property can be used to access the attribute name or attribute
value for each member of the array

childNodes An array of all the child nodes of the specified node

className Returns the value of the class attribute of the specified node

clientHeight Returns the height, in pixels, of the specified node

clientWidth Returns the width, in pixels, of the specified node

dir Returns the value of the direction of the text in the specified node (ltr or rtl)

firstChild Returns the first child node of the specified node

Table 9-3 The DOM Node Properties

 Chapter 9: The Document Object 229

Property Description

id Returns the value of the id of the specified node

innerHTML Returns the HTML code (text, image code, tags, etc.) within the specified node,
such as all of the HTML code within a div element

lang Returns the language value of the specified node

lastChild Returns the last child node of the specified node

nextSibling Returns the node following the specified node

nodeName Returns the name of the specified node (such as div for a div element)

nodeType Returns the type of the specified node

nodeValue Returns the value of the specified node (such as the text within a div element or
the value of an attribute)

offsetHeight Returns the offset height of the specified node

offsetWidth Returns the offset width of the specified node

ownerDocument Returns the document object that contains the specified node

parentNode Returns the parent node of the specified node

previousSibling Returns the node before the specified node

scrollLeft Returns the difference between the left edge and the left edge in view of the
specified node

scrollTop Returns the difference between the top edge and the top edge in view of the
specified node

scrollHeight Returns the entire height (including anything hidden and viewable via a scroll
bar) of the specified node

scrollWidth Returns the entire width (including anything hidden and viewable via a scroll
bar) of the specified node

style Returns the style object of the specified node

tabIndex Returns the tab index of the specified node

tagName Returns the tag name (in uppercase) of the specified node

title Returns the value of the title attribute of the specified node

Table 9-3 The DOM Node Properties (continued)

When Table 9-3 mentions the specified node, a node works much like how you worked
with elements in previous chapters. For instance, you might have the following HTML code:

<body>
<div id="div1" title="All about me!">
This page is about me, me, and... me!
</div>
</body>

 230 JavaScript: A Beginner’s Guide

If you wanted to obtain the value of the title attribute of the div element, you could use
document.getElementById() to grab the div element by its id of div1. This would be the
specified node for the DOM node title property. Then, you could access the title property of
the element node, as in the following code:

var me_div = document.getElementById("div1");
var me_title = me_div.title;
window.alert("The title of the div element is" + me_title);

This works just like object properties, as you learned in the previous chapter. The me_div.title
property returns the string value “All about me!” which is the value of the div element node’s
title attribute.

Knowing this, you can use the DOM node methods in the same way.

DOM Node Methods
Table 9-4 lists the DOM node methods.

Method Description

addEventListener() Adds an event listener to the specified node to run a function on the
event sent to it as a parameter

appendChild() Appends a node as the last child of the specified node

attachEvent() Attaches an event to the specified node to run a function on the event
sent to it as a parameter

blur() Removes focus from the specified node

click() Executes the click event on the specified node

cloneNode() Creates a clone of the specified node

detachEvent() Detaches an event from the specified node

dispatchEvent() Executes an event on the specified node

focus() Gives focus to the specified node

getAttribute() Returns the value of the attribute name sent to it as a parameter on the
specified node

getAttributeNS() Returns the value of the attribute name and namespace sent to it as a
parameter on the specified node

getAttributeNode() Returns the attribute node of the attribute name sent to it as a
parameter for the specified node

getAttributeNodeNS() Returns the attribute node of the attribute name and namespace sent to
it as parameters for the specified node

Gets the element by its id and assigns it to a variable Assigns the value of the
element’s title property
to a variable

Alerts the value to the viewer

Table 9-4 The DOM Node Methods

 Chapter 9: The Document Object 231

Method Description

getElementsByTagName() An array of all the child element nodes with the tag name sent to it as
a parameter in the specified node

getElementsByTagNameNS() An array of all the child element nodes with the tag name and
namespace sent to it as parameters in the specified node

hasAttribute() Returns true if the attribute name sent to it as a parameter exists on the
specified node, or false if not

hasAttributeNS() Returns true if the attribute name and namespace sent to it as parameters
exist on the specified node, or false if not

hasAttributes() Returns true if the specified node has any attribute nodes defined, or
false if not

hasChildNodes() Returns true if the specified node has any child nodes. or false if not

insertBefore() Inserts a node sent to it as a parameter before the node sent to it as a
second parameter inside the specified node

normalize() Normalizes the specified node

removeAttribute() Removes the attribute node for the attribute name sent to it as a
parameter from the specified node

removeAttributeNode() Removes the attribute node for the attribute node object reference sent
to it as a parameter from the specified node

removeAttributeNS() Removes the attribute node for the attribute name sent to it as a
parameter with the namespace sent to it as a parameter from the
specified node

removeChild() Removes the child node sent to it as a parameter from the specified node

removeEventListener() Removes an event listener from the specified node

replaceChild() Replaces the child node sent to it as the second parameter with the
child node sent to it as the first parameter in the specified node

scrollIntoView() Scrolls the specified node into view in the browser window

setAttribute() Sets an attribute node’s name (first parameter) and value (second
parameter) for the specified node

 setAttributeNode() Sets an attribute node as the attribute node object sent to it as a
parameter for the specified node

setAttributeNodeNS() Sets an attribute node as the attribute node object sent to it as a
parameter with the namespace sent to it as a parameter for the
specified node

setAttributeNS() Sets an attribute node’s namespace (first parameter), name (second
parameter), and value (third parameter) for the specified node

Table 9-4 The DOM Node Methods (continued)

 232 JavaScript: A Beginner’s Guide

NOTE
When you see properties or methods listed that use namespaces, these are used mainly
in XML documents and will not be referred to frequently in this book.

As mentioned earlier, to make the creation methods of the document object useful by
adding the created node to the document, the DOM node method, such as appendChild() or
insertBefore(), is needed to add the new node to the document.

For instance, you might have the HTML code used earlier, as follows:

<body>
<div id="div1" title="All about me!">
This page is about me, me, and... me!
</div>
</body>

This code has a div element node with a child text node (and attribute nodes). If you want to
create another div element as the last child node of the div1 element node, you could use a
combination of document.createElement(), document.createTextNode(), and the DOM node
method appendChild().

First, go into the JavaScript code and grab the div1 element by its id:

var me_div = document.getElementById("div1");

Next, create the new element node using document.createElement():

var inner_div = document.createElement("div");

After that, create the text node for the inner_div node by using the document.createTextNode()
method:

var inner_div_text = document.createTextNode("More about me...")

Next, use the DOM node method appendChild() to add the text node as a child of the new
inner_div node:

inner_div.appendChild(inner_div_text);

Finally, use the DOM node method appendChild() to add the inner_div node to the document
structure as the last child element of the me_div node:

me_div.appendChild(inner_div);

This adds your new div node at the end of the original div element (but before the original
element is closed, since it will be a child node). Thus, the document structure for the HTML
code would now be like this (though it won’t show up using a “View Source” command):

<body>
<div id="div1" title="All about me!">
This page is about me, me, and... me!

 Chapter 9: The Document Object 233

Try This 9-1

<div>
More about me...
</div>
</div>
</body>

These properties and methods for the DOM nodes will be useful to you as you create more
complex scripts. You will use the innerHTML and style properties quite often through the
remainder of this book, as well as some of the other DOM node properties and methods.

 Add a DOM Node to the Document
This project allows you to practice using the new document and DOM node
properties and methods you have learned in this chapter.

Step by Step
 1. Create an HTML page with the following code for the body section and save it as pr9_

1.html:

<body>
<div id="div1" title="Gosh!">
Whatever I feel like I want to write...
</div>
<script type="text/javascript" src="prjs9_1.js"></script>
</body>

 2. Create an external JavaScript file and save it as prjs9_1.js. Use it for steps 3–5.

 3. Get the value of the title attribute of the element with the id of “div1” and send that value as
an alert to the viewer.

 4. Create a new div element with the text “See you!” and add it to the document structure as a
child of the div element with the id of “div1”.

 5. Save the JavaScript file and open the HTML file in your browser to view the results.

Try This Summary
In this project, you used your knowledge of the properties and methods of the document object
and the DOM nodes to alert a DOM node property and to create a new div element in the
document’s structure.

pr9_1.html
prjs9_1.js

 234 JavaScript: A Beginner’s Guide

Creating Dynamic Scripts
As you have seen, JavaScript gives you access to all of the elements in the document
with the various methods such as document.getElementById() and document.
getElementsByTagName(). Once you have access to the elements, you can also access their
style attributes (typically initially set by a style sheet) to make changes to such things as their
locations, colors, borders, sizes, or just about any other part of the element’s style attributes
using the style DOM node property.

Styles in JavaScript
When setting styles using Cascading Style Sheets (CSS), you may set up something like the
following in your CSS code (save it as dyn_01.css):

#div1 { color:#000000; background-color:#FFFFFF; }
#div2 { border-style:solid; border-width:1px; border-color:#000000; }

This gives you style attributes for two ids, div1 and div2. Thus, if you had the following
HTML code (save as dyn_01.html), the div elements would use the preceding styles in their
presentation on the Web page:

<head>
<link rel="stylesheet" type="text/css" href="dyn_01.css" />
</head>
<body>
<div id="div1">
I am in div1. It seems like a nice place.
</div>
<div id="div2">
I am in div2. It's a little fancier here.
</div>
<script type="text/javascript" src="dyn_01.js"></script>
</body>

The HTML code is linked to the CSS code via the link tag. Thus, the div1 element is going
to display as simple black text on a white background and the div2 element is going to have a
plain, solid-black border around it.

As you can see, this page is using ids for each div element—so not only can you access
those elements’ ids with the CSS code, you can also access the elements via their ids in the
JavaScript code. So, you can start out your JavaScript file (called in the preceding HTML
code—save as dyn_01.js) with some code to grab both div elements by their ids by using the
document.getElementById() method:

var d1 = document.getElementById("div1");
var d2 = document.getElementById("div2");

Now you have variables for both elements.

The CSS file is linked to the document here

The div element with
an id of “div1”

The div element with
an id of “div2”

The JavaScript file is called here

 Chapter 9: The Document Object 235

If you want to alter the styles that were set up in the CSS code via JavaScript, you’ll need
to make use of the style property that is a part of each element node. Then, JavaScript uses the
same name as the CSS selector to access that particular property. For instance, if you wanted to
change the color of the text in the div1 element to green, you would use the following code:

var d1 = document.getElementById("div1");
var d2 = document.getElementById("div2");
d1.style.color = "#00FF00";

In the CSS code, the selector color is used to alter the element’s foreground color. In JavaScript,
it is also the name of the property used to alter it after accessing the element’s style property.

What if the CSS selector is not all one single word? For example, the background-color
selector would not work in JavaScript if you used it the same way as in the CSS code. The
following code attempts to change the background color to green:

var d1 = document.getElementById("div1");
var d2 = document.getElementById("div2");
d1.style.background-color = "#00FF00";

This wouldn’t work, because JavaScript doesn’t allow the hyphen (-) character as part of a
property name. Instead, JavaScript puts both words together and capitalizes the first letter of
any additional words after the first word. Thus, the CSS selector background-color becomes
backgroundColor in JavaScript (also, something like border-right-color would become
borderRightColor).

The JavaScript code could be rewritten as follows to make the change effective:

var d1 = document.getElementById("div1");
var d2 = document.getElementById("div2");
d1.style.backgroundColor = "#00FF00";

This will change the background color of the div1 element to green. The only issue now is that
this will happen as soon as the script runs, which in this case is probably before the viewer ever
notices there was another background color on the div1 element in the first place. To make
this more useful, you can use this ability to access an element’s style and combine it with your
knowledge of handling events (covered in Chapter 7) to create a script that makes style changes
in reaction to user events.

Coding a Dynamic Script
Now that you know how to alter an element’s style properties, you can alter them in
reaction to user events to create dynamic scripts. This offers you numerous possibilities
to alter just about any style property in reaction to just about any event. Here, you will
continue with the same CSS, HTML, and JavaScript files you have been using to create a
dynamic, event-driven script.

With the current CSS and HTML code in place, you now can code the JavaScript to create the
reactions to the events that will trigger your changes. Thus, if you want to alter the background

 236 JavaScript: A Beginner’s Guide

color of the div1 element and also alter the border of the div2 element when the mouse moves
over the div1 element, you could add the event handling code to the JavaScript to react to the
event and make the style changes in the function handling the event:

var d1 = document.getElementById("div1");
var d2 = document.getElementById("div2");
d1.onmouseover = function() {
 d1.style.backgroundColor = "#00FF00";
 d2.style.borderWidth = "7px";
};

This will make the changes to the appearance of the div elements when the mouse moves over
the div1 element.

To make the script more complete, you could also change the values back when the mouse
moves off the div1 element:

var d1 = document.getElementById("div1");
var d2 = document.getElementById("div2");
d1.onmouseover = function() {
 d1.style.backgroundColor = "#00FF00";
 d2.style.borderWidth = "7px";
};
d1.onmouseout = function() {
 d1.style.backgroundColor = "#FFFFFF";
 d2.style.borderWidth = "1px";
};

Save the JavaScript file and open the HTML file in your browser. You should be able to
move the mouse over the first div element to see the changes and to see the changes go back to
the original look when the mouse moves off the first div element.

Of course, you can also alter the entirety of the HTML code within a given element using
the DOM node innerHTML property.

The innerHTML Property
The innerHTML DOM node property allows you to change the HTML code that is inside of a
given element. For instance, you could start out with the following HTML code:

<body>
<div id="div1">
What is 2+2?
</div>
<div id="div2">
Get the answer
</div>
</body>

 Chapter 9: The Document Object 237

This code sets up a div element node with an id of div1, another div element node with an id
of div2, and the link with an id of answer_link. Now, if you want to change the HTML code
in the div1 element so that it displays the answer for the viewer when the link is clicked, you
can use the click event on the link to start the script in motion and then change the innerHTML
property on the div1 element node to change the contents of that element from the question to
the answer:

var d1 = document.getElementById("div1");
var a_link = document.getElementById("answer_link");

answer_link.onclick = function() {
 d1.innerHTML = "That is easy, the answer is 4!";
 return false;
};

Recall that in order to keep this link from being followed when clicked, you add the return
false statement after performing the desired actions.

When run, this script changes the content inside the div1 element on the page, so that the
HTML code would now be the following (though it will not be seen using the browser’s “View
Source” command):

<body>
<div id="div1">
That is easy, the answer is 4!
</div>
<div id="div2">
Get the answer
</div>
</body>

As you can see, this can be a handy way to make dynamic changes to the content of a Web page.

TIP
To make the script accessible to those without JavaScript, a default link destination
(answer.html) is used. Including the answer text on the linked page allows users without
JavaScript to still click the link and obtain the answer to the question.

Using what you have learned in this chapter to access the DOM and use the properties
and methods of the document object and the DOM nodes, you can build scripts to make any
number of alterations to the document’s appearance or content.

 238 JavaScript: A Beginner’s Guide

Try This 9-2

pr9_2.html
prjs9_2.js

 Trying out Property Changes
This project allows you to practice using the new style and innerHTML properties
you have learned in this chapter.

Step by Step
 1. Create an HTML page with the following code for the body section and save it as pr9_2.html:

<body>
<div id="div1">
When will I update this page?
</div>
<div id="div2">
Find out!
</div>
<script type="text/javascript" src="prjs9_2.js"></script>
</body>

 2. Create an external JavaScript file and save it as prjs9_1.js. Use it for steps 3–5.

 3. Write some code so that when the link is clicked, the background color of the div element
with the id of div1 changes to #CCCCCC and the content of the same element changes to
the following:

Right now! Was that quick or what?

 4. Make sure the same answer content is included in a separate HTML file named answer.html
for those without JavaScript enabled.

 5. Save the JavaScript file and open the HTML file in your browser to view the results.

Try This Summary
In this project, you used your knowledge of the style and innerHTML properties of DOM
nodes to make style and content changes to the Web page.

 Chapter 9 Self Test
 1. The __________ object is an object that is created by the browser for each new HTML page

that is viewed.

 2. The __________ property of the document object returns the URL of the document that
referred the viewer to the current document.

✓

 Chapter 9: The Document Object 239

 3. You can use the DOM node property style to alter the style sheet attributes of an element.

 A True

 B False

 4. The __________ method of the document object allows you to get an element by the value
of its id attribute.

 A getElementsByClassName()

 B createElement()

 C getSelection()

 D getElementById()

 5. The appendChild() DOM node method allows you to add a child node as the first child node
of a specified node.

 A True

 B False

 6. Which of the following would be the value of the document.domain property if you were
viewing a Web page at the URL http://www.pageresource.com/html/index.html?

 A pageresource.com

 B www.pageresource.com/html/index.html

 C www.pageresource.com

 D http://www.pageresource.com/html/index.html

 7. The __________ property of the document object is an array that contains all of the anchor
(<a>) tags on the page.

 8. The __________ DOM node property allows you to change the HTML content of an
element node.

 9. The __________ property holds the value of the date and time the current document was
last modified.

 10. The Document Object Model (DOM) allows JavaScript (and other scripting languages) to
access the structure of the document in the browser.

 A True

 B False

 11. You can use the title property to display the title of a Web page someplace other than in the
top bar of the browser window.

 A True

 B False

http://www.pageresource.com/html/index.html?
www.pageresource.com/html/index.html
www.pageresource.com
http://www.pageresource.com/html/index.html

 240 JavaScript: A Beginner’s Guide

 12. Which property returns the complete URL of the current document?

 A domain

 B referrer

 C URL

 D title

 13. How does the writeln() method differ from the write() method?

 A It adds the equivalent of an HTML
 tag at the end of the line.

 B It adds the equivalent of an HTML <p> tag at the end of the line.

 C It adds a JavaScript newline character at the end of the line.

 D It is exactly the same as the write() method.

 14. How is a formName type property created in JavaScript?

 A When a form is given a name, the name of the form becomes the property name.

 B When a form is given a name, the string formName is used as the property name.

 C The forms aren’t given names; instead, formName is used as the property name.

 D When the form is given a name, an f is added to the beginning and is used as the
property name.

 15. What statements are most common between a document.open() and a document.close()
statement?

 A HTML commands

 B document.write() and document.writeln() statements

 C Only document.writeln() statements

 D Only window.alert() statements

241

Chapter 10
Window Object

 242 JavaScript: A Beginner’s Guide

Key Skills & Concepts

● Using the Properties of the Window Object

● Using the Methods of the Window Object

The JavaScript window object gives you access to more properties and methods you can use
in your scripts. By using the window object, you will be able to do a number of new things,

such as prompt the user for information, open new windows, confirm an action by a viewer,
and more.

An Introduction to the Window Object
The window object is created for each window that appears on the screen. A window can be the
main window, a frame set or individual frame, or even a new window created with JavaScript.
It differs from the document object in that the window object contains the document object (as
well as many other objects, such as history, navigator, and so on). This object makes available
for use in your scripts a number of new properties and methods that are directly under the
window object.

In previous chapters, you have used the alert() method of the window object within your
scripts. As you will recall, the alert() method enables you to pop up a message for the viewer.
You will now see a number of new methods of this object that do things such as confirm a
viewer’s action or prompt the viewer for information, and this will enable you to add more
interactivity to your scripts.

The first thing that you will look at are the properties of the window object. Then the next
section will introduce and explain the methods that you can use with this object.

Using the Properties of the Window Object
To begin your study of the window object, take a look at its properties that you can use, which
are listed and described in Table 10-1. Some of the properties are discussed in more detail
following Table 10-1.

NOTE
As in previous chapters, some of the properties and methods listed in this chapter are
not cross-browser or only work in modern browsers. For more information and more
complete listings, see: https://developer.mozilla.org/en/DOM/window and http://
msdn.microsoft.com/en-us/library/ms535873(VS.85).aspx.

https://developer.mozilla.org/en/DOM/window
http://msdn.microsoft.com/en-us/library/ms535873(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms535873(VS.85).aspx

 Chapter 10: Window Object 243

The closed Property
The closed property is used to check whether or not a window has been closed by the
viewer. The way it is normally used is with the name of a window, followed by the closed
property, such as in the following example:

if (windowname.closed) {
 JavaScript Statements
}

Property Description

closed Holds the value based on whether or not a window has been closed

defaultStatus Defines the default message displayed in the status bar

document A reference to the document object of the window

frames An array that represents all of the frames in a given window

history Provides information on the browser history of the current window (discussed in
Chapter 8)

innerHeight Returns the height, in pixels, of the viewable area within the window

innerWidth Returns the width, in pixels, of the viewable area within the window

length Holds a value equal to the number of frames in a window

location Holds the value of the current URL of the window

name Enables a window to be named

opener Refers to the window that opened another window

outerHeight Returns the width, in pixels, of the entire browser window

outerWidth Returns the width, in pixels, of the entire browser window

parent Refers to the frame set that contains the current frame

screen.availWidth Returns the available width of the browser window in pixels

screen.availHeight Returns the available height of the browser window in pixels

screen.colorDepth Returns the color depth of the screen in bits per pixel

screen.height Returns the total height of the screen in pixels

screen.pixelDepth Returns the bit depth of the screen in bits per pixel

screen.width Returns the total width of the screen in pixels

self Provides another way to reference the current window

status Enables a message to be placed in the status bar; overrides defaultStatus

top A reference to the top window containing a frame, frame set, or nested frame set

window A reference to the current window

Table 10-1 Properties of the Window Object

 244 JavaScript: A Beginner’s Guide

You would replace the windowname part with the name of the window that you wish to check.
This is often a new window that you opened with JavaScript; you will see how to name a new
window later in the chapter in the section “The open() Method.”

You can also use the closed property inside a new window to check whether the window
that opened it has been closed. To do that, you would use closed after the opener property
(discussed soon in “The opener Property” section), as in the following example:

if (window.opener.closed) {
 JavaScript Statements
}

This use of the closed property is really handy if you choose to create a new window that
enables the viewer to navigate the main window through links in the new window.

The defaultStatus Property
The defaultStatus property sets the text string that is displayed by default in the status bar
when nothing has been assigned to the window.status property. A change of the window.status
property overrides this setting, because it is only shown as the default.

The defaultStatus property is often set in the load event. This is used mainly to display a
custom message by default when the viewer is not performing an action that would change the
text in the status bar. It can be set at any time, though, so you could set this using other events
besides the load event.

CAUTION
Most modern browsers, by default, do not display status bar text altered by JavaScript,
to keep unscrupulous Web sites from deceiving users with false link destinations and so
forth in the status bar. Thus, the defaultStatus and status properties often do not work
unless browser settings are altered by the viewer. Since it is a security risk to change
browser settings to allow altered status bar text, using these properties in your scripts is
not recommended.

The frames Property (Array)
The frames property is an array that holds a value for each frame within a frame set. It is
often used to gain access to the properties of the various frames on a page. Since you have not
studied arrays yet, you can’t do much with the frames property now. You will be learning about
arrays in Chapter 11, however.

You can find the number of frames in a window by using the window.frames.length property.
This is handy if you decide to use the array later to perform tasks on the frames of a page in
sequence.

The innerHeight and innerWidth Properties
The innerWidth and innerHeight properties hold values for width and height of the area
of the window in view, which means that these values do not include scroll bars, menu bars,
toolbars, or other browser features. These properties work in Mozilla Firefox and Opera,

 Chapter 10: Window Object 245

but (at the time of this writing) not in Internet Explorer. However, Internet Explorer offers
alternatives to obtain these values (document.body.clientWidth and document.body.clientHeight).

So, if you wanted to obtain the width of the content area you have available to your script,
you could use the following code:

var mywin_width = window.innerWidth;

Of course, if you want to use different HTML code for the browser depending on the
available innerWidth of the window, you could use the following code:

var mywin_width = window.innerWidth;

var div_width = (mywin_width >= 800) ? "750px" : "400px";
document.write('<div style="width:'+div_width+'; background-color:#CCC;">');
document.write('Some text for the new div element.');
document.write('</div>');

This will determine whether the viewer has 800 pixels of viewable width. If so, the width of
the div element will be set to 750 pixels. Otherwise, the div element will have a safer width of
400 pixels. The background color should span the full width of the div element, allowing you
to see the difference when the script is run with different browser widths.

To make this more cross-browser, you can grab the value for Internet Explorer users as
well using the document.body.clientWidth property. You can also make sure a default value is
set for the mywin_width variable for those using older browsers:

var mywin_width = 450; // Sets a low default value
if (window.innerWidth || document.body.clientWidth) {
 mywin_width = (window.innerWidth) ? window.innerWidth :
 document.body.clientWidth;
}
var div_width = (mywin_width >= 800) ? "750px" : "400px";
document.write('<div style="width:'+div_width+'; background-color:#CCC;">');
document.write('Some text for the new div element.');
document.write('</div>');

This time, a low default value is set for the mywin_width variable for those browsers that
don’t support either property (meaning those browsers will get a div element with the
smaller width of 400 pixels). The script then checks to see whether either property exists
in the browser being used. If so, the mywin_width variable is reassigned the value of the
innerWidth property if it exists, or the document.body.clientWidth property otherwise. After
that, the script works the same way as before, creating a div element with a width based on
the available content area.

The value of the innerWidth property is
assigned to the mywin_width variable

The conditional operator is used for a
quick if-else statement to determine how
many pixels the width of the div element
should be based on the available space

The value obtained for the width of the div element is
used on the div element that is written on the page

 246 JavaScript: A Beginner’s Guide

The length Property
The length property tells you how many frames are in a window, just like the window.frames
.length property. This just shortens it to window.length (which is often more convenient when
you are writing code).

The location Property
The location property holds the current URL of the window. It is also its own object with its
own properties and methods. You have used this property already to create button links (back
in Chapter 7).

You can also use the location property to cause instant redirection of the browser to a new
page (if your page has moved to a new location, for instance). However, make sure that you
don’t use this technique on a page that is listed with search engines that do not allow quick
redirection, because they may drop the page from their listings.

If a page has been moved and you want to redirect the viewer without any delay, you could
just give the location property a new value with a script in the head section of the page, as
shown in the following code:

<head>
<title>Page has moved</title>
<script type="text/javascript">
 window.location="page2.html";
</script>
</head>
<body>
Lacking JavaScript? Click the link below for the new page then!

New Page
</body>

This would just take the viewer to the local URL page2.html. An option was included in the
body section for browsers without JavaScript. Otherwise, the preceding code would load a
blank page for those viewers and nothing would happen.

NOTE
Instant redirection is best suited for testing purposes on pages that are not indexed by a
search engine, since the rules on redirection vary from one search engine to the next.

This property will become quite useful to you when you build scripts for navigation in
Chapter 14.

The name Property
The name property holds the name of the current window and also enables you to give a
window a name. If you want to give the main window a name, you could assign to this
property the name you want to use. If you want to test to see that it worked, you could write
the value of the property to the page in the body section.

This sends the viewer away instantly, since no
action needs to take place to set this in motion

 Chapter 10: Window Object 247

The following code shows an example of assigning a name to a window and then writing
the name into the body of the page:

<body>
<script type="text/javascript">
 window.name="cool_window";
 document.write("This window is named "+window.name);
</script>
</body>

The script gives the window a name, and then writes that name into the document. Figure 10-1
shows the result of this script in a browser. Notice how the name cool_window is written on
the screen.

The opener Property
The opener property is used to reference the window that opened the current window. This is
often used in new windows opened using the open() method, which you will see later in the
chapter in the section “The open() Method.” By using the opener property in a new window,
you could detect whether the main window has been closed using the closed property you
learned earlier. The following example shows how you could perform this test:

if (window.opener.closed)

This adds the closed property after the opener property to check whether the window that opened
the current window has been closed. This is helpful if you want to perform an action in the
main window through the new one, because you could check to see that it still exists before
doing anything.

The window is given its own name

The name of the window is written to the screen

Figure 10-1 The name of the window is written on the screen

 248 JavaScript: A Beginner’s Guide

Try This 10-1

The parent Property
The parent property is only used when there are frames on a page. It enables you to access the
parent frame set of the current frame. This is helpful when you wish to change a property in
one frame from another frame. I will discuss this in more detail when I cover JavaScript and
frames in Chapter 15.

The self Property
The self property is another way of saying “the current window” in JavaScript. It is used
like the window object and can access the properties of the current window just like the window
object. The self property is useful if you have a lot of windows with names and want to be sure
you are using a property of the current window and not one in another named window.

The status Property
The status property contains the value of the text set in the status bar of the window. Changing
this property overrides the content of the status bar set with the defaultStatus property.

CAUTION
Most modern browsers, by default, do not display status bar text altered by JavaScript,
to keep unscrupulous Web sites from deceiving users with false link destinations and so
forth in the status bar. Thus, the defaultStatus and status properties often do not work
unless browser settings are altered by the viewer. Since it is a security risk to change
browser settings to allow altered status bar text, using these properties in your scripts is
not recommended.

The top Property
The top property is used to access the top window out of all the frame sets (which could be
nested). This is a little different from the parent property, which only goes to the top of the
frame set that contains the current frame. The top property instead goes all the way to the top
window, even if the window contains nested frame sets.

You will see more on the use of this property when you get to Chapter 15 on JavaScript
and frames.

 Use the location and innerWidth
Properties

This project enables you to practice using the location and innerWidth properties
of the window object. Also, you will help make the script more cross-browser
compatible by adding the document.body.clientWidth property.

pr10_1.html
prjs10_1.js

 Chapter 10: Window Object 249

Step by Step
 1. Create an HTML page, leaving the body section blank other than including a set of script

tags to reference a JavaScript file named prjs10_1.js just before the closing </body> tag.
Save the file as pr10_1.html.

 2. Create a JavaScript file and save it as prjs10_1.js. Use this file for steps 3–6.

 3. Set a default value for a variable named mywin_width.

 4. Change the value of mywin_width to the value of the window.innerWidth property or the
value of the document.body.clientWidth property, if one of these properties is available to use.

 5. If the value of mywin_width is greater than or equal to 1000, send the viewer to the
URL http://www.pageresource.com. Otherwise, send the viewer to the URL http://www
.javascriptcity.com (use the window.location property).

 6. Save the JavaScript file and open the HTML file in your Web browser. Try changing the
width and then reopening the page with the new width to see which Web site it gives you.

Try This Summary
In this project, you were able to use your knowledge of the location and innerWidth properties
of the window object to create a script that will redirect a viewer based on the available width
of the viewing area in the viewer’s browser.

Using the Methods of the Window Object
Now that you know how to use the properties of the window object, you can move on to
using window methods. Table 10-2 lists a number of the methods of the window object with a
description of each and particular methods are described in more detail next.

The alert() Method
You have used the alert() method extensively in earlier chapters in example scripts. This pops
up a message to the viewer, and the viewer has to click an OK button to continue. Recall that
the syntax is like the following alert:

window.alert("Hi there!");

This just gives the viewer the “Hi there!” message as an alert on the screen.
As noted when the alert() method was first introduced, this method is often shortened in

scripts using syntax like the following:

alert("Hi there!"):

http://www.pageresource.com
http://www.javascriptcity.com
http://www.javascriptcity.com

 250 JavaScript: A Beginner’s Guide

Method Description

alert() Pops up an alert to the viewer, who must then click OK to proceed

back() Takes the window back one item in its history list

blur() Removes the focus from a window

clearInterval() Cancels the action of a setInterval() method call

clearTimeout() Cancels the action of a setTimeout() method call

close() Closes a browser window

confirm() Displays a confirmation dialog box to the viewer, who must then click OK or Cancel
to proceed

escape() Converts special characters in a string to hexadecimal characters

find() Enables the viewer to launch the Find utility in the browser to find text on a page

focus() Gives the focus to a window

forward() Takes the window one item forward in its history list

home() Sends the viewer to the home page the viewer has set in the Web browser settings

moveBy() Moves a window by certain pixel values that are sent as parameters

moveTo() Moves the top-left corner of the window to the coordinates sent as parameters

open() Opens a new browser window

print() Prints the contents of the window

prompt() Pops up a prompt dialog box asking the viewer to input information

resizeBy() Resizes a window by moving the bottom-right corner by certain pixel values that are
sent as parameters

resizeTo() Resizes an entire window to the height and width that are sent as parameters

scrollBy() Scrolls the viewing area of a window by certain pixel values that are sent as
parameters

scrollTo() Scrolls the viewing area of the window to the specified coordinates that are sent as
parameters

setInterval() Calls a function each time a certain amount of time passes

setTimeout() Calls a function once after a certain amount of time has passed

stop() Stops the window from loading its content

unescape() Converts an escaped string back to its normal characters

Table 10-2 Methods of the Window Object

 Chapter 10: Window Object 251

How can you get away with that? Remember that JavaScript is fairly lenient, so you are
allowed to take shortcuts like this in some instances. In this case, it is permissible because the
window object is the default object in JavaScript. Since it is assumed to be there, you don’t
need to make the call to it. Instead, you can just call the method, and JavaScript will know it is
a window method.

This type of shortcut will work for all the window properties and methods in most cases.
In fact, the document object you studied in the last chapter is under the window object in the
object hierarchy. You can leave the window part off the document object calls because the
window is assumed to exist.

The cases in which you may need to be more specific are often with new windows and
with the location property.

The confirm() Method
The confirm() method can be used to give the viewer a chance to confirm or cancel an action.
This method returns a Boolean value of true or false, so its result is often assigned to a variable
when it is used.

The following is the syntax for assigning the value to a variable:

var varname = window.confirm("Your Message");

You would replace varname with a variable name that you wish to use. You would then replace
the “Your Message” text with the text you wish to have in the dialog box that pops up. So,
if you wanted to assign the result to a variable named is_sure and ask the question “Are you
sure?” you could use the following code:

var is_sure = window.confirm("Are you sure?");

Figure 10-2 shows a sample confirm dialog box that is displayed by the preceding code. Notice
the two buttons the viewer can choose to click: OK and Cancel. Depending on the browser,
this may look slightly different. If the viewer clicks OK, the method returns true. If the user
clicks Cancel, the method returns false. The bad news is that you can’t change the value of
the text in the buttons. You are stuck with OK and Cancel, at least while using the confirm
method.

As a real example of this method, suppose that you want to create a link to another page,
but you want to be sure the viewer wants to leave before being sent away. You could use

Figure 10-2 An example of a confirm dialog box

 252 JavaScript: A Beginner’s Guide

the confirm dialog box to find out whether or not the viewer wishes to leave the page. The
following code shows how you can get a confirmation from the viewer and react appropriately.
First, the HTML code:

<body>
Go Searching
</body>

Next, use JavaScript to confirm whether the user really wants to leave when the link is clicked:

var s_link = document.getElementById("search_link");

s_link.onclick = function() {
 var is_sure = window.confirm("Are you sure you want to leave?");
 if (!is_sure) {
 window.alert("OK. You can stay here.");
 return false;
 }
};

Notice that if OK is clicked and the confirm() method returns true, the viewer is taken to the
linked Web site. If cancel is clicked and the confirm() method returns false, an alert is sent to
the viewer and the function returns false so that the link won’t be followed by the browser (you
can also simply omit the alert and just have nothing happen after Cancel is clicked, by using
only the return false statement.)

Figure 10-3 shows the browser window after the link is clicked on the page. The confirm
dialog box with your “Are you sure you want to leave?” message pops up on the screen.

The function confirms whether or not the viewer wants to leave

Figure 10-3 A confirm dialog box pops up when the button is clicked

 Chapter 10: Window Object 253

The find() Method
You can use the find() method to let the viewer find a certain bit of text on your page. It tells
the browser to use its built-in Find utility and enables the viewer to type in what to look for on
the page.

For example, if you wanted to create a button for viewers to click when they want to find
something on your page, you could use the following code:

<form>
<input type="button" value="Click to Find Text"
 onclick="window.find();" />
</form>

This pops up the Find dialog box in the browser and enables the viewer to search for text
within the page. Figure 10-4 shows the result of this script when it is added to an HTML
document.

This functionality is useful if you have a really long page and want the viewer to be able to
find things more quickly by searching the page.

The home() Method
The home() method is used to send the viewer to the home page the viewer has set in the Web
browser settings. For instance, you could use it to offer viewers a button that will take them to
their selected home page when clicked, as in the following code (at the time of this writing this
method worked in Mozilla Firefox and Opera but did not work in Microsoft Internet Explorer):

<form>
<input type="button" value="Go Home!" onclick="window.home();">
</form>

Figure 10-4 A Find dialog box pops up, enabling the viewer to search for text on the page

 254 JavaScript: A Beginner’s Guide

The print() Method
The print() method enables the viewer to print the current window. When this method is called,
it should open the viewer’s Print dialog box so that the viewer can set the printer settings to
print the document.

To use it, you could create a button that enables the viewer to print the page they are
viewing:

<form>
<input type="button" value="Click to Print Page"
 onclick="window.print();">
</form>

This code should open the user’s Print dialog box when the user clicks the Click to Print
Page button. Figure 10-5 shows the result of running this script in a browser. This dialog
box may appear differently for different viewers, depending on the browser and printer
being used.

Figure 10-5 The viewer’s print options pop up when the print button is clicked

 Chapter 10: Window Object 255

The prompt() Method
The prompt() method is used to prompt the viewer to enter information. Using this method,
you can do things based on what the viewer enters into the text box at the prompt.

First, you need to see the syntax for this method. As with the confirm() method, the result
(what the viewer enters) is assigned to a variable for later use. The following is an example of
the syntax:

var varname = window.prompt("Your Text","Default Entry");

You replace varname with a variable name, and replace “Your Text” with the message that
you want to send to the viewer (usually a question). The second parameter, “Default Entry”,
enables you to enter a default entry for the viewer. Often this is left as “ ”, which is a blank
entry. However, you could set it to something if you would like to have a default answer ready
for the viewer to use.

You could use the prompt() method to get the viewer’s name and send an alert while the
page is loading. The following code prompts the viewer to enter their name and then includes
the name in a message that is displayed to the viewer in an alert:

var thename = window.prompt("What's your name?","");
if (thename.length < 1) {
 thename = "Anonymous Visitor";
}
window.alert("Hello "+thename+"!");

Notice that the script checks to see if thename.length is less than 1. When using the length
property on a string, it returns the number of characters in the string. So, if the length is less
than one character, the prompt field was left blank by the viewer. If the viewer leaves the name
field blank, the viewer will be named “Anonymous Visitor”; otherwise, the variable thename
keeps the value entered by the viewer. Then, the viewer gets an alert with the value of the
thename variable in a greeting. Figure 10-6 shows the result of this script when nothing is
entered by the viewer in the prompt.

Instead of placing the name into an alert, you could write it on the page for the viewer
instead. In this way, the viewer isn’t bothered with an alert, and the name appears as though it
is part of the page. First, start with the HTML code:

<body>
<div id="greeting">
<h1>Hello! Welcome!</h1>
</div>
<div id="content">
This page talks about what I think about...
</div>
</body>

The name input by the viewer is sent in an alert

The viewer gets a prompt asking for a name here

This tests to see whether the
input box was left blank

 256 JavaScript: A Beginner’s Guide

The HTML code uses two div elements, one for the greeting and one for the page content.
Inside the greeting div element, a default greeting is provided for those without JavaScript. For
those with JavaScript, you will use the prompt() method to offer them the opportunity for a
more personal greeting. You could use the following JavaScript code:

var greet = document.getElementById("greeting");

var thename = window.prompt("What's your name?","");
if (thename.length < 1) {
 thename = "Anonymous Visitor";
}
greet.innerHTML = "<h1>Hello " + thename + "! Welcome!</h1>";

This script gets the greet element by its id (greeting), obtains the value of thename from the
prompt, and then changes the value of the greet element’s innerHTML property to a more
personal greeting.

Figure 10-7 shows the result of this in the browser if the viewer enters the name John at
the prompt.

The open() Method
The open() method is the method that enables you to open a new window with JavaScript. This
method takes three parameters, the third of which sets a number of options that the window
may need.

Figure 10-6 An alert greets the viewer

 Chapter 10: Window Object 257

The general syntax for using the open() method is shown in the following example:

window.open("URL","name","attribute1=value,attribute2=value");

The first parameter, “URL”, is replaced with the URL of the HTML document that is to be
opened in the new window. The “name” parameter is replaced with the name you wish to give
to the window. The last parameter enables you to add attributes for the new window. These
attributes are set by using “yes”, “no”, or a numeric value on the right side of the equal sign.
Notice that each time an attribute is set with a value, there is a comma before the next one and
no spaces in between.

If you want to open a window with the features of the current window, you could do so by
leaving off the last parameter with the attributes. The following example would open a new
window with a local URL of newpage.htm and a name of my_window; it will have the same
features as the window that opened it:

window.open("newpage.html","my_window");

Standard Attributes
If you want to include window features, you need to learn some of the attributes that you can
use with the windows. Table 10-3 lists the standard attributes that you can use as part of the
last parameter in the open() method.

If you begin to use the attribute parameter, you should note that once you place something
in the attribute parameter, any attribute not defined will now default to “no” instead of copying
the main window. So, if you want to open a basic new window with a width of 400 pixels and
a height of 300 pixels, you could use the following code:

window.open("newpage.html","my_window","width=400,height=300");

Figure 10-7 The viewer’s name is written on the page after the viewer has entered it at a
prompt

 258 JavaScript: A Beginner’s Guide

The only feature this window will have is a title bar that shows the title of the document and
the buttons on the top right for the viewer to close or minimize it.

To set the other attributes (which are all Boolean), you can assign them a value of “yes” or
“no” depending on whether or not you want each feature. You may also use 1 for yes and 0 for no
if you prefer, as they will have the same effect. So, if you wanted to have a 300×200 pixel window
with just a menu bar added (this adds the Forward, Back, Stop, and other similar buttons), you
could use the following code:

window.open("newpage.html","cool","width=300,height=200,menubar=yes");

This gives you a new window with the contents of newpage.html, a name of “cool,”
dimensions of 300×200 pixels, and a menu bar.

You can add as many of the attributes as you want inside the quote marks of the third
parameter by separating each one with a comma. Remember that you should include no spaces
between anything and that the entire command should be on one line in your text editor.

NOTE
Due to space limitations, a new window command may occasionally be on more
than one line in the code in this book. Be sure that when you use the code, you
put everything from window.open to the ending semicolon (;) on one line to avoid
JavaScript errors.

Attribute
Name

Possible
Values Function

width number Defines the width of the new window in pixels

height number Defines the height of the new window in pixels

directories yes, no, 1, 0 Defines whether or not the new window has directory buttons (like the
What’s New or Link buttons near the top of the browser)

location yes, no, 1, 0 Defines whether or not the new window has a location box to type in a
new URL

menubar yes, no, 1, 0 Defines whether or not the window has a menu bar (File menu, Edit
menu, and so on)

resizable yes, no, 1, 0 Defines whether or not the viewer is allowed to resize the new window

scrollbars yes, no, 1, 0 Defines whether or not the new window has scroll bars if the contents of
the window are larger than the window’s size

status yes, no, 1, 0 Defines whether or not the new window has a status bar at the bottom

toolbar yes, no, 1, 0 Defines whether or not the new window has a toolbar (Forward and
Back buttons, Stop button, and so on)

Table 10-3 Standard Attributes for a New Window

 Chapter 10: Window Object 259

The following example opens a window with all the features mentioned in Table 10-3
(again, this takes up more than one line here, but when you enter it in your text editor, the code
should go on a single line):

window.open("newpage.html","cool","width=300,height=200,directories=yes,
location=yes,menubar=yes,resizable=yes,scrollbars=yes,status=yes,
toolbar=yes");

This opens a 300×200 pixel window with all the standard features. If you want a viewable
example, you need to make a page named newpage.html and create the code for the main page
to include a window.open() command, as described next.

First, create the code for newpage.html (this is just a short page that has some text in it):

<body>
I am a new window! I am newer than that old window
 that opened me, so I am special. Ha, ha!
</body>

Now, create the main page (save as mainpage.html):

<body>
Click the link below to open an arrogant new window ...

New Page
<script type="text/javascript" src="openwin.js"></script>
</body>

Finally, create the JavaScript code (save as openwin.js):

var nw_win = document.getElementById("nwin");

nw_win.onclick = function() {
 window.open("newpage.html","cool","width=400,height=300,status=yes");
 return false;
};

The anonymous function works when the link is clicked and launches the new window with
the contents of your newpage.html document. This window is 400×300 pixels and has only a
status bar at the bottom as an added feature. Note that the return false statement is added after
opening the window, so that if the viewer has JavaScript, the newpage.html file will not also
be opened in the main browser window when the link is clicked (if the viewer does not have
JavaScript, the link will work normally and open the newpage.html file in the same window).

Figure 10-8 shows the result of opening the main page in the browser and clicking the link
to open the new window.

The link is
given an id

The external JavaScript is called

The link element is
assigned to a variable

The anonymous function opens the new window and returns false

 260 JavaScript: A Beginner’s Guide

Just when you thought there could be no more features to digest…the following section
describes additional options that newer browsers offer.

Extended Attributes
With newer browsers, you can use a number of new attributes for your new windows. The
only trouble is that they may not work cross-browser, so you have to be careful to test the code
to ensure that the attributes you use work in the browsers in which you need them to work.
Table 10-4 lists a number of extended attributes for new windows.

The problem with the attributes in Table 10-4 is that they may not work cross-browser. For
instance, to make the screen position work with Internet Explorer, Mozilla Firefox, and Opera,

Figure 10-8 A new window is opened when a link is clicked

Attribute Possible Values Function

fullscreen yes, no, 1, 0 Defines whether or not the window should open in a full screen

left number Defines the distance from the left of the screen for the new window

personalbar yes, no, 1, 0 Defines whether or not the new window has a personal toolbar

screenX number Defines the distance from the left of the screen for the new window

screenY number Defines the distance from the top of the screen for the new window

top number Defines the distance from the top of the screen for the new window

Table 10-4 Extended New Window Attributes

 Chapter 10: Window Object 261

you need to add all four of the attributes to the last parameter of the open() method. Each
browser will just ignore the attributes that it does not recognize. The following code (changing
the open_win.js file from earlier) opens your newpage.html document in a new 300×200 pixel
window in the top-left corner of the screen (0 pixels from the left, 0 pixels from the top) when
the button is clicked:

var nw_win = document.getElementById("nwin");

nw_win.onclick = function() {
 window.open("newpage.html","cool","width=400,height=300,status=yes,
 screenX=0,left=0,screenY=0,top=0");
 return false;
};

In this version, you added the new attributes to set the new window at the coordinates (0,0) on
the screen.

Figure 10-9 shows the result of this in a browser after the button is clicked. Notice how the
new window now opens at the top left of the screen.

The other attributes are not as useful at this point; but as the browsers develop further,
some of the attributes may begin to be supported in both browsers in one form or another.

Now back to examining the methods.

The close() Method
The close() method is used to close a window; however, unless your script has certain security
rights, this can only be used to close a window that has been opened by you with JavaScript.

The new window is given some standard attributes and then a position
on the screen by using all four attributes (two for each browser)

Figure 10-9 The new window opens where you want it to on the screen, at the top left

 262 JavaScript: A Beginner’s Guide

To use the close() method, you could modify your newpage.html code to provide a button
at the end of the text that enables the viewer to close the window by clicking it. So, you could
change the code of newpage.html to look like the following code:

<body>
I am a new window! I am newer than that old window
 that opened me, so I am special. Ha, ha!
<form>
<input type="button" value="Close Window" onclick="window.close();" />
</form> </body>

When the button is clicked now, the window.close() method is invoked and closes the window
just like the standard Close button at the top right of a window. If you want to try it out, use
the main page you used in the previous section and click the button to open the new window.
It should offer the new button with the option to close the window, and it should close the
window if you click the button.

The moveBy() Method
The moveBy() method can be used to move a new window to a new location on the screen.
This moves a window by the number of pixels given as parameters in the method call. The
following is the syntax for using this method:

window.moveBy(x-pixels,y-pixels);

You replace x-pixels with the number of pixels you want to move the window from left to
right. So, if you want the window to move to the right, you enter a positive number. If you
want it to move to the left, you enter a negative number.

You replace y-pixels with the number of pixels you want to move the window from top to
bottom, with positive numbers pushing the window down and negative numbers pulling the
window up.

For example, if you want to give the viewer the option to move the window by the number
of pixels of your choice, you could add a button to make it do so when the viewer clicks the
button. You could use the following code:

<body>
I am a new window! I am newer than that old window
 that opened me, so I am special. Ha, ha!
<form>
<input type="button" value="Move Window" onclick="window.moveBy(50,50);" />

<input type="button" value="Close Window" onclick="window.close();" />
</form> </body>

This moves the window 50 pixels to the right and 50 pixels down when the button is clicked.
If you open this from the main window you coded earlier in the chapter, you can see this in

The window is closed when the button is clicked

The window will move 50 pixels to the right and 50 pixels down

 Chapter 10: Window Object 263

action. Figure 10-10 shows the initial position of the new window when it is opened from a
button on the main page.

Figure 10-11 shows the window after the Move Window button is clicked in the new
window. Notice it has moved to the right and down by 50 pixels in each direction.

The way this works, the viewer could continue clicking the button and moving the window
by another 50 pixels in both directions as long as the button is viewable. The window just
continues to move by the number of pixels it has been set to move by in the script. The next
method discussed will move the window to a particular location, so that it will not continue to
move on successive clicks like this one does.

The moveTo() Method
The moveTo() method is used to move a window to a specific destination on the screen based
on the parameters given in the method call. The following is the general syntax for using this
method:

window.moveTo(x-value,y-value);

Here, you replace x-value with the number of pixels from the left of the screen where you want
the window to be moved. For example, if you input 300, the window is moved 300 pixels from
the left of the screen. You then replace y-value with the number of pixels from the top of the
screen that you want the window to be moved.

Figure 10-10 The new window in its initial position when it is opened

 264 JavaScript: A Beginner’s Guide

As an example, you could recode your Move Window button in your newpage.html page
to use moveTo() instead of moveBy(). The following is the example code:

<body>
I am a new window! I am newer than that old window
 that opened me, so I am special. Ha, ha!
<form>
<input type="button" value="Move Window" onclick="window.moveTo(50,50);" />

<input type="button" value="Close Window" onclick="window.close();" />
</form> </body>

This time the window would be moved to the coordinates (50,50) on the screen when the
button is clicked. By using your main page code, you can open the window again to test
this out.

To see that this works differently than the moveBy() method, try clicking the button again.
Rather than making another move, it stays in the same place because it has already made it to
its destination.

Figure 10-11 The window in its new position after being moved

The window will move to the coordinates (50,50) on the screen,
which is 50 pixels from the left and 50 pixels from the top

 Chapter 10: Window Object 265

The resizeBy() Method
The resizeBy() method is used to resize a window by the number of pixels given in the
parameters sent in the method call. The syntax and usage are the same as for the moveBy()
method; resizeBy() just performs a resize instead. To make the window larger, use positive
numbers. To make it smaller, use negative numbers.

The resizeTo() Method
The resizeTo() method is used to resize a window to a specific dimension in pixels based
on the parameters sent in the method call. The syntax and usage are the same as for the
moveTo() method; resizeTo() just performs a resize instead. You input the new width and
height in place of the coordinates used in the moveTo() method.

The scrollBy() Method
The scrollBy() method is used to scroll a window by the number of pixels given in the
parameters sent in the method call. The syntax and usage are the same as for the moveBy()
method; scrollBy() just performs a scroll instead. To make the window larger, use positive
numbers. To make it smaller, use negative numbers.

The scrollTo() Method
The scrollTo() method is used to scroll a window to a specific destination in pixels based
on the parameters sent in the method call. The syntax and usage are the same as for the
moveTo() method; scrollTo() just performs a scroll to the specified point instead.

The setInterval() Method
The setInterval() method is used to execute a JavaScript function repeatedly at a set interval. The
following is the general syntax for using this method:

window.setInterval("function()",time);

You replace function() with the name of the function you wish to repeat. You then replace time
with the time (in milliseconds) you want to wait before each repetition of the function.

So, if you really wanted to annoy your viewers, you could use this method to pop up an
alert every 10 seconds (10,000 milliseconds) once the page is viewed. You could do this by
placing the following script inside the HTML of a document:

<body>
<script type="text/javascript">
function annoy_alert() {
 window.alert("Am I bothering you yet?");
}
window.setInterval("annoy_alert()",10000);
</script>
</body>

An interval is set; note the use of quote
marks around the function call

 266 JavaScript: A Beginner’s Guide

Notice that this is a special case in which the function must be called inside quote marks.
Normally, a function must be called outside quote marks. The reason for it here is to keep the
function from executing immediately rather than at the set interval. The function name is being
sent as a string parameter to the setInterval() method, where it is then called after the correct
time lapse.

This, of course, could become quite annoying. The less time set in the interval, the more
annoying it would become. Luckily, the ten-second interval gives you enough time to leave the
page before another alert pops up.

The clearInterval() Method
To end the barrage of alerts from the previous script, you could use the clearInterval() method.
The following is the general syntax for using this method:

window.clearInterval(name);

You must replace name with a variable name that has been assigned to the setInterval() method
call you want to clear. The problem is, you didn’t set your setInterval() call to a variable name
in the previous example.

In order to clear it, you need to adjust your code. The following code is updated and
assigns the setInterval() call to a variable name:

<body>
<script type="text/javascript">
function annoy_alert() {
 window.alert("Am I bothering you yet?");
}
var madness = window.setInterval("annoy_alert()",10000);
</script>
</body>

You now have a way to use the clearInterval() method, by calling it with the madness
variable as the parameter. So, offer the visitor a button that enables them to stop the madness.
As long as it is clicked between intervals, it will stop the interval from running any further. The
following code gives you a full page with the button for the viewer to click:

<body>
<script type="text/javascript">
function annoy_alert() {
 window.alert("Am I bothering you yet?");
}
var madness = window.setInterval("annoy_alert()",10000);
</script>
Click the button below to end the endless barrage of alerts.

<form>
<input type="button" value="Stop the Madness!"
 onclick="window.clearInterval(madness);" />
</form>
</body>

The method call is set to a
variable for later reference

The method call is set to a
variable for later reference

This method refers to the first method through
the variable name to cancel its action

 Chapter 10: Window Object 267

Now the viewer can stop the alerts by clicking the Stop the Madness button.
Of course, there are better uses for this method. You will see in later chapters that it can be

handy for clocks and other things that need to be updated at regular intervals on the page.

The setTimeout() Method
The setTimeout() method enables you to execute a JavaScript function after a certain amount
of time has passed. It differs from the setInterval() method because it is only executed once
(unless it is put inside a loop of some sort). The general syntax is the same as that of the
setInterval() method.

If you want to have only a single alert pop up after ten seconds and not repeat, you could
use the following code:

<body>
<script type="text/javascript">
function annoy_alert() {
 window.alert("Sign my guest book NOW!");
}
var theguest = window.setTimeout("annoy_alert()",10000);
</script>
</body>

This would send the viewer an alert after ten seconds, demanding that the guest book be signed
immediately.

The reason that you set the method to a variable is so that you could use the next method
in line, the clearTimeout() method.

The clearTimeout() Method
The clearTimeout() method enables you to cancel a setTimeout() call if you call the
clearTimeout() method before the time expires from the setTimeout() call. The general syntax
is the same as that of the clearInterval() method: you use a variable name as a parameter so
that it knows which setTimeout() call to cancel.

So, if you want to give viewers a chance to avoid getting an alert, you could add a button
for them to click within ten seconds. If it is clicked in time, the setTimeout() call is canceled
and no alert pops up. The following is the example code:

<body>
<script type="text/javascript">
function annoy_alert() {
 window.alert("Sign my guest book NOW!");
}
var theguest = window.setTimeout("annoy_alert()",10000);
</script>
Click the button below within 10 seconds to avoid an alert message.

<form>
<input type="button" value="No Alert for Me!"
 onclick="window.clearTimeout(theguest);" />
</form>
</body>

The timeout is set, and also set to a variable

The timeout is set, and set to
a variable for later reference

This method refers to the first method through
the variable name to cancel its action

 268 JavaScript: A Beginner’s Guide

If the button is clicked in time, the viewer avoids receiving an alert about signing the
guest book.

For now, you have finally finished with the window object methods. In the chapters that
follow, you will use a number of these methods in various scripts.

Q: There are way too many properties and methods here! How am I ever going to
remember all of these?

A: As you begin using them with more frequency, they will be easier to remember. I remember
the ones I use more often better than those I don’t use much. If you do a lot of coding, it is
good to keep a reference handy, such as this book, in case you need to check the details of
a property or method now and then. I keep a bunch of books and bookmarks to reference
Web sites on hand.

Q: Aren’t pop-up windows annoying to visitors? Should I use them frequently?

A: Pop-up windows are oftentimes used in a way that will annoy most viewers (such as
opening several new windows at once, requiring pop-up windows to navigate a site,
or opening every navigation link in a new window). Using pop-up windows without a
particularly good reason is not recommended, since these can cause confusion when
navigating a site or irritate viewers desiring to browse in one window or tab. (Note that if
you receive revenue from advertising on your site, you may need to use pop-up ads to earn
revenue. If you do have them, you will want to avoid opening your own pop-up windows in
addition to the ads.)

Most browsers now offer the viewer the option of opening links in new tabs or new
windows via the context menu, so it is best to let the viewer decide how the page should be
opened.

Q: Will I be making window remote controls any time soon?

A: A new window that changes properties (like the location property) in the main window is a
“remote control.” Though remote controls are not discussed in this book, there are scripts
for these at free script sites on the Web. For now, you want to be sure to master the coding
that you need to create and manipulate a regular new window.

Q: Will I be using the timed methods like setTimeout() and setInterval() often?

A: They may not come up very often, but you will have a use for them when you need to
build time-dependent scripts such as clocks, slide shows, or Dynamic HTML (DHTML)
animations.

Ask the Expert

 Chapter 10: Window Object 269

Try This 10-2 Use the setTimeout() and confirm()
Methods

This project enables you to practice using some of the window methods. You will
have the browser wait a certain number of seconds and then ask the viewer to
confirm whether or not to stay at the page or move on to an Internet search site.

Step by Step
 1. Create an HTML page, with the following code in the body section, and save it as pr10_

2.html:

<body>
<h1>Some Info. Here</h1>

An interesting point here...
A very interesting point here...
An incredibly interesting point here...

<script type="text/javascript" src="prjs10_2.js"></script>
</body>

 2. Create a JavaScript file and save it as prjs10_2.js. Use it for steps 3–4.

 3. After 20 seconds, have a confirm box display to the viewer asking them if they want to
continue using this Web page. If so, do nothing. If not, send them to the URL
http://www.google.com.

 4. Save the JavaScript file and open the HTML file in a Web browser. After 20 seconds, you
should see a confirm box.

Try This Summary
In this project, you were able to use your knowledge of the properties and methods of the
window object to create a timed, interactive script. This allowed you to give the viewer a
choice as to whether to stay at the current Web page or move on to an Internet search site.

 Chapter 10 Self Test
 1. A(n) __________ object is created for each window that appears on the screen.

 2. The closed property is used to check whether or not a window has been closed by the viewer.

 A True

 B False

pr10_2.html
prjs10_2.js

✓

http://www.google.com

 270 JavaScript: A Beginner’s Guide

 3. The __________ property holds the value of the number of frames within a window.

 4. The location property can cause instant redirection of the browser to a new page.

 A True

 B False

 5. The __________ property holds the name of the current window and also allows you to
give the window a name.

 6. The calls to properties and methods of the window object can often be shortened because

 A The window object is the default object in JavaScript.

 B The window properties and methods are assumed to be part of the navigator object.

 C There really is no window object.

 D The browser assumes the window object is part of the document object.

 7. The __________ property is another way of saying “the current window” in JavaScript.

 8. Why would this code not work:

onmouseover="window.status='Page 2'; return true;"

 A It should work without a problem.

 B The quote marks are not set correctly.

 C Newer browsers do not allow the window status to be changed by default, so the user
would need to change security settings in order for it to work.

 D A change in the status property in an onMouseOver event must return false afterward.

 9. What is the difference between the parent and top properties?

 A The parent property goes to the top of the current frame set, while the top property
goes to the top window of all frame sets on the page.

 B The top property goes to the top of the current frame set, while the parent property
goes to the top window of all frame sets on the page.

 C The parent property goes to the top of the current frame set, while the top property
goes to the top of the current frame.

 D The parent property goes to the top of the outermost frame set, while the top property
goes to the top window of all frame sets on the page.

 10. The __________ method pops up a message to the viewer, and the viewer has to click an
OK button to continue.

 Chapter 10: Window Object 271

 11. What value is returned by the confirm() method if the viewer clicks the OK button?

 A true

 B false

 C OK

 D 25

 12. The __________ method enables the viewer to print the current window.

 13. The prompt() method is used to __________ the viewer to enter information.

 14. When setting the toolbar attribute as part of the third parameter in the open() method, what
values may the attribute have?

 A yes and no only

 B 1 and 0 only

 C yes, no, true, and untrue

 D yes, no, 1, and 0

 15. What is the difference between the setInterval() method and the setTimeout() method?

 A The setTimeout() method is used when the viewer needs to take a break from reading,
while setInterval() is used when the viewer needs no breaks.

 B The setInterval() method is used to repeat a function at a set time interval, while
setTimeout() executes a function only once after a set time delay.

 C The setInterval() method flashes an advertisement across the screen at a set interval by
default, while setTimeout() is ad-free.

 D They both perform the same function.

This page intentionally left blank

273

Chapter 11
JavaScript Arrays

 274 JavaScript: A Beginner’s Guide

Key Skills & Concepts

● Defining and Accessing Arrays

● Understanding the Properties and Methods of the Array Object

● Using Arrays with Loops

● Using Associative Arrays

Previous chapters have discussed object properties for which, to use them, you need
knowledge of arrays. In this chapter, you are going to learn about those JavaScript arrays

and what they can do to help you improve your scripts.
You will begin with a basic overview of what arrays are and why they are useful to you.

Then you will learn how to define and access arrays in JavaScript. After that, you will learn
how to use loops to gain access to all the elements of an array during the course of a script.
Finally, you will take a look at associative arrays and how to use them.

What Is an Array?
An array is a way of storing data of similar types for easy access later in a script. In JavaScript,
an array is basically a user-defined object that is typically accessed in a different way than
other objects are accessed. It uses a single variable name to store multiple values (for example,
a list of favorite colors or favorite foods). In a regular array, access to an element is usually
through the use of an index number. An associative array allows access using a string in place
of the number. You will see how to use both of these later in the chapter.

To get an idea of how a regular array works, suppose you have a class full of students
and, with a script, want to be able to quickly print out the name of every student. You could
use regular variables to hold the name of each student, but typing each variable name into a
document.write() statement would take a long time. Instead, you could store each student’s name
in an array, which will allow you to access it more easily with a few lines of code using a loop.

The array would allow you to put together a number and a name, such as in the following
example:

● Student 0: Thomas

● Student 1: Roger

● Student 2: Amber

● Student 3: Jennifer

By storing it in a manner like this, you could use the numbers to get the name of each student.
This is where arrays become useful as a way to store information and access it later.

 Chapter 11: JavaScript Arrays 275

NOTE
Notice that the first student in the array is Student 0 rather than Student 1. This is
because arrays begin storing values with the number 0 rather than 1. This will be
discussed in more detail as you move through this chapter.

Why Arrays Are Useful
Why would the use of numbers make it easier for you to access the stored information?
Because, with the use of numbers, you are able to use a loop to cycle through the information,
instead of manually typing each entry. If the list of students in the example becomes long, the
loop would save you quite a bit of typing when you want to have all the names printed onto the
browser screen.

For instance, if you assigned the name of each student in your example list to a variable
and then wrote the names to the screen, you would need to rewrite each variable name in the
document.write() statements. The following code shows an example of this:

var student0="Thomas";
var student1="Roger";
var student2="Amber";
var student3="Jennifer";

document.write(student0+"
");
document.write(student1+"
");
document.write(student2+"
");
document.write(student3+"
");

If you were able to use a loop to repeat a single document.write() statement for each
student, you could avoid writing four separate document.write() statements. An array is a
handy way to store the values (student names), because you can cycle through the values with
a loop instead of writing out each value with a separate document.write() statement—even if
you don’t know the number of students beforehand (by using the length property of the array).

An array is basically a quick way to create an object (since it already has a constructor
function) with a list of properties. A regular object (like the objects you created in Chapter 8)
can be accessed like an array; but it is often easier to create an array, rather than an object,
since you do not need to deal with the constructor function.

Defining and Accessing Arrays
Now that you know what arrays are, you are ready to see how to name, define, and access
arrays in JavaScript.

Naming an Array
You can name an array using the same rules you learned in Chapters 3, 4, and 8 on naming
variables, functions, and objects. Basically, avoid numbers in the first character, avoid spaces,
and avoid using reserved words.

The variables are given values

Each variable value is individually
written on the page

 276 JavaScript: A Beginner’s Guide

Defining an Array
Defining an array is similar to creating an instance of an object. In fact, one method of defining
an array looks and acts just like the method of creating an instance of an object. That’s what
you are actually doing—creating an instance of the JavaScript Array object.

Since the creation of an instance of an object is already familiar to you, that method is
presented first. The following example shows the general syntax of an array definition in
JavaScript:

var arrayname = new Array(element0,element1);

You replace arrayname with the name you wish to give to the array, and replace element0
and element1 with the values that each element will have. You can use as many elements as
you like.

To see a real example, you are going to take the student names from the first section of this
chapter and use them as array elements. This array will have four elements, and each one will
be the value of a student’s name. The following example shows the definition of the array, with
the names as string values:

var s_list = new Array("Thomas","Roger","Amber","Jennifer");

Now you have the values stored inside a four-element array named s_list. Because the values
are strings, quote marks are used (as with a regular object). The question is, how do you begin
to access the values now that they are in an array?

Accessing an Array’s Elements
To access the elements of an array, you use what is often called an “index number” that allows
you access to each element of the array by its position in the array. For instance, the syntax to
assign the first element of an array to a variable is shown in the following example:

var varname = arrayname[0];

You would replace varname with a variable name and arrayname with the name of the array
you wish to access. The 0 in brackets after arrayname is the index number for the first element
of the array. The index number is 0 because arrays begin counting at 0 instead of 1; thus, you
need to be careful that you do not get confused about the index number of an element in an
array. The first element has an index number of 0, the second has an index number of 1, the
third has an index number of 2, and so on.

Inside the square brackets immediately following the array name is where you place the
index number of the element you wish to access in the array. To see this in action, consider
again the example of the four students. The array for the name of each student was defined as
in the following code:

var s_list = new Array("Thomas","Roger","Amber","Jennifer");

Now, suppose you want to assign the value of the first element in the array (Thomas,
in this case, since that is the first element in the list) to a variable named tall_student.

 Chapter 11: JavaScript Arrays 277

Remember that the first element has an index number of 0; so, to get the value of the first
element assigned to the variable, you would use the following code:

var tall_student = s_list[0];

To see that the value of the tall_student variable comes out as you planned, you could write a
short script to write it on the page. The following example writes the value on the page as part
of a sentence:

<body>
<script type="text/javascript">
var s_list = new Array("Thomas","Roger","Amber","Jennifer");
var tall_student = s_list[0];
document.write("The tallest student in class is "+tall_student);
</script>
</body>

You don’t really need to assign the array element to a variable in this case (it just makes
you type more). You could just write the array element into the document.write() statement to
save the extra line of code:

<body>
<script type="text/javascript">
var s_list = new Array("Thomas","Roger","Amber","Jennifer");
document.write("The tallest student in class is "+s_list[0]);
</script>
</body>

Now you are accessing the array element directly, and you save a little typing in the process.

Other Ways to Define Arrays
You have seen one way to define an array, but there are other methods of doing so that will
come in handy later in the chapter. The following methods of defining arrays will allow you to
use the method best suited for various situations.

Space Now, Assign Later
One method of defining an array is to assign a certain amount of space (elements) to an array,
and then allow the values to be assigned later in the script. This is done using a single number
inside the parentheses when defining the array:

var s_list = new Array(4);

This creates an array named s_list, which will initially have four elements (you can add
elements to an array later if you wish). Keep in mind the index numbers will be 0, 1, 2, and 3,
rather than 1, 2, 3, and 4. In this case, you will give the four elements of the array values later
in the script.

The array is defined with four elements

The value of the first array element is assigned to a variable

The value of the variable is printed on the page

The array is defined with four elements

The value of the first array element is written on the page

 278 JavaScript: A Beginner’s Guide

To give an element a value, you just assign a value to it using the array name and the index
number to which you want the value assigned. So, if you want to assign a value of “Amber” to
the third position in the array (index number 2), you would use the following code:

s_list[2] = "Amber";

You can use a line such as this anywhere after the array has been defined. The technique used
in the preceding code also allows you to add elements to an array if you decide you need more
elements later in the script. You can also use a loop to assign all the elements of the array, but
that will be discussed later in the chapter when you work with arrays and loops.

So, suppose you would like to add a fifth element to your s_list array. By assigning it
a value (index number 4), you can add a new name to the array in the fifth position:

s_list[4] = "Pat";

This adds a fifth element to your s_list array with a value of Pat.

Space Now, Assign Numerically Now
Another way you can define an array is very similar to the one just covered. The only
difference is that some or all of the elements of the array are assigned right after the new
array is created.

To see an example, consider the s_list array again. The following code shows how you can
assign the elements of an array right after the line that creates the array space:

var s_list = new Array(4);
s_list[0]="Thomas";
s_list[1]="Roger";
s_list[2]="Amber";
s_list[3]="Jennifer";

This time all four elements are assigned as the array is created. This method is advantageous
if you want to assign each element but do not wish to use one long list of parameters on the
same line. It is also easier to look back and see what value is assigned to which element more
quickly, as there isn’t a need to count across. This can be quite advantageous in a long list of
elements.

As with the other methods, you can still add more elements later in the script by using the
next index number in the sequence.

Array Name, No Parameters
Another option for defining an array is to define it with no parameters. This creates an
array with no elements, but you can add elements later, as with the other options for
defining arrays.

To create an array with no elements, you create an array with no parameters:

var s_list = new Array();

 Chapter 11: JavaScript Arrays 279

This creates an array named s_list with no elements. You can still add more elements later in
the script by using the next index number in the sequence. So, if you decide later that you want
the array to contain one element, you could use the following code:

var s_list= new Array();
var x = 17;
var y = x+2;
var my_message = "Hi!";
s_list[0]="Thomas";

If you assign a value to an element that has a higher index number, the array expands
to have a slot for any elements that come before it. For instance, take a look at the
following code:

var s_list = new Array();
var x = 17;
var y = x+2;
var my_message = "Hi!";
s_list[29]="Thomas";

The last line of this code assigns the string “Thomas” to the 30th element (index number 29)
in the array. This means that the array went from having 0 elements to having 30. By assigning
a value to this element, the array expands to have enough slots to compensate, and values for
those slots can be assigned later if you wish.

Now that you know how to define arrays in various ways, you need to look at some of the
properties and methods of an Array object in JavaScript.

Understanding the Properties and
Methods of the Array Object

As with other objects, an instance of the JavaScript Array object is able to use various properties
and methods of the Array object. As you will see as you read through the descriptions of the
individual properties and methods of the Array object, you access the properties by using the
array name followed by the property or method name you wish to use.

Properties
Table 11-1 lists the properties of the Array object and provides a short description of each.
Each property is discussed in more detail in the sections that follow.

The constructor Property
The constructor property contains the value of the function code that constructed an array:

function Array() { [native code] }

An assignment is made for the first
(and, so far, only) element of the array

The array is defined

This just fills space and shows that you
can assign values later in the script

This creates the 30th element in the array and
also causes the array to have 30 elements

The array is defined

Space-filling code

 280 JavaScript: A Beginner’s Guide

The constructor property is mainly useful for informational purposes or for comparisons. To
access the property, you use the array name followed by the dot operator and the constructor
keyword. The following is the general syntax for using an Array object property:

arrayname.property

You replace arrayname with the name of the array you need to have use the property, and you
replace property with the property you wish to use.

So, to use the constructor property, you need to create an array so that you have an instance
of the Array object to use. Instead of creating a new array, the s_list array from earlier is used
here, allowing you to use the following code:

var s_list = new Array(4);
window.alert(s_list.constructor);

This would send an alert with the text function Array() { [native code] } (the constructor
function of the array).

The index and input Properties
To understand the index and input properties, you first need to understand regular expressions
(which are used to match text strings), which requires a lengthy explanation, as provided in
Chapter 13. Discussion of the index and input properties will be saved for this chapter.

The length Property
The length property returns a number that tells you how many elements are in an array.

NOTE
The length property is useful later when you begin using loops to cycle through arrays.
You may need to know the length of the array (in case you add elements after the array
is defined) to make the loop go through each element of the array.

Property Description

constructor Refers to the constructor function used to create an instance of an object

index Used when an array is created by a regular expression match

input Used when an array is created by a regular expression match

length Contains a numeric value equal to the number of elements in an array

prototype Allows the addition of properties and methods to objects such as the JavaScript
Array object

Table 11-1 Properties of the Array Object

 Chapter 11: JavaScript Arrays 281

To use the length property, you use the name of the array and then add the length property
afterward. The following code shows an example of the length property being used to tell the
viewer how many elements are in an array:

var s_list = new Array(4)
s_list[0]="Thomas";
s_list[1]="Roger";
s_list[2]="Amber";
s_list[3]="Jennifer";
window.alert("The array has "+s_list.length+" elements");

This will send an alert that says “The array has 4 elements” to the viewer.

The prototype Property
The prototype property allows you to add properties and methods to an object that already
exists, such as the Array object. By using this property, you can add properties to the object
from outside the constructor function. Keep in mind, however, that a change made with the
prototype property affects each instance of an object that uses the same constructor function.

For example, if you decide that the Array object needs another property for one of your
pages, you could use the prototype property to assign a new property using the following syntax:

Array.prototype.new_property=default_value;

You would replace new_property with the name you wish to use for your new property and
then replace default_value with a default value for that property.

So, if you want to add a new property named attitude to the Array constructor function on
your page and give it a default value of “cool”, you could use code such as the following:

Array.prototype.attitude = "cool";
var s_list = new Array();
window.alert("This place is "+s_list.attitude);

This will cause an alert to the viewer of the value of the new property. In this case, the default
value is used because you didn’t change it (more on that soon).

You need to remember that the addition of a property like this affects every array in the
document afterward. So, by adding the property in this way, every array on the page (or every
page that uses the script if it is external) now has this new property that you can access.

The following code shows the use of the prototype property with two arrays on the page.
The first array alerts the default value of your new property, while the second array alerts the
new value. The following example shows how you can use the prototype property using the
new attitude property:

Array.prototype.attitude = "cool";
var s_list = new Array();
window.alert("This place is "+s_list.attitude);

A new property is given to the Array object for this page A new array is created that
will have the new property

The value of the property
is sent in an alert

The new property is added

The first array has the new property

The value of the property for
this array is sent in an alert

 282 JavaScript: A Beginner’s Guide

var fish = new Array();
fish.attitude = "wide-eyed";
window.alert("Fish are "+fish.attitude);

The first array and alert are the same as in the previous example. The second array is named
fish. The second array also has the new attitude property; but, rather than keep the default
value, it is changed by using the array name followed by the property and the new value.

The value of the changed property is then alerted to the viewer; thus, the viewer gets an
alert saying “Fish are wide-eyed” after clicking the OK button on the first alert.

Methods
Now that you know the properties of the Array object, this section presents the methods that
you can use to do different things with your arrays. Table 11-2 lists the methods and provides
a description of what each method does. Following the table, each method is described in
more detail.

The second array also has the new property

The value of the property for
the second array is changed

The new value of the property
for this array is sent in an alert

Method Description

concat() Combines the elements of two or more arrays into one new array

join() Combines the elements of an array into a single string with a separator character

pop() Removes the last element from an array and then returns the removed element if needed

push() Adds elements to the end of an array and then returns the numeric value of the new
length of the array if needed

reverse() Reverses the direction of the elements in an array: the first element is moved to the last
slot and the last element is moved to the first slot, and so on

shift() Removes the first element from an array and then returns that element if needed

unshift() Adds elements to the beginning of an array and returns the numeric value of the length
of the new array if needed

slice() Pulls out a specified section of an array and returns the section as a new array

splice() Removes elements from an array or replaces elements in an array

sort() Sorts the elements of an array into alphabetical order based on the string values of the
elements

toString() Combines the elements of an array into a single string with a comma as a separator
character

Table 11-2 Methods of the Array Object

 Chapter 11: JavaScript Arrays 283

The concat() Method
The concat() method is used to combine (or concatenate) the elements of two or more arrays
and return a new array containing all of the elements. You use array names as parameters, and
set them in the order in which you want the array elements to be combined.

The first example combines the elements of two arrays. To do this, only one parameter
needs to be used—the name of the array to add to the end of the array used to call the method:

var fruits = new Array("oranges","apples");
var veggies = new Array("corn","peas");
var fruits_n_veggies = fruits.concat(veggies);

This code creates an array named fruits with two elements, and an array named veggies with
two elements. Next, it defines a new array, fruits_n_veggies, based on the combination of the
previous two arrays. The value returned by the concat() method is assigned to this array name,
creating the new combined array.

The reason you use the fruits array to call the concat() method and send the veggies array
name as a parameter is so that you get the elements of the fruits array at the beginning of
the new array and the elements of the veggies array added to the end of the new array. The
previous code creates the new array fruits_n_veggies with the following elements:

oranges, apples, corn, peas

If you wanted to have the elements of the veggies array listed first, you would call the
method using the veggies array name and send the fruits array name as the parameter:

var fruits = new Array("oranges","apples");
var veggies = new Array("corn","peas");
var fruits_n_veggies = veggies.concat(fruits);

Now the elements of the veggies array are listed first, and the new fruits_n_veggies array has
the following elements:

corn, peas, oranges, apples

When using this method, you want to be sure to set the order the way you want it by using
the techniques just described.

If you combine three arrays, the elements of the array with which you call the concat()
method will come first, and then the elements of each array name sent as a parameter will be
added in the order in which they are sent:

var fruits = new Array("oranges","apples");
var veggies = new Array("corn","peas");
var meats = new Array("fish","chicken");
var three_groups = fruits.concat(veggies,meats);

Now you are combining three arrays, and the following are the elements of the new
three_groups array:

oranges, apples, corn, peas, fish, chicken

 284 JavaScript: A Beginner’s Guide

If you code it in the following way instead, you will get an array with the same elements,
but in a new order:

var fruits = new Array("oranges","apples");
var veggies = new Array("corn","peas");
var meats = new Array("fish","chicken");
var three_groups = meats.concat(veggies,fruits);

The following is the order of the elements in the new three_groups array when using
this code:

fish, chicken, corn, peas, oranges, apples

The join() Method
The join() method is used to combine the elements of an array into a single string, with each
element separated by a character sent as a parameter to the method. If no parameter is sent,
a comma is used as the default separator character when the method is called.

To see how this method works, take a look at a bit of code. The following example defines
an array and then calls the join() method using the array name:

var fruits = new Array("oranges","apples","pears");
var fruit_string = fruits.join();

This code assigns to the variable fruit_string the result of the join() method when called
with the fruits array. Since a parameter was not sent, the elements of the array will be
separated by commas in the new string. The fruit_string variable will have the following
string value:

oranges,apples,pears

You can see this result by writing the string variable into a Web page. The following code will
do this for you:

<body>
<script type="text/javascript">
var fruits = new Array("oranges","apples","pears");
var fruit_string = fruits.join();
document.write("The new string is "+fruit_string);
</script>
</body>

Now you can see the string that is returned from the join() method. Figure 11-1 shows what
this code produces when run in a browser.

The string is printed to the screen
The elements of the array
are joined into a single
string with commas
separating the elements

The array is created
with three elements

 Chapter 11: JavaScript Arrays 285

If you want to separate the elements in the new string with something other than a comma,
you can send the character you want to use as a parameter. The following code sends a colon
as a string parameter to the join() method:

<body>
<script type="text/javascript">
var fruits = new Array("oranges","apples","pears");
var fruit_string = fruits.join(":");
document.write("The new string is "+fruit_string);
</script>
</body>

This time the string will be a little different from the previous one, because it has colons in
place of the commas in the previous example. Figure 11-2 shows how this string would print in
the browser window.

The pop() Method
The pop() method is used to remove the last element from an array. If you assign the result of
the method to a variable, the popped element will be returned and assigned to the variable.

To use the pop() method, take a look at some code that creates an array and then removes
the last element from the array using the pop() method:

var fruits = new Array("oranges","apples","pears");
fruits.pop();

This creates an array named fruits with three elements (oranges, apples, pears). Then, the last
element is removed using the pop() method, shortening the array to have only the first two
elements (oranges, apples).

Figure 11-1 The new string is written on the page

The array is created with three elements

The elements of the
array are joined into a
single string with colons
separating the elements

The string is printed to the screen

 286 JavaScript: A Beginner’s Guide

If you want to remove an element but still use it in some way later, you can assign the
result of the method to a variable. The variable will be assigned the value of the element that
was removed. The following example removes the last element of an array and then sends the
removed element as an alert to the viewer:

var fruits = new Array("oranges","apples","pears");
var picked_fruit = fruits.pop();
window.alert("You picked my "+picked_fruit);

This will pop up an alert that says “You picked my pears” to the viewer.

The push() Method
The push() method is used to add elements to the end of an array. The parameters sent to the
method are the new element or elements you wish to add to the array.

CAUTION
The value returned by the push() method in older browsers is the last element that has
been added to the array. In modern browsers that use newer versions of JavaScript (1.3
or later), it returns the numeric value of the new length of the array.

As an example, look at some code that adds one element to the end of an array:

var fruits = new Array("oranges","apples");
fruits.push("pears");

This code creates an array named fruits with two elements (oranges, apples) and then uses the
push() method to add a third element, pears. The array now contains three elements (oranges,
apples, pears), with pears being the last element in the array.

Figure 11-2 The new string is written on the page with colons as separators

 Chapter 11: JavaScript Arrays 287

You can add more than one element by sending more than one parameter. The elements
will be added in the order in which they are sent in the parameter list. The following code adds
two elements to the fruits array:

var fruits = new Array("oranges","apples");
fruits.push("pears","grapes");

This code takes an array with two elements (oranges, apples) and adds two more elements to it.
In the end, the array contains four elements (oranges, apples, pears, grapes).

If you want the value that is returned by the method, you can assign the result to a variable.
The following code does this and then alerts the viewer to the returned value:

var fruits = new Array("oranges","apples");
var who_knows = fruits.push("pears","grapes");
window.alert("The method returned "+who_knows);

The value of the who_knows variable will be different depending on your browser. In older
browsers, the value should be the string grapes (the last element added to the array). If the
browser has JavaScript 1.3 or better, the value of the variable should be the numeric value of 4
(the new length of the array).

NOTE
For those who have programmed in other languages, push() and pop() treat an array
like a stack (last in, first out). The shift() and unshift() methods also do this, and mixing
the two sets treats an array like a queue.

The reverse() Method
The reverse() method is used to reverse the order of the elements in an array. Since that is all it
does, there is no need to send any parameters or return a value.

To demonstrate how to use this method, the following code creates an array and then
reverses the order of the elements in the array:

var fruits = new Array("oranges","apples","pears");
fruits.reverse();

The initial order of the array is oranges, apples, pears. When the reverse() method is called for
this array, the order of the elements is reversed, and the array now is in the order pears, apples,
oranges.

The shift() Method
The shift () method is used to remove the first element of an array. It returns the value of the
element that was removed in case you need to use it later in the script.

So, if you want to remove the first element in an array, you could use something similar to
the following code:

var fruits = new Array("oranges","apples","pears");
fruits.shift();

 288 JavaScript: A Beginner’s Guide

This code creates an array with three elements (oranges, apples, pears) and removes the first
element with the shift() method. This causes the array to have only two elements remaining
(apples, pears).

To use the value of the element that was removed, you can assign the result of the method
to a variable. The following code assigns the removed element to a variable and then alerts the
viewer about what was removed:

var fruits = new Array("oranges","apples","pears");
var picked_fruit=fruits.shift();
window.alert("You picked my "+picked_fruit);

This code displays the alert “You picked my oranges” in the browser window.

The unshift() Method
The unshift() method is used to add elements to the beginning of an array. The elements
you wish to add to the array are sent as parameters to the method. The value returned by the
method is the numeric value of the new length of the array.

The following example adds one new element to the beginning of an array:

var fruits = new Array("apples","pears");
fruits.unshift("oranges");

This creates an array named fruits with two elements (apples, pears) and then adds an element
to the beginning of the array using the unshift() method. The array then contains three
elements (oranges, apples, pears).

If you want to add more than one element at a time, you send them all as parameters in
the order in which you wish to add them. The following example adds two elements to the
beginning of the array:

var fruits = new Array("apples","pears");
fruits.unshift("oranges","grapes");

This takes the initial array of two elements (apples, pears) and adds two elements to the
beginning of the array. The array ends up containing four elements (oranges, grapes, apples,
pears) after the unshift() method is called.

The slice() Method
The slice() method is used to slice a specified section of an array and then to create a new
array using the elements from the sliced section of the old array.

The following is the general syntax for using this method:

arrayname.slice(start,stop)

You would replace arrayname with the name of the array from which you want to remove
a certain set of elements for a new array. You would replace start with the index number from
which to start the slice. You would replace stop with the index number that comes after the last
element you wish to slice.

 Chapter 11: JavaScript Arrays 289

For an example, the following code slices two elements from an array and creates a new
array with those elements:

var fruits = new Array("oranges","apples","pears","grapes");
var somefruits = fruits.slice(1,3);

This slices the second element (index number 1) through the third element (index number 2)
of the array. It does not pull out the fourth element (index number 3) because 3 is the index
number after 2, which is the index number of the last element designated to be removed. The
new array named somefruits contains the sliced elements (apples, pears).

The splice() Method
The splice() method allows you to remove or replace elements within an array. The parameters
that can be sent include the index number at which to begin the splice, the number of elements
to remove, and the option to add new elements to the array.

If you want to remove a single element from an array, you could use code such as the
following:

var fruits = new Array("oranges","apples","pears","grapes");
var somefruits = fruits.splice(2,1);

This begins removing elements at index number 2. The next parameter is 1, so only one
element will be removed; thus, only the element at index number 2 is removed here, which is
pears. The array after the splice contains only three elements (oranges, apples, grapes).

To remove more than one element, you increase the value of the second parameter. The
following code removes two elements, starting at index number 2:

var fruits = new Array("oranges","apples","pears","grapes");
var somefruits = fruits.splice(2,2);

This time the array is cut down to two elements (oranges, apples), as the last two elements are
removed by the splice() method.

You can also use the splice() method to replace spliced elements in an array or to add
elements to an array. The following code replaces the spliced element at index number 2 with
a new element by sending an additional parameter:

var fruits = new Array("oranges","apples","pears","grapes");
var somefruits = fruits.splice(2,1,"watermelons");

This time, the element at index number 2 is removed. Since the second parameter is 1, only
one element is removed. The next parameter tells the browser to add this value at the index
number specified in the first parameter (index number 2). This value replaces the value that
was removed (pears). The array will still have four elements, just different elements (oranges,
apples, watermelons, grapes).

If you want to use the splice() method to add one or more elements to an array but not
remove anything, you can set the second parameter to 0 (thus removing zero elements).

 290 JavaScript: A Beginner’s Guide

You set the first parameter to the index number at which you wish to begin adding elements.
For example, take a look at the following code:

var fruits = new Array("oranges","apples","pears","grapes");
var somefruits = fruits.splice(2,0,"watermelons","plums");

This time the addition of elements begins at index number 2, as specified in the first parameter,
and nothing is removed, as specified in the second parameter. Two elements are added, after
which the array will have six elements (oranges, apples, watermelons, plums, pears, grapes).

The sort() Method
The sort() method sorts an array in alphabetical order (like a directory listing). This is not in
numerical order, however. As an example, consider the fruit array once again. If you want to change
the order of the elements so that they are in alphabetical order, you could use the following code:

var fruits = new Array("oranges","apples","pears","grapes");
fruits.sort();

Q: Among all the properties, are there any that are specifically useful for arrays?

A: The length property will come in handy in a number of cases. The other properties
are useful in certain situations (such as when needing to reverse the order of the array
elements). You will likely find them useful in your own scripts as you progress.

Q: Is there an easy way to remember all of these methods?

A: As with other lists, how well you remember them depends on how often you use the
methods. One helpful thing is to look for the pairs that complement each other, like pop()
and push(), or shift() and unshift().

Q: So, the reverse() method just turns everything around backward? Why would I want
to do that?

A: You probably won’t want to do it that often, but it can be helpful after using the sort()
method to place a list of strings in reverse alphabetical order. It can be helpful in a few
other ways as well; it just depends on the data in the array.

Q: So, the sort() method sorts the data in alphabetical order, but why does 70 come before
9 when this is sorted?

A: When the sort() method is used, it sorts using alphabetical order by default, meaning it converts
all values to string values and then compares them. In that case, anything that begins with 7
comes before anything that begins with 9, even if the numeric value of the former is higher.

Ask the Expert

 Chapter 11: JavaScript Arrays 291

This will reorder the array so that the elements will be in alphabetical order, changed from
oranges, apples, pears, grapes to apples, grapes, oranges, pears.

You may find this useful when you want to display the contents of an array on a page.
You will see later in this chapter how to use loops to make the display of array contents easy.

The toString Method
The toString() method combines the elements of an array into a single string with a comma as
a separator character. For example, you could use the following code:

var fruits = new Array("oranges","apples","pears","grapes");
var fruit_list = fruits.toString();
document.write(fruit_list);

This will write the string below to the document:

Oranges,apples,pears,grapes

Extended Array Methods
With JavaScript 1.6 or higher, there are some additional methods you can use. Since (at the time
of this writing) these are not currently cross-browser, these will only be listed and described in
Table 11-3. For more information on these methods, see https://developer.mozilla.org/En/Core_
JavaScript_1.5_Reference:Global_Objects:Array (clicking one of the methods will give a more
detailed description, often with code you can implement in order to use the same functionality
in browsers that do not directly support the method).

Method Description
filter() Returns a new array containing elements from an array that returned true based

on the function used to filter it
forEach() Calls a specified function for each element in the array
every() Returns true if all elements in the array return true for the specified function used to

test them
indexOf() Returns the lowest index number for an element that has a value equal to the

specified value sent as a parameter
lastIndexOf() Returns the highest index number for an element that has a value equal to the

specified value sent as a parameter
map() Returns a new array that results from calling a specified function on every element

in the array
reduce() Runs a function on two values in the array at a time, from left to right, until only

a single value is left
reduceRight() Runs a function on two values in the array at a time, from right to left, until only

a single value is left
some() Returns true if one or more elements return true for the specified function used to

test them

Table 11-3 Extended Array Object Methods

https://developer.mozilla.org/En/Core_JavaScript_1.5_Reference:Global_Objects:Array
https://developer.mozilla.org/En/Core_JavaScript_1.5_Reference:Global_Objects:Array

 292 JavaScript: A Beginner’s Guide

Using Arrays with Loops
Loops allow you to move through array elements without the need to deal with each element
one at a time with new lines of code. Instead, you can use a loop to cycle through each element
of an array and cut down the number of lines you would need to write for a large array.

To begin, take a look at how you can create the elements of an array using a loop instead
of a straight assignment of values.

Creating Array Elements
A loop can be useful in the creation of the elements of an array. This is especially useful if you
need the viewer to enter the contents of the array for some reason, or if you wish to perform a
similar calculation in creating each element.

Suppose you want the viewer to be able to input the names of the four students from the
s_list array of student names introduced earlier in the chapter. Using a for loop, you could use
the following code to allow the viewer to enter each name:

var s_list = new Array(4);
for(var count=0;count<4;count++) {
 s_list[count] = window.prompt("Enter a name","");
}

This code creates a new array with four elements. It then uses a for loop to assign each value.
The loop begins by setting the loop’s count variable to 0 and will run until the expression
count<4 is no longer true.

Since 1 is added to the value of count each time through (count++), this means that the
count variable will have the value of 0 the first time through, 1 the second time, 2 the third
time, and 3 the fourth time. It doesn’t go through another time because count would be equal
to 4, which is no longer less than 4.

NOTE
The advantage of starting the count variable at 0 is that you are less likely to become
confused when you use the loop. The count variable will represent the index number of
each array element, so you won’t need to subtract 1 from its value as you would if you
had started count at 1 instead.

Inside the loop, a value is assigned to the element at the index number represented by the
count variable each time through. The value assigned is the result of what the viewer types in
when prompted for a name. The viewer will get four prompts in this case and will assign all
four of the elements’ values.

A new array with four elements is created

The loop cycles through from 0 to 3

A prompt is given to the viewer each time through the loop,
and the text the viewer types in is assigned to the element

 Chapter 11: JavaScript Arrays 293

Another use for assigning element values with a loop would be to perform a similar
calculation that would affect each element. For instance, if you wanted an array of ten even
numbers, you could use the following code:

var even_nums = new Array(10);
var a_count = 0;
for (var count=0;count<20;count+=2) {
even_nums[a_count] = count+2;
a_count ++;
}

By increasing count by 2 each time through, you ensure that an even number is used for your
calculation. You then assign the value of the count value plus 2 to each array element while
going through the loop. The use of the a_count variable allows you to keep the array from
missing elements based on your count variable being incremented by 2. The a_count variable
is incremented by 1 to keep the array index numbers increasing by only 1 (instead of assigning
even_nums[0] and then even_nums[2], and skipping over even_nums[1]—which is what
would have happened if you had used the count variable for the index number slot, rather than
a_count, which increases by only 1 each time).

The first time through, count is 0, so even_nums[0] is assigned a value of 0+2, or 2. The
next time through, count is equal to 2, so even_nums[1] is given a value of 2+2, or 4. This
happens until you have ten array elements (index numbers 0–9) that are all even numbers.

Moving Through Arrays
You can also cycle through an array that has been created to change it, gain information from
it, or list its contents in a way you like. This is quite useful and can save you some time with
larger arrays.

If you go back to the old s_list array listing the names of students in a class, you can see
that a loop would save you a little typing when you decide to print the list of students on the
screen. You can also set the loop so that it will adjust itself if you decide to add to the array
later. First, take a look at how to print the list of names to the browser screen using a loop.
The HTML code would look like this (save it as s_names.html):

<body>
<h1>Student Names</h1>
<script type="text/javascript" src="s_names.js"></script>
</body>

An array with ten elements is defined

A new variable to hold a count
incremented by 1 is declared

 The loop increments by 2, from 0 to 18

The a_count variable
is incremented

The elements are assigned here based on
the value of the count variable

 294 JavaScript: A Beginner’s Guide

Next, you can use the following JavaScript code (save the JavaScript file as s_names.js):

var s_list = new Array(4);
s_list[0]="Thomas";
s_list[1]="Roger";
s_list[2]="Amber";
s_list[3]="Jennifer";
for(var count=0;count<4;count++) {
 document.write(s_list[count]+ "
");
}

You are basically using the same method in the loop as you did while creating an array. This
time, however, you use the loop to print the contents of the array to the screen. Figure 11-3
shows how this script looks when run in a browser.

Now, if you want to be sure the loop adjusts itself to show every element just in case you
add or take away students, you need to have the loop use the length of the array rather than a
plain number to find out when to stop itself. Recall that JavaScript can use the length property
to find out how many elements are in an array. So, instead of using the number 4 in your loop
for the comparison, use the length property of the array:

for(var count=0;count<s_list.length;count++)

The array can have any number of elements, and the loop will cycle through until the full
array is used (until count<s_list.length is no longer true). The last element will have an index
number that is one less than the length of the array, which is what you want since arrays begin
counting at 0 instead of 1.

The elements of the array are
printed on the page using a loop
to cycle through the array elements

An array is created and its
elements are assigned values

Figure 11-3 The names from the array are written on the page

 Chapter 11: JavaScript Arrays 295

To put this all together, you can make a few changes to your array and then print the array
elements in the browser window. The following changes to the JavaScript code allow you to
make adjustments to the array later while still allowing the script to display all the names:

var s_list = new Array();
s_list[0]="Thomas";
s_list[1]="Roger";
s_list[2]="Amber";
s_list[3]="Jennifer";
s_list[4]="Pat";
s_list[5]="Kelly";
s_list[6]="Jerry";
for(var count=0;count<s_list.length;count++) {
 document.write(s_list[count]+ "
");
}

You have now adjusted the array so that it initially has no direct number of elements, but
you define them as you go by assigning values to each element. This array has added three
names to the list, giving you an array with seven elements (index numbers 0–6). The list is
then written to the page. Figure 11-4 shows the result of this script when run in a browser.
Notice that the list now has all the new names.

You could take this one step further and use the sort() method to put the names of the
students in alphabetical order. To do this, you only need to add a single line calling the
sort() method for the s_list array before you print the elements to the screen. The order of

An array is created and its elements are assigned values

The elements of the array are
printed on the page using
a loop to cycle through the
array elements, and using
the length property to know
when to stop the loop

Figure 11-4 All the names are listed on the page

 296 JavaScript: A Beginner’s Guide

the elements is adjusted, and the alphabetized list is printed. The following is the code for
alphabetizing:

var s_list = new Array();
s_list[0]="Thomas";
s_list[1]="Roger";
s_list[2]="Amber";
s_list[3]="Jennifer";
s_list[4]="Pat";
s_list[5]="Kelly";
s_list[6]="Jerry";
s_list.sort();
for(count=0;count<s_list.length;count++) {
 document.write(s_list[count]+ "
");
}

Notice the addition of the s_list.sort() call. This sorts the array to give you alphabetized output.
Figure 11-5 shows the result of this script when it is run in a browser.

The for each in Loop
With later versions of JavaScript (1.6 and up), you can use the for each in loop to run through
the list of array elements. It allows you to use a variable for the value of the array element each
time through the loop (rather than using something like s_list[count], you could simply use

The sorted elements of the
array are printed on the page
using a loop to cycle through
the array elements, and using
the length property to know
when to stop the loop

The array is sorted into alphabetical order

An array is created and its
elements are assigned values

Figure 11-5 The names are listed in alphabetical order

 Chapter 11: JavaScript Arrays 297

Try This 11-1

a name such as student). The following code shows an example using the s_list array you have
been using in this chapter:

var s_list = new Array();
s_list[0]="Thomas";
s_list[1]="Roger";
s_list[2]="Amber";
s_list[3]="Jennifer";
for each (student in s_list) {
 document.write(student + "
");
}

Notice that for and each are two separate reserved words, followed by the opening parenthesis,
followed by the variable name you want to use (student in this case), followed by the reserved
word in, followed by the array name, and ending with the closing parenthesis. Then, the
opening curly bracket allows you to write the loop code as usual, except you will use the
variable name (student in this case) instead of keeping a count variable and using s_list[count].

Since this does not yet (at the time of this writing) work cross-browser, it is best for now to
continue using a traditional for loop (which is backward-compatible) or to use a for in loop as
in the following code:

var s_list = new Array();
s_list[0]="Thomas";
s_list[1]="Roger";
s_list[2]="Amber";
s_list[3]="Jennifer";
for (student in s_list) {
 document.write(s_list[student] + "
");
}

You can begin to use loops that become much more involved with the arrays, and use more
of the properties and methods as well. For now, this will get you started and build a foundation
from which you can build the more complex loops for your JavaScript arrays.

 Use Loops with Arrays
This project allows you to practice using loops with arrays and to practice using
some of the properties of arrays. You will create a list of computer parts that you
want to print to the screen.

Step by Step
 1. Create an HTML page with a heading with the text “Computer Parts Needed”. Add script

tags that include an external JavaScript file named prjs11_1.js. Save the HTML file as
pr11_1.html.

 2. Create an external JavaScript file and save it as prjs11_1.js. Use it for steps 3–10.

pr11_1.html
prjs11_1.js

(continued)

 298 JavaScript: A Beginner’s Guide

 3. Create a new array and assign the following list of parts as values for the elements in the array:

 monitor
motherboard
chip
hard drive

 4. Print out each computer part on its own line in the browser window (use a loop).

 5. Save the JavaScript file and load the HTML file in a browser to view the results.

 6. Reopen the JavaScript file in your text editor, and make the changes described in the next
three steps.

 7. If you didn’t before, use the length property in the comparison instead of a number.

 8. Add some elements to the array by coding them into the script. Add the following items
after the first four you already have:

 CD-RW drive
power supply

 9. Have the array sort itself so that it is in alphabetical order.

 10. Save the JavaScript file and view the HTML file in your browser. The new elements should
show up in an alphabetical listing of the array elements.

Try This Summary
In this project, you used your knowledge of loops, arrays, and Array object properties to create
two different results. One result lists the elements of an array, while the other adds some
elements to the array and lists the elements in alphabetical order.

Using Associative Arrays
Associative arrays (also referred to as hash tables) allow you to use strings in place of index
numbers. Using an associative array is quite similar to using a property name with a regular
object; you just do it in an array format. Since numbers are not used, the use of associative
arrays is more limited, but they can still be useful to store information and make the elements
easier to remember when you want to access them. To begin, take a look at how to define an
associative array.

 Chapter 11: JavaScript Arrays 299

CAUTION
JavaScript does not use true associative arrays (what you see here to mimic them is
really a creation of property/value pairs within that Array object rather than being true
associative arrays). Also, certain properties such as length won’t work as expected with
this type of array. Thus, use caution, because this can at times cause unexpected values
to occur within your scripts. More often than not, it is better to simply use a numbered
array or to create a new object, depending on what you need the script to do.

Defining Associative Arrays
You can define an associative array in much the same way as you define a normal array, but
you will want to use the methods that allow you to assign each element individually. Here, you
will create a blank array and give it values by assigning values to elements.

To assign a value to an element, you need to give the element a string in place of its index
number. The value you would use for the string would be something you could associate with
the value you are going to assign to the element. For instance, if you wanted to change the
old s_list array into an associative array based on a trait of each student, you could use the
following code:

var s_list= new Array();
s_list["tall"]="Thomas";
s_list["cool"]="Roger";
s_list["clever"]="Amber";
s_list["attentive"]="Jennifer";

The assignments here give an index string of a trait, and then a student’s name is assigned to
the element that has his or her trait.

This will make it easier to remember when you want to access an element of the array
later, since you can remember a trait instead of a number when you need an element. This
makes array declarations semantically richer, which can also be useful if you wish to query or
otherwise reference a certain element.

Accessing Associative Arrays
Accessing an associative array is done in the same way that you access a normal array, except
that you use an index string rather than an index number.

If you wanted to access the element that had the name of the tall student, for instance, you
could access it using the following syntax:

s_list["tall"]

 300 JavaScript: A Beginner’s Guide

Thus, you could print out a listing of the students by their traits by using the following
example code:

<body>
<h1>Student Names</h1>
<script type="text/javascript">
var s_list= new Array();
s_list["tall"]="Thomas";
s_list["cool"]="Roger";
s_list["clever"]="Amber";
s_list["attentive"]="Jennifer";
document.write("The tall one is " +s_list["tall"]+ "
");
document.write("The cool one is " +s_list["cool"]+ "
");
document.write("The clever one is " +s_list["clever"]+ "
");
document.write("The attentive one is " +s_list["attentive"]+ "
");
</script>
</body>

This will print out the list based on the traits. Figure 11-6 shows the results of this script when
run in a browser.

You will be using arrays in the next chapter to help you create scripts that use random
numbers.

The elements of the array are printed on the page

An array is created and its elements are assigned values

Figure 11-6 The names are listed based on the traits of each student

 Chapter 11: JavaScript Arrays 301

Try This 11-2 Use Associative Arrays
This project allows you to practice using associative arrays. You will create
an array of elements based on the qualities of various cars.

Step by Step
 1. Create an HTML page with a heading with the text “List of Cars”. Add script tags to

include an external JavaScript file named prjs11_2.js. Save the HTML file as pr11_2.html.

 2. Create an external JavaScript file and save it as prjs11_2.js. Use it for steps 3–6.

 3. Create an associative array with the following index strings:

 cool
small
long

 4. Assign a value of “Mustang” to the element with the index string of “cool”. Assign a value
of “Bug” to the element with the index string of “small”. Assign a value of “Station Wagon”
to the element with the index string of “long”.

 5. Print the value of each element to the browser window.

 6. Save the JavaScript file and view the HTML file in your browser. You should see the list
of cars.

Try This Summary
In this project, you used your knowledge of associative arrays to create a page that displays the
elements of an associative array.

 Chapter 11 Self Test
 1. An array is a way of __________ data of similar types for easy access later in a script.

 2. In JavaScript, an array is basically a user-defined __________.

 3. In a regular array, access to an element is usually through the use of a(n) __________.

 A string

 B index number

 C random number

 D random string

pr11_2.html
prjs11_2.js

✓

 302 JavaScript: A Beginner’s Guide

 4. A(n) __________ array allows access using a string in place of the number.

 5. Which of the following is a valid name for an array?

 A my array

 B 1stArray

 C for

 D soap

 6. Which of the following does not correctly create an array?
 A var myarray= new Array();

 B var myarray= new Array(5);

 C var myarray= new Array(“hello”,”hi”,”greetings”);

 D var if= new Array[10];

 7. Which of the following will correctly access the fifth element of an array named “cool”?

 A cool[5];

 B cool(5);

 C cool[4];

 D cool.array[4];

 8. What does the following code do?

var s_list= new Array()

 A Creates an empty array named s_list

 B Creates an array named s_list with the default number of elements, 10

 C Creates an empty array named list

 D Creates an array that can never have any elements added to it

 9. What property of the Array object will return the numeric value of the length of an array?

 A The length property

 B The getlength property

 C The constructor property

 D The lengthOf property

 10. The __________ property allows you to add properties and methods to an object that
already exists.

 Chapter 11: JavaScript Arrays 303

 11. The __________ method is used to combine the elements of two or more arrays and return
a new array containing all of the elements.

 12. The join() method is used to combine the elements of an array into a single __________,
with each element separated by a specified character.

 13. The __________ method is used to remove the last element from an array.

 14. By default, how does the sort() method sort the contents of an array?

 A It reverses the contents of the array.

 B It sorts the contents numerically.

 C It sorts the contents alphabetically.

 D It removes the last element from an array.

 15. What is used in place of an index number in an associative array?

 A A floating-point value

 B A Boolean value

 C A negative number

 D A string value

This page intentionally left blank

305

Chapter 12
Math, Number, and
Date Objects

 306 JavaScript: A Beginner’s Guide

Key Skills & Concepts

● Using the Math Object

● Understanding the Number Object

● Using the Date Object

The previous chapter presented JavaScript arrays and the Array object, including an overview
of the Array object’s various properties and methods. In this chapter, you will learn about the

JavaScript Math, Number, and Date objects, in that order. For each object, a short introduction
is provided along with a description of why the object can be useful to you. Following that is
a look at the various properties and methods that you can use for that object.

Using the Math Object
The Math object can be useful when you need to perform various calculations in your scripts.
To begin, take a look at what the Math object is.

What Is the Math Object?
The Math object is a predefined JavaScript object. Like the other predefined objects you have
studied in this book, the Math object gives you properties and methods to use. The Math object
is used for mathematical purposes to give you the values of certain mathematical constants or
to perform certain operations when you use a method function.

How the Math Object Is Useful
As mentioned, the Math object is useful when you need to make mathematical calculations in
your scripts. For instance, if you need the value of pi for a calculation, the Math object gives
you a property to use so you can get that value.

Also, if you need to find the square root of a number, a method of the Math object enables
you to do this. Another thing this object provides is a way to generate random numbers in
JavaScript, which you will find useful in certain scripts.

Properties
The Math object gives you a number of properties that can help you if you need to perform
certain mathematical calculations. Table 12-1 lists the properties of the Math object, with the
values of each.

As you can see in Table 12-1, all of the properties simply hold numeric values that can be
useful in mathematical calculations. Because these are irrational numbers, the values listed are
nonterminating and are thus approximations.

 Chapter 12: Math, Number, and Date Objects 307

Using the Properties
The properties contain read-only values, which tend to be useful in particular types of
calculations. For instance, if you want to find the area of a circle, you use the formula Area =
pi*r2. Knowing that, you could write an application to determine the area of a circle based on
the radius input by a viewer. You could use the following code, starting with the HTML code:

<form>
To find the area of a circle, input a radius:

<input type="text" id="radius" />
<input type="button" value="Get the Area!" id="getarea" />
</form>

Next, the JavaScript code:

var area_button = document.getElementById("getarea");

area_button.onclick = function() {

 var rad = document.getElementById("radius").value;

 if (rad.length < 1) {
 window.alert("Please enter a radius!");
 return false;
 }
 else if (rad != (rad*1)) {
 window.alert("Radius must be numeric!");
 return false;
 }

Property Value

E Value of Euler’s constant (E), which is about 2.71828…

LN10 Value of the natural logarithm of 10, which is about 2.302585…

LN2 Value of the natural logarithm of 2, which is about 0.693147…

LOG10E Value of the base 10 logarithm of E, which is about 0.43429…

LOG2E Value of the base 2 logarithm of E, which is about 1.442695…

PI Value of pi, often used with circles, which is about 3.14159…

SQRT2 Value of the square root of 2, which is about 1.4142…

SQRT1_2 Value of the square root of one half, which is about 0.7071…

Table 12-1 Properties of the Math Object

The input button element is retrieved by its id (getarea)

The value of the text box (with an id of radius)
is retrieved using its value property

Checks to see if data is entered

Checks to see if the data
entered is not numeric

 308 JavaScript: A Beginner’s Guide

 else {
 var the_area = Math.PI * (rad * rad);
 window.alert("The area is " + the_area + " square units. ");
 return false;
 }

};

This code first grabs the input button element by its id (getarea) and assigns it to a variable
named get_area. When this element is clicked, an anonymous function is executed. It grabs the
value input in the text field for the radius using the value property of that element and assigns
it to a variable named rad.

Next, the code performs two checks. It checks that the length property of rad is not less
than 1, to ensure that the viewer entered data into the field. If it is less than 1, the code gives
an alert asking the viewer to enter the information. After that, it checks to see if the value of
rad is not numeric. This is done by testing whether or not the value can be multiplied by 1 and
returning a number equal to what was entered. (This check can also be done in other ways,
such as with regular expressions, which will be covered in Chapter 13.) If the data entered
contains a string, the calculation will return NaN (Not a Number), which will give the viewer
an alert saying that the radius must be numeric.

Finally, if the data entered passes those tests, the calculation of the area of the circle
is performed and assigned to a variable named the_area. Notice that for now you multiply
the radius by itself to get the radius squared. When you get to the math methods in the next
section, you will see that the method pow() may be used instead.

Once the calculation is complete and assigned to the variable, an alert is displayed to the
viewer with the area in generic “square units.” The script could of course be altered to suit
your needs or to offer options (centimeters, inches, or other units of measure).

NOTE
The script can be made more accessible by using the submit event rather than the click
event and providing a server-side backup. This will be discussed more in Chapter 14.

Figure 12-1 shows the result of running this script in a browser and entering 2 into the
text field.

Methods
The methods of the Math object enable you to perform certain calculations that can be helpful
in your scripts. Table 12-2 lists various methods of the Math object and briefly describes the
purpose of each. Each method is discussed in more detail in the following sections.

Performs the calculation and displays the answer

 Chapter 12: Math, Number, and Date Objects 309

Figure 12-1 The area of the circle is displayed for the viewer

Method Purpose
abs() Returns the absolute value of the number sent as a parameter

acos() Returns the arccosine of the number sent as a parameter, in radians

asin() Returns the arcsine of the number sent as a parameter, in radians

atan() Returns the arctangent of the number sent as a parameter, in radians

atan2() Returns the arctangent of the quotient of two numbers sent as parameters, in radians

ceil() Returns the smallest integer greater than or equal to the number sent as a parameter

cos() Returns the cosine of the number sent as a parameter, in radians

exp() Returns the value of E to the power of the number sent to the method as a parameter

floor() Returns the largest integer less than or equal to the number sent as a parameter

log() Returns the natural logarithm of the number sent as a parameter

max() Returns the larger of the two numbers that are sent as parameters

min() Returns the smaller of the two numbers that are sent as parameters

pow() Returns the numeric value of the first parameter raised to the power of the second parameter

random() Returns a random number between 0 and 1; does not require a parameter

round() Returns the value of the number sent as a parameter rounded to the nearest integer

sin() Returns the sine of the number sent as a parameter, in radians

sqrt() Returns the square root of the number sent as a parameter

tan() Returns the tangent of the number sent as a parameter, in radians

Table 12-2 Methods of the Math Object

 310 JavaScript: A Beginner’s Guide

The Basic Methods
For the purpose of this book, “basic methods” are defined as the methods that take in a single
number, do a simple calculation with it, and return a value. Grouping the methods in this way
avoids the need to list each method with the same sort of example—it is not any sort of official
organization of the methods, just a way to expedite this discussion.

The following basic methods are the ones that work in generally the same way:

● abs()

● acos()

● asin()

● atan()

● cos()

● exp()

● log()

● sin()

● sqrt()

● tan()

Each of these basic methods takes in a numeric value and sends back another value. Since
the general usage is the same, this discussion uses sqrt() as an example of how the rest could
be used to get their various values. If you need to know what type of value is returned from
a different method, refer to Table 12-2 to see what each method does.

The easiest way to use the sqrt() method is to input a positive number as the parameter to
the method, as shown in the following example:

window.alert(Math.sqrt(4));

This alerts the value of the positive square root of 4, which is 2.
Instead of calculating a static number, you could get the user to input a number, and then

send an alert to the user with the square root of the number input by the user. You could do this
using the following code, starting with the HTML code:

<body>
<form>
Enter a (positive) number or zero:

<input type="text" id="sr_num" />
<input type="button" value="Get a Square Root" id="getroot" />
</form>
</body>

 Chapter 12: Math, Number, and Date Objects 311

Next, the JavaScript code:

var root_button = document.getElementById("getroot");
root_button.onclick = function() {
 var thenum = document.getElementById("sr_num").value
 if (thenum < 0) {
 window.alert("Hey! I said to enter a positive number! Try again.");
 return false;
 }
 else if (thenum != (thenum*1)) {
 window.alert("Input must be numeric!");
 return false;
 }
 else {
 var theroot = Math.sqrt(thenum);
 window.alert("The square root of "+thenum+" is "+theroot);
 return false;
 }
};

The preceding code uses an anonymous function, which is called when the viewer clicks the
button in the HTML code. The function begins by assigning the value input into the text box to
the thenum variable.

Next, the function checks to see if the viewer entered a negative number. If so, an alert
appears, telling the viewer to try again. It then checks to see if the data entered was not
numeric (which gives another alert). Otherwise, the Math.sqrt() method is called using the
number entered by the viewer (thenum) as a parameter. This returns the number’s square root,
which is then assigned to the variable named theroot. Finally, an alert appears telling the user
the square root information.

NOTE
The script can be made more accessible using the submit event rather than the click
event and providing a server-side backup. This will be discussed more in Chapter 14.

The result of this script when the viewer enters the number 4 is shown in Figure 12-2.
The other methods in this section work in much the same way; they just return different

results such as absolute values, tangents, or logarithms.

If the value is not negative, the square root is
calculated and the alert shows the square root

If the number entered is negative, the viewer has to try again

Checks to see if the
input is not numeric

The anonymous function to perform the task begins

The value of the text box (with an id of sr_num) is retrieved

 312 JavaScript: A Beginner’s Guide

The Two-Parameter Methods
This section discusses the methods that take in two parameters instead of just one. These
methods include the following:

● atan2()

● max()

● min()

● pow()

The max() and min() methods are very similar, while the pow() method does something a
bit different.

The max() and min() Methods The max() method takes two numbers and returns the larger
number. The min() method also takes two parameters, but returns the smaller number. You
could use these methods in a script that enables the viewer to enter two numbers and then
alerts the user which number is larger.

The following example code uses both of these methods and gives the viewer the results in
an alert. First, the HTML code:

<body>
<form>
<input type="button" value="Which Number is Bigger?" id="getmax" />
</form>
</body>

Figure 12-2 The square root is displayed for the viewer

 Chapter 12: Math, Number, and Date Objects 313

Next, the JavaScript code:

var max_button = document.getElementById("getmax");
max_button.onclick = function() {
 var num1 = window.prompt("Enter a number.","");
 var num2 = window.prompt("Enter another number","");
 var largenum = Math.max(num1,num2);
 var smallnum = Math.min(num1,num2);
 if (largenum == smallnum) {
 window.alert("Those two numbers are equal!");
 }
 else {
 window.alert(largenum+" is larger than "+smallnum);
 }
};

This script prompts the viewer for two numbers and assigns them to variables. It then takes
the maximum and minimum from both numbers and assigns the values returned to variables.
Those variables are then used to check whether they are equal. If so, an alert comes up saying
they are; otherwise, an alert pops up with the results.

The following illustration shows the results of this script in a browser if the viewer enters 2
as the first number and 54 as the second number.

The pow() Method The pow() method takes two parameters and calculates the value of the
first parameter to the power of the second parameter. For instance, the following code would
return the value of 2 to the 3rd power:

Math.pow(2,3);

Other than its difference in calculations, you can use it in the same general way that you
used the other two-parameter methods by assigning the result to a variable and then using the
variable in a script. As an example, you could use the following script, starting with the HTML
code:

<body>
<form>
<input type="button" value="Find a Power" id="getpow" />
</form>
</body>

The alert to display if the numbers are not equal

A check in case the
numbers are equal

The results of the maximum and
minimum are assigned to variables

The prompts get two
numbers from the viewer

 314 JavaScript: A Beginner’s Guide

Next, the JavaScript code:

var pow_button = document.getElementById("getpow");
pow_button.onclick = function() {
 var num1 = window.prompt("Enter a base number.","");
 var num2 = window.prompt("What power should we set it to (a
number)?","");
 var theresult = Math.pow(num1,num2);
 window.alert(num1+" to the power of "+num2+" is "+theresult);
};

Using this code, if the viewer enters 2 as the first number and 3 when asked for a power, the
script will compute the result of 2 to the 3rd power. The viewer then is given an alert showing
the answer. Clicking the button in the HTML code is how the viewer starts the function. The
result of this script when the numbers 2 and 3 are input is shown here:

Now that you know about the two-parameter methods, take a look at some other methods
that haven’t been covered yet.

The Other Methods
These methods take in a single parameter, but what each does with that parameter warrants a
closer look. The individual methods include the following:

● ceil()

● floor()

● round()

The ceil() Method The ceil() method stands for ceiling and returns the smallest integer that
is greater than or equal to the number sent as the parameter. This method is used mainly when
there are likely to be numbers after the decimal point in a number. It rounds the number up to
the next highest integer, unless the number is an integer already. In that case, the same number
is returned (because it can be equal). For instance, Math.ceil(12.23); would return 13, but
Math.ceil(12); would return 12.

The following script shows an example of how the ceil() method can be used to return
different values, starting with the HTML code:

<body>
<form>

 Chapter 12: Math, Number, and Date Objects 315

<input type="button" value="Find a Ceiling" id="getceiling" />
</form>
</body>

Next, the JavaScript code:

var ceil_button = document.getElementById("getceiling");
ceil_button.onclick = function() {
 var num1= window.prompt("Enter a number.","");
 var theceil= Math.ceil(num1);
 window.alert("The ceiling of "+num1+ " is "+theceil);
};

This script displays an alert that states the ceiling of the number entered by the viewer. The
following illustration shows the result of this in the browser when the viewer enters 4.55 at
the prompt:

The floor() Method The floor() method is like the ceil() method, but it goes the opposite
way. The floor() method returns the largest integer less than or equal to the parameter sent to
the method. This rounds down to the next lowest integer, unless the parameter is an integer
already. In that case, it returns the same integer since it is already equal to an integer. Basically,
this method just removes the decimal part of a number and leaves the integer as the result.

For instance, Math.floor(12.23); will return 12 and Math.floor(12); will also return 12.
You can use the floor() method in the same way the ceil() method was used in the preceding
section—by assigning the result to a variable.

The round() Method The round() method works like the previous two methods, but instead
rounds the number entered as the parameter to the nearest integer whether it is greater or
less than the number. Any number having the decimal portion’s value at .5 or greater will be
rounded up, while any decimal portion with a value less than .5 is rounded down.

The .5 cutoff is strict, so Math.round(12.49999999); would return 12 even though your
tendency may be to round it up.

The random() Method The random() method is very useful for creating scripts that require
random integers. It returns a random number between 0 and 1. This means that you get a
number with a decimal that can be quite long and not useful on its own. For instance, it might
return something like 0.36511165498095293.

To get a random integer that you can use, you need to do some things to get the type of
value that you want to use.

 316 JavaScript: A Beginner’s Guide

Random Integers To get a random integer, the first thing you will want to do is to make
the result have a greater range of values so that you are not stuck between 0 and 1. To get a
greater range of values, you can multiply the result of the random() method by an integer to
create a larger range. Like an array, the range would begin counting from 0; so, to get a range
of five possible integers, you would multiply the result by 5. The following code shows how
you can do this:

var rand_num= Math.random()*5;

This gets the result between 0 and 4, but does not give you an integer yet. The number could
still come out as a long decimal number.

To get an integer between 0 and 4, you need to find a way to make all of these decimal
numbers convert to integers. Recall that earlier you ran through three methods, floor(), ceil(),
and round(), that converted numbers to integers in various ways. The floor() method is the one
you will choose here because it simply removes the decimal places after the integer and gives
you the integer portion of the number.

To use the floor() method, you could write the following code:

var rand_num = Math.random()*5;
var rand_int = Math.floor(rand_num);

The floor() method takes in the value of the rand_num variable as a parameter and then gives
you an integer from it.

If you want to save a line of code, you could get a little fancy. You could just insert the
random() method and calculation as the parameter to the floor() method. You can do this
because the result of the calculation, Math.random*5, is a number, and the floor() method can
take a number as a parameter. The following code shows how you can code this on a single line:

var rand_int = Math.floor(Math.random()*5);

Now the variable rand_int will have the value of a random integer between 0 and 4. As you
might have noticed, this sort of number range could be quite useful with arrays. This is how
you can begin to code some fun scripts with random numbers.

Random Numbers for Scripts Now you can have a little fun with the Math object by using
the random() method. By setting up some arrays, you can create a script that provides random
quotes or shows a random image each time the page is loaded.

Random Quotes for Fun If you have thought about adding a quote to your page but don’t
want to deal with changing the quote all the time to have something different, a random-quotes
script could be just the thing for you.

To make such a script, you first need some quotes to use. Suppose you want to set up ten
different quotes that will be displayed in random order each time the page is loaded. Since
you have a number of values that are similar (and so that you can use them with the random
integer later), you should use an array so that you can store all of these values and retrieve
them easily.

 Chapter 12: Math, Number, and Date Objects 317

So, you need to set up an array with ten elements similar to the following example, in which
each element is a random (and perhaps peculiar) quote that I have thrown into the mix for you:

var quotes= new Array(10);
quotes[0]="Look in the mirror. Are you looking at me?";
quotes[1]="It is time for a rhyme, I guess.";
quotes[2]="Where is my JavaScript book?";
quotes[3]="If I had a buck for every dollar I spent--Oops, never mind.";
quotes[4]="I suppose you were expecting a real quote here.";
quotes[5]="Quotes are great, but don't quote me on that.";
quotes[6]="What should I write here?";
quotes[7]="Wut hapns iff eye miss spel ohn purpas?";
quotes[8]="Mark my words, I will mark my words.";
quotes[9]="This spot reserved for a better quote.";

Now that you have this odd list of quotes in an array, you can use them by generating a random
integer.

You need a random integer between 0 and 9 (ten numbers), so you can use the following
code to assign a random integer between 0 and 9 to a variable:

var rand_int = Math.floor(Math.random()*10);

Now the value of the variable rand_int will be a random integer between 0 and 9. You can use
it to access the element of the array whose index number matches the random integer in the
rand_int variable. You just need to access the array element using the variable as the index
number, as in the following example:

quotes[rand_int]

You can write this value in the body of the page in a document.write() statement, or you can
reassign the innerHTML property of an element. An example using innerHTML is provided
next. The HTML document is saved as random_quotes.html and the JavaScript file is saved as
random_quotes.js. The HTML code:

<body>
<h1>My Random Quote for You:</h1>
<div id="my_quote">
Look in the mirror. Are you looking at me?
</div>
<script type="text/javascript" src="random_quotes.js"></script>
</body>

The JavaScript code:

var quotes= new Array(10);
quotes[0]="Look in the mirror. Are you looking at me?";
quotes[1]="It is time for a rhyme, I guess.";

 318 JavaScript: A Beginner’s Guide

quotes[2]="Where is my JavaScript book?";
quotes[3]="If I had a buck for every dollar I spent--Oops, never
mind.";
quotes[4]="I suppose you were expecting a real quote here.";
quotes[5]="Quotes are great, but don't quote me on that.";
quotes[6]="What should I write here?";
quotes[7]="Wut hapns iff eye miss spel ohn purpas?";
quotes[8]="Mark my words, I will mark my words.";
quotes[9]="This spot reserved for a better quote.";

var q_div = document.getElementById("my_quote");
var rand_int = Math.floor(Math.random()*10);
q_div.innerHTML = quotes[rand_int];

The code writes one of the random quotes on the page based on the random integer value
in the rand_int variable. A default quote (the first one in the array data) is provided for those
without JavaScript, which is then overwritten with the random quote if JavaScript is available.
Reloading the page enables the random number to be reset and will probably (though not
necessarily, because it is random) show a different quote.

Figure 12-3 shows one of the possible results of this script when run in a browser.
Figure 12-4 shows another one of the possible results of this script when run in a browser.

You can keep getting different (or sometimes the same) results by refreshing the page.
Now that you can write random quotes into a page, how about displaying a random image?

It is very similar to the last script; you just need to make some small adjustments.

Random Images for the Updated Look A random-image script can give your page the feel
of being updated without requiring you to change an image all the time. Of course, the images
all need to fit the content where you decide to place the randomly chosen image. A random-
image script could be useful, for example, for an art gallery to display its collection.

Figure 12-3 A possible result of using the random-quote script

 Chapter 12: Math, Number, and Date Objects 319

The first thing you need is an array of image Universal Resource Locator (URL) addresses
(which can be local or absolute—local addresses are used here). The array used for this script
is shown in the following example code:

var r_image= new Array(10);
r_image[0]="image0.gif";
r_image[1]="image1.gif";
r_image[2]="image2.gif";
r_image[3]="image3.gif";
r_image[4]="image4.gif";
r_image[5]="image5.gif";
r_image[6]="image6.gif";
r_image[7]="image7.gif";
r_image[8]="image8.gif";
r_image[9]="image9.gif";

This array sets up the addresses of images that can be displayed at random each time the page
is loaded.

Next, you need a way to get a random integer between 0 and 9. This is the same as in the
previous random-quote script:

var rand_int= Math.floor(Math.random()*10);

The next step is to access the array in the body section of the document to show a random
image from the array when the page is loaded in the browser.

The following code enables you to display the random image using the innerHTML
property of a div element to write the img tag for a random image if JavaScript is available.

Figure 12-4 Another possible result of using the random-quote script

 320 JavaScript: A Beginner’s Guide

The HTML file is saved as random_images.html and the JavaScript file is saved as random_
images.js. First, the HTML code:

<body>
<h1>My Random Image for You:</h1>
<div id="my_image">

</div>
<script type="text/javascript" src="random_images.js"></script>
</body>

Next, the JavaScript code:

var r_image= new Array(10);
r_image[0]="image0.gif";
r_image[1]="image1.gif";
r_image[2]="image2.gif";
r_image[3]="image3.gif";
r_image[4]="image4.gif";
r_image[5]="image5.gif";
r_image[6]="image6.gif";
r_image[7]="image7.gif";
r_image[8]="image8.gif";
r_image[9]="image9.gif";

var i_div = document.getElementById("my_image");
var rand_int = Math.floor(Math.random()*10);
i_div.innerHTML = '<img src="'+r_image[rand_int]+'" alt="Random Image"
/>';

As you can see, this is quite similar to the random-quote script. You just needed to change the
contents of the array and the statement to replace the contents of the innerHTML property to
make the script display an image rather than a quote.

NOTE
For this example, the images are saved as image0.gif, image1.gif, and so on; however,
you could save your image files under any name you like.

This discussion of the random() method could go on for some time because there are
numerous things that you could randomize. However, you now know the basics of how this
feature works, so it’s time to move on.

 Chapter 12: Math, Number, and Date Objects 321

Try This 12-1

pr12_1.html
prjs12_1.js

 Display a Random Link on a Page
This script enables you to work with the random() method a little more by
enabling you to create a script to display a random link on a page.

Step by Step
 1. Create an HTML page with script tags that point to an external JavaScript file named

prjs12_1.js. Add a heading that says “Random Link” and add a div element with an id of
random_link. Inside the div element, insert a default link for those without JavaScript. Save
the HTML file as pr12_1.html.

Q: Will I ever have any use for any of the properties of the Math object? They are all
numbers that I don’t even use!

A: This depends on how often you perform different types of calculations. It would be unlikely
for you to use any of them as a beginner, but there are some scripts out there that use them
for various advanced purposes, such as JavaScript calculators.

Q: I have no interest in writing a calculator. Do I really have to bother memorizing all the
properties of the Math object?

A: Well, probably not, since a situation to use them probably won’t come up all that often. It is
good to have a reference on hand just in case, though, and to know generally what they are
since they appear in scripts on the Web from time to time.

Q: Some of these properties and methods could be handy if I don’t have a calculator
around. I could write a little script to calculate some things for myself, couldn’t I?

A: Of course! Just be sure to double-check the numbers with something you know the answer
to first to be sure that there are no mistakes in your code.

Q: The random() method is fun so far, but I can’t think of anything else I could use it for.
Could you give me some ideas for using it to do other things?

A: There are a number of other things you could use it for. You can randomize pretty much
anything that can be displayed with an HTML tag or plain text, so try out some ideas and see
if they work for you. Here are some thoughts off the top of my head for you, though: random
links, random linked images, random tasks for a JavaScript game of some sort (like rolling dice
or drawing a card), random page greetings, random alerts…and I’m sure there are plenty more.

Ask the Expert

(continued)

 322 JavaScript: A Beginner’s Guide

 2. Create an external JavaScript file and save it as prjs12_1.js. Use it for steps 3–6.

 3. Create a set of five Web addresses in an array. Use the following addresses or some of your
own choosing:

http://www.pageresource.com
http://www.javascriptcity.com
http://www.mydemos.com
http://www.yahoo.com
http://www.google.com

 4. Use the random() method to create a random integer you can use to access the array with
the integer as an index number.

 5. Display a random link on the page in the format shown next by changing the innerHTML
property of the div element with the id of random_link:

Random Site!

 6. Save the JavaScript file and open the HTML file in your Web browser. Try reloading a few
times to see how the random addresses show up for the link.

Try This Summary
In this project, you were able to use your knowledge of the Math object. Using the random()
method, you created a Web page that displays a link that goes to a random Web address.

Understanding the Number Object
The Number object is another predefined JavaScript object that offers several useful properties
and methods for use with numbers. Its most common use is to access some of its helpful
properties that represent certain values that can aid you when creating scripts.

Properties
Table 12-3 lists the properties of the Number object and briefly describes the purpose of each.
Each property is described in more detail in this section.

The constructor Property
The constructor property holds the value of the constructor function of the object, much like
the use of this property in the Array object (refer to Chapter 11). The property returns a value
similar to what you get with the Array object: the name of the constructor function and any
public code in the function. Since the function code is private, you get the [native code] text in
place of the actual function code.

http://www.pageresource.com
http://www.javascriptcity.com
http://www.mydemos.com
http://www.yahoo.com
http://www.google.com

 Chapter 12: Math, Number, and Date Objects 323

The MAX_VALUE Property
The MAX_VALUE property is a constant number value, approximately 1.79E+308. The reason
this property is helpful is that any number greater than its value is represented as infinity in
JavaScript. Thus, using it in a comparison could provide a way to avoid calculations that are too
large to display a numerical value. The following code is an example of how this works:

var big_num = num1*num2*num3;
if (big_num > Number.MAX_VALUE) {
 window.alert("The number is too large, try smaller numbers.");
}
else {
 window.alert(big_num);
}

Assuming num1, num2, and num3 were entered by the viewer, the alert, instead of displaying
the word “infinity” as the answer, informs the viewer to try entering smaller numbers for the
calculation if the value of big_num is greater than the value of the MAX_VALUE property.

The MIN_VALUE Property
The MIN_VALUE property is a constant number value, approximately 5e –324. The reason
this property is helpful is that any number less than its value is represented as negative infinity
in JavaScript. Thus, using it in a comparison could provide a way to avoid calculations that are
too small to display a numerical value. The following code is an example of how this works:

var small_num = num1*num2*num3;
if (small_num < Number.MIN_VALUE) {
 window.alert("The number is too small, try larger numbers.");
}
else {
 window.alert(small_num);
}

Property Purpose

constructor Holds the value of the constructor function that created the object

MAX_VALUE Holds a constant number value, representing the largest value before
JavaScript interprets a number as infinity

MIN_VALUE Holds a constant number value, representing the smallest value
before JavaScript interprets a number as negative infinity

NaN Represents the value of “Not a Number”

NEGATIVE_INFINITY Represents the value of negative infinity

POSITIVE_INFINITY Represents the value of infinity

prototype Enables you to add properties to the object if you wish

Table 12-3 Properties of the Number Object

 324 JavaScript: A Beginner’s Guide

Assuming num1, num2, and num3 were entered by the viewer, the alert informs the viewer to
try entering larger numbers for the calculation if the result of the calculation is less than the
value of the MIN_VALUE property.

The NaN Property
The NaN property is a value that represents “Not a Number.” It is displayed by the browser as
a string value of NaN and is not equal to any number or another instance of NaN.

The NEGATIVE_INFINITY Property
The NEGATIVE_INFINITY property is a constant value that represents negative infinity. It
can be used in a similar fashion to the way MIN_NUMBER and MAX_NUMBER are used.

The POSITIVE_INFINITY Property
The POSITIVE_INFINITY property is a constant value that represents positive infinity. It can
be used in a similar fashion to the way MIN_NUMBER and MAX_NUMBER are used.

The prototype Property
The prototype property enables you to add a property or method to the Number object, much
like you did with the Array object in Chapter 11.

Methods
Table 12-4 lists the methods of the Number object and briefly describes the purpose of each.
The following sections discuss each method in more detail.

The toExponential(), toFixed(), toPrecision(), and toString() Methods
These methods return a string value representing what the Number object would look like
formatted in a particular way. Note that these methods cannot be used with a number itself
(a numeric value), as in the following code:

document.write(10.toExponential());

Method Purpose

toExponential() Returns a string value that represents the number in exponential notation

toFixed() Returns a string value that represents the number rounded to the specified
number of digits after the decimal

toPrecision() Returns a string value that represents the number rounded to the specified
number of significant digits

toSource() Returns a string value that represents the source code of the object

toString() Returns a string value for a Number object

valueOf() Used by JavaScript internally most often

Table 12-4 Methods of the Number Object

 Chapter 12: Math, Number, and Date Objects 325

This will cause a JavaScript error because it expects a Number object. To avoid this, use the
methods by assigning numeric values to variables (which will make them Number objects), as
in the following code:

var the_num = 10;
document.write(the_num.toExponential());

NOTE
You could also use the syntax of var the_num = new Number(10); (which you may be
used to from previous objects) and it would also be valid.

The toExponential() Method
The toExponential() method returns a string representing a Number object in the form of
exponential notation. Thus, the following code would write the result of 1.0e+1 (or a similar
notation, depending on your browser) on the screen:

var the_num = 10;
document.write(the_num.toExponential());

The toFixed() Method
The toFixed() method returns a string representing a Number object rounded to the specified
number of places after the decimal. For instance, if you need to format the results of
calculations to appear as monetary values, you could use this method to get the result of
your calculation rounded at the second digit after the decimal and displayed in your currency
format. For example, this code uses dollars and cents:

var mymoney = 2000;
var mykids = 7;
var one_share = mymoney/mykids;
document.write("One share of my money is $"+ one_share.toFixed(2));

The result of the calculation for one share is 285.7142857142857, but since it is displayed
using the toFixed() method on it with 2 as the parameter, the sentence displays as follows:

One share of my money is $285.71

The toPrecision() Method
The toPrecision() method returns a string representing a Number object rounded to the specified
number of significant digits. This is for all digits before and after the decimal. Thus, if you wanted
a number like 45.57689349 rounded to five significant digits, you could use the following code:

var the_num = 45.57689349;
document.write(the_num.toPrecision(5));

The browser will display the string 45.577, which is the number rounded to five significant
digits (two before and three after the decimal place in this case).

 326 JavaScript: A Beginner’s Guide

The toString() Method
The toString() method returns the string value of a Number object (or a numerical variable
value). This can be useful if you want to convert a numerical value to its corresponding string
value (for example, change 10 to “10”).

The toSource() Method
The toSource() method returns a string value that represents the source code of the object.
With the predefined Number object, this method returns the value of the constructor property.
This method is most often called by JavaScript internally and is less likely to be used in code.

The valueOf() Method
This is another method that is mainly used by JavaScript internally. For now, you just need to
know that it is a valid method of the Number object.

Using the Date Object
The Date object is another predefined JavaScript object. It enables you to set certain time
values and to get certain time values that you can use in your scripts. To use this object, you
need to create an instance of the object to which you can refer.

To create an instance of the Date object, you use the new keyword (as you have with
a number of other objects), as shown in the following example:

var instance_name = new Date();

You would replace instance_name with a name that you want to use for the instance of the
Date object. So, if you wanted an instance named rightnow, you could use the following code:

var rightnow = new Date();

Now you have an instance of the object named rightnow.
Once you have an instance of the object, you can use the properties and methods of the

Date object to perform various tasks (such as create JavaScript clocks). These properties and
methods are described in the following sections.

Properties
The Date object has only two properties. Table 12-5 lists the properties and their purposes
(these may look familiar, because the Array and Number objects have these same properties).
Each property is described in more detail in the following sections.

Property Purpose

constructor Holds the value of the constructor function that created the object

prototype Enables you to add properties to the object if you wish

Table 12-5 Properties of the Date Object

 Chapter 12: Math, Number, and Date Objects 327

The constructor Property
The constructor property holds the value of the constructor function of the object, much like
the use of this property in the Array and Number objects. To see what the value is, you could
write it to the page, as shown in the following code:

<body>
<script type="text/javascript">
var rightnow= new Date();
document.write(rightnow.constructor);
</script>
</body>

If you run the code, you will probably see something similar to the following line written
on the page:

function Date() { [native code] }

This is pretty much what you get using this property with the Array object: the name of the
constructor function and any public code in the function. Since the function code is private,
you get the [native code] text in place of the actual function code.

The prototype Property
The prototype property enables you to add a property or method to the Date object,
much like you did with the Array object in Chapter 11. For instance, if you want to add
a new property named attitude for each instance of the Date object, you could use the
following code:

Date.prototype.morning="a.m.";
var rightnow= new Date();
window.alert("This date is "+rightnow.morning);

This code creates the new property, creates an instance of the Date object, and then alerts the
value of the new property to the screen.

Now that you know the properties of the Date object, take a look at the methods you
can use.

Methods
The Date object doesn’t give you many properties, but it does have quite a large number of
methods you can use. Table 12-6 lists various methods of the Date object and the purpose of
each method. Each method is discussed in more detail in the sections that follow.

Now that you have the long list of methods, take a look at them in a little more detail,
beginning with the methods used to get date values in an instance of the Date object.

 328 JavaScript: A Beginner’s Guide

Method Purpose

getDate() Returns the day of the month based on the viewer’s local time

getDay() Returns the number of days into the week based on the viewer’s local time (0–6)

getHours() Returns the number of hours into the day based on the viewer’s local time (0–23)

getMilliseconds() Returns the number of milliseconds into the second based on the viewer’s local
time (0-999)

getMinutes() Returns the number of minutes into the hour based on the viewer’s local
time (0–59)

getMonth() Returns the number of months into the year based on the viewer’s local
time (0–11)

getSeconds() Returns the seconds into the minute based on the viewer’s local time (0–59)

getTime() Returns the number of milliseconds since 1/1/1970 for the Date object

getTimezoneOffset() Returns the time-zone offset (from Greenwich Mean Time) in minutes based on
the viewer’s local time zone

getYear() Returns the year based on the viewer’s local time (two digits)

getFullYear() Returns the full year based on the viewer’s local time (four digits)

getUTCDate() Returns the day of the month in Coordinated Universal Time

getUTCDay() Returns the number of days into the week in Coordinated Universal Time (0-6)

getUTCFullYear() Returns the full year in Coordinated Universal Time (four digits)

getUTCHours() Returns the number of hours into the day in Coordinated Universal Time (0–23)

getUTCMilliseconds() Returns the number of milliseconds into the current second in Coordinated
Universal Time (0-999)

getUTCMinutes() Returns the number of minutes into the hours in Coordinated Universal
Time (0–59)

getUTCMonth() Returns the number of months into the current year in Coordinated Universal
Time (0–11)

getUTCSeconds() Returns the number of seconds into the current minute in Coordinated Universal
Time (0-59)

parse() Returns the number of milliseconds since 1/1/1970 of a date sent as
a parameter based on the viewer’s local time

setDate() Sets the day of the month for an instance of the Date object

setHours() Sets the hours for an instance of the Date object

setMilliseconds() Sets the milliseconds for an instance of the Date object

setMinutes() Sets the minutes for an instance of the Date object

setMonth() Sets the month for an instance of the Date object

Table 12-6 Methods of the Date Object

 Chapter 12: Math, Number, and Date Objects 329

Methods That Get Values
Methods that get values enable you to get various time and date values that you can use in your
scripts. The methods that enable you to get values for an instance of the Date object include
the following:

● getDate()

● getDay()

● getHours()

● getMilliseconds()

Method Purpose

setSeconds() Sets the seconds for an instance of the Date object

setTime() Sets the time (in milliseconds since January 1, 1970, at midnight) for an
instance of the Date object

setYear() Sets the year for an instance of the Date object (two digits)

setFullYear() Sets the full year for an instance of the Date object (four digits)

setUTCDate() Sets the day of the month in Coordinated Universal Time

setUTCFullYear() Sets the full year in Coordinated Universal Time (four digits)

setUTCHours() Sets the number of hours into the day in Coordinated Universal Time (0–23)

setUTCMilliseconds() Sets the number of milliseconds into the current second in Coordinated
Universal Time (0-999)

setUTCMinutes() Sets the number of minutes into the hours in Coordinated Universal Time (0–59)

setUTCMonth() Sets the number of months into the current year in Coordinated Universal
Time (0–11)

setUTCSeconds() Sets the number of seconds into the current minute in Coordinated Universal
Time (0-59)

toDateString() Returns the date portion of the Date object as a string in American English

toGMTString() Returns a string that is the date in Greenwich Mean Time (GMT) format
(toUTCString() is now used instead)

toLocaleString() Returns a string that is the date in a format based on the locale

toLocaleDateString() Returns the date portion of the Date object as a string based on the locale

toLocaleTimeString() Returns the time portion of the Date object as a string based on the locale

toString() Returns a string that is the date in American English

toTimeString() Returns the time portion of the Date object as a string in American English

Table 12-6 Methods of the Date Object (continued)

 330 JavaScript: A Beginner’s Guide

● getMinutes()

● getMonth()

● getSeconds()

● getTime()

● getTimezoneOffset()

● getYear()

● getFullYear()

● getUTCDate()

● getUTCDay()

● getUTCFullYear()

● getUTCHours()

● getUTCMilliseconds()

● getUTCMinutes()

● getUTCMonth()

● getUTCSeconds()

To use these methods, you need an instance of the Date object. Once you have that, you
can call any of the methods by using the instance name. The following is the syntax for
doing this:

instance_name.method();

You would replace instance_name with the name of your instance of the Date object, and you
would replace method with the method function you wish to use.

So, if you wanted to use the getDate() method with an instance of the Date object named
rightnow, you would use the following code:

var rightnow= new Date();
var theday= rightnow.getDate();

This assigns the value returned from the getDate() method to a variable named theday.
Because the values returned from the Date methods are often numeric, the methods need to

be explained a bit further; thus, the following sections take a look at these methods more closely.

The getDate() Method
The getDate() method enables you to get the day of the month for use in a script. The value
returned is a number that represents the day of the month. So, if it is the 5th of the month, the
getDate() method would return 5. If it is the 22nd, the getDate() method would return 22. This
method is nice because it is fairly straightforward.

 Chapter 12: Math, Number, and Date Objects 331

The getDay() Method
The getDay() method enables you to get the day of the week; however, rather than returning
a name such as Monday or Friday, it returns a number. The number represents the number of
days into the week (0–6) rather than the day of the week you would commonly have in mind
(1–7). So, if it is Sunday, the method returns 0; and if it is Wednesday, the method returns 3.
You have to remember that it counts from 0 when you begin using it in your scripts. Many of
the methods that follow will count beginning at 0.

The getHours() Method
The getHours() method enables you to get the number of hours into the day (0–23). The count
begins at 0. So, when it is midnight, the method returns 0; and when it is 2:00 P.M., it returns 14.

The getMilliseconds() Method
The getMilliseconds() method enables you to get the number of milliseconds stored in the
instance of the Date object (0–999).

The getMinutes() Method
The getMinutes() method enables you to get the number of minutes stored in the instance
of the Date object (0–59). Again, the counting begins at 0. So, if it is 2:00 (either A.M. or P.M.,
or any hour) on the dot, the method returns 0; and if it is 2:23, the method returns 23.

The getMonth() Method
The getMonth() method enables you to get the number of months stored in the instance
of the Date object (0–11). This method also begins counting at 0, which makes the result a
little tricky. For instance, if it is January (the month people tend to think of as 1), the method
returns 0; and if it is October (the month people tend to think of as 10), the method returns 9.
This is one you have to watch a little more closely when you use it in scripts, because you will
need to remember to make an adjustment if you want to use numeric dates (like 10/24/2000).

The getSeconds() Method
The getSeconds() method enables you to get the number of seconds stored in the instance of
the Date object (0–59). So, if the time is 2:42:23, the method returns 23; and if the time is
2:23:00, the method returns 0.

The getTime() Method
The getTime() method gets the time (in milliseconds since January 1, 1970, at midnight) for an
instance of the Date object. So, if you wanted to know the number of milliseconds since that
date at your current time, you could use the following code:

var rightnow= new Date();
var theday= rightnow.getTime();

This assigns the result of the method to a variable so that you can use it later if you need it in
your script.

 332 JavaScript: A Beginner’s Guide

The getTimezoneOffset() Method
The getTimezoneOffset() method gives you the number of minutes that separate the local time
from GMT. So, if you are 6 hours apart from GMT, the method would return 360 (6 × 60); and
if you are only 1 hour apart, the method returns 60.

The getYear() Method
This method returns the last two digits of the year (at least if the year is between 1900 and
1999). For instance, if the year is 1988, the method returns 88. After the year 2000, some
browsers will return a three-digit year and others will return a four-digit year. To avoid this,
you can use the getFullYear() method, which is supported by the newer browsers and returns
a four-digit year.

The getFullYear() Method
The getFullYear() method is very similar to the getYear() method, except it returns a four-digit
year consistently to avoid the year 2000 problem.

The getFullYear() method works like the getYear() method, but you do not need to run any
extra checks to be sure the year is correct:

var rightnow= new Date();
var theyear= rightnow.getFullYear();

This assigns the value returned by the method to the theyear variable. This time, the value is
already four digits and won’t need any adjusting.

The UTC Methods
These methods work the same as their counterparts (for example, getDate() and getUTCDate()
work the same), but return the information in terms of Universal Time rather than the viewer’s
local time.

Now that you have seen the methods that get values, take a look at the methods that enable
you to set values for an instance of the Date object.

Methods That Set Values
The methods that set values work with the same types of values as the methods that get values.
The methods that enable you to set values for an instance of the Date object include the
following:

● setDate()

● setHours()

● setMilliseconds

● setMinutes()

● setMonth()

● setSeconds()

 Chapter 12: Math, Number, and Date Objects 333

● setTime()

● setYear()

● setFullYear()

● setUTCDate()

● setUTCFullYear()

● setUTCHours()

● setUTCMilliseconds()

● setUTCMinutes()

● setUTCMonth()

● setUTCSeconds()

To set these, you send them a numeric parameter based on the time or date you want to
use. For instance, if you wanted to set the day of the month for an instance of the Date object,
you could use the following code:

var rightnow= new Date();
rightnow.setDate(22);

This would set the day of the month to the 22nd for the rightnow instance of the Date object.
The other methods work in the same way. In order to know what value needs to be sent

to one of these methods, take a look at what type of value is returned by its counterpart in the
methods that get values. The parameter the method will expect will be a value like the one
returned by the method.

Other Methods
The remaining methods perform various tasks that the other methods don’t cover in some way.

The parse() Method
The parse() method is used to find out the number of milliseconds since January 1, 1970, at
midnight for a date string (such as Dec 12, 1999) input as a parameter. This is often used with
the setTime() method since it needs a parameter in milliseconds to set the time. You could
use the parse() method to find the number of milliseconds since January 1, 1970, for the date
Dec 12, 1999 at midnight (the rightnow instance of the Date object will use this as the date that
all of the methods will use to return values), as shown in the following code:

var rightnow= new Date();
var thenum= Date.parse("Dec 12, 1999")
rightnow.setTime(thenum);

This code parses the date into a number of milliseconds, and then sends it to the setTime()
method used with the rightnow instance of the Date object.

This method can be used
directly from the Date object

 334 JavaScript: A Beginner’s Guide

The toString(), toDateString(), toTimeString(), toLocaleDateString,
and toLocaleTimeString() Methods
These methods return a string representing the date and time, or a portion thereof. For instance,
the toString() method returns a date in string format. You can use it to get a formatted date for
an instance of the Date object, as shown in the following code:

var rightnow= new Date();
var thedate= rightnow.toString();

This will assign a date string value to the variable thedate. The value of the string depends on
what browser the viewer is using to view the page. It can then be written to the page or used
with other methods of the Date object in a script.

The toGMTString() Method
The toGMTString() method returns a date string in GMT format. You can use it to get the
GMT format for an instance of the Date object, as shown in the following code:

var rightnow= new Date();
var thedate= rightnow.toGMTString();

This will assign a value, such as Wed, 21 Dec 2003 11:12:44 GMT, to the variable thedate.
It can then be written to the page or used with other methods of the Date object in a script.

The toLocaleString() Method
The toLocaleString() method returns a date string in the format of the viewer’s locale. You can
use it to get the locale format for an instance of the Date object, as shown in the following code:

var rightnow= new Date();
var thedate= rightnow.toLocaleString();

This will assign a date string value to the variable thedate. The value of the string depends on
what browser the viewer is using to view the page. It can then be written to the page or used
with other methods of the Date object in a script.

Now that you have the methods down, see if you can have a little fun with the Date object.

How About Some Date Scripts?
With the technical overview out of the way, you are ready to create some scripts that use the
methods of the Date object. First you will write a script to display the date on the page, and
then you will create a script for a simple status bar clock.

Write the Date on the Page
To write the date on the page, you need to use some of the Date object methods to get the
values you need. Suppose you want to write a date with the format of Tuesday, M/D/Y
(month, day, year). To do this, you need to find out the day of the week, the month, the day
of the month, and the year. You can do this using the getDay(), getMonth(), getDate(), and
getFullYear() methods.

 Chapter 12: Math, Number, and Date Objects 335

The following script will write the date to the page. First, the HTML code (save as write_
date.html):

<body>
<h1>Today's Date</h1>
<div id="write_date">
<!-- call to a server-side script for backup could go here -->
</div>
<script type="text/javascript" src="write_date.js"></script>
</body>

Note the comment within the div element. If you want to make this accessible to browsers
that do not support JavaScript, you can place a call to a PHP (or other server-side technology)
script here for those lacking JavaScript. For example, if you had the page set up to parse PHP,
you could use the following to display the date much like the JavaScript code will:

<body>
<h1>Today's Date</h1>
<div id="write_date">
<?PHP
$the_date = date(l, n/j/Y);
echo "$date";
?>
</div>
<script type="text/javascript" src="write_date.js"></script>
</body>

You will see that the PHP script is much shorter than the JavaScript script due to its built-in
date-formatting capability. The date displayed may differ from the viewer’s date as it displays
the date on the Web server. An in-depth discussion of server-side technology is beyond the
scope of this book, but this serves as an example of a way to provide the same basic feature for
those without JavaScript.

Next, the JavaScript code (save as write_date.js):

var rightnow = new Date();
var weekday = rightnow.getDay();
var themonth = rightnow.getMonth();
var thedate = rightnow.getDate();
var theyear = rightnow.getFullYear();

// Set the Days of the Week
var someday= new Array(7);
someday[0]="Sunday";
someday[1]="Monday";
someday[2]="Tuesday";
someday[3]="Wednesday";
someday[4]="Thursday";
someday[5]="Friday";
someday[6]="Saturday";

The methods of the Date object are
used to obtain the needed values

A new instance of the
Date object is created

An array is created to hold the name of each day
of the week, with the index values corresponding to
what will be returned by the getDay() method

 336 JavaScript: A Beginner’s Guide

//Set the Month Numbers to Be Recognizable
themonth++;

var date_div = document.getElementById("write_date");
date_div.innerHTML = someday[weekday]+ ", "+themonth+"/"+thedate+"/
"+theyear;

This script sets the results of the methods to variables. It then creates an array to hold the days
of the week, which are later accessed using the number returned from the getDay() method as
the index number. The script then makes an adjustment, adding 1 to the number returned
by the getMonth() method, so that the month will show up the way you would expect it (recall
that it counts months starting at 0 instead of 1, so this ensures that January is represented
by the number 1 rather than 0, for example).

The formatted output is written onto the page for the viewer to see. The result of this script
when run in a browser is shown in Figure 12-5.

Create a Simple Clock
To create a simple clock, you need the hours, minutes, and seconds of the current time. To get
these, you can use the getHours(), getMinutes(), and getSeconds() methods.

The month value is incremented
in order to look like its standard
numerical month value

The div element is obtained by its id and has its innerHTML
property changed to display the formatted date

Figure 12-5 The date is shown on the page

 Chapter 12: Math, Number, and Date Objects 337

The following code will create a clock that is displayed on the page. First, the HTML code
(save as clock.html):

<body>
<h1>Current Time:</h1>
<div id="my_clock">
<!-- call to a server-side script for backup could go here -->
</div>
<script type="text/javascript" src="clock.js"></script>
</body>

CAUTION
If you use a server-side script as a backup to the JavaScript clock, you almost surely
do not want it to update every second because this could put undue strain on the Web
server. In such a case, it is often best to simply display the time without updating it.

Next, the JavaScript code (save as clock.js):

function startclock() {

 var thetime = new Date();
 var hours = thetime.getHours();
 var mins = thetime.getMinutes();
 var secn = thetime.getSeconds();
 var ap = (hours >= 12) ? "p.m." : "a.m.";

 if (hours >= 13) {
 hours -= 12;
 }
 if (hours < 1) {
 hours = 12;
 }
 if (mins < 10) {
 mins = "0" + mins;
 }
 if (secn < 10) {
 secn = "0" + secn;
 }

 var clock_div = document.getElementById("my_clock");
 clock_div.innerHTML = hours + ":" + mins + ":" + secn + " " + ap;
 setTimeout("startclock()", 1000);
}

startclock();

The methods of the Date object are used to
obtain the hours, minutes, and seconds

A variable is set so that a.m. or p.m.
may be displayed after the time

The hours, minutes, and seconds are adjusted so that
they will display like a typical 12-hour digital clock

The div element is obtained so that the innerHTML
property can be adjusted to display the clock

The hours, minutes, seconds, and ap
variables are combined and displayed as
the new innerHTML for the div element

The script is called every second
using the setTimeout() method

Calling the function here starts the process

 338 JavaScript: A Beginner’s Guide

Try This 12-2

The script creates a function that sets the results of the methods to variables. It takes the
hours variable and sets the ap variable to p.m. if hours is greater than or equal to 12 and sets it
to a.m. if hours is less than 12 (at this point the hours variable still holds 13 for 1 p.m., 14 for
2 p.m., and so on). Once this is done, the hours variable is adjusted so that it will display the
expected value for a 12-hour clock.

The script then adjusts the values of the variables that show the minutes and seconds by
adding a leading 0 when the number is less than 10. This way the clock will show 12:02:34
for 12:02:34, instead of leaving out the 0 and displaying 12:2:34 (this can also be done for the
hours variable if you would like it to have a leading zero).

At the end, the function displays the output on the page. The function is initially called
right after it is defined. The function is repeated at intervals of 1000 milliseconds, or 1 second.
This enables the clock to stay current. The results of this script when run in a browser are
shown in Figure 12-6.

 Create a JavaScript Clock
This project enables you to work more with the methods of the Date object, as
well as learn how to adjust the values that are returned so they can be used in
various ways. This creates a JavaScript clock with a few more options than your

simple clock in the previous section.

Step by Step
 1. Create an HTML page with script tags that point to an external JavaScript file named

prjs12_2.js. Add a heading that says “Current Time” and add a div element with an id of
my_clock. Save the HTML file as pr12_1.html.

 2. Create an external JavaScript file and save it as prjs12_2.js. Use it for steps 3–6.

Figure 12-6 A clock is displayed on the page

pr12_2.html
prjs12_2.js

 Chapter 12: Math, Number, and Date Objects 339

 3. Write some code that will display a clock. In this clock, include the following information:

The time with hours, minutes, and seconds
Whether it is A.M. or P.M.
The date in the form mm/dd/yyyy

 4. This will be a 12-hour clock, so be sure to adjust the value of the hours so that they stay between
1 and 12. Also, note the format of the date and adjust the month and day values accordingly.

 5. Begin the clock, and have it update every second.

 6. Save the JavaScript file and open the HTML file in your browser. The time and date should
appear on the page.

Try This Summary
In this project, you used your knowledge of the Date object. Using the methods of the Date
object, you created a clock that appears on the Web page.

 Chapter 12 Self Test
 1. What do the properties and methods of the Math object enable you to do?

 A Take the square roots and other such values of strings and return a number

 B Perform mathematical calculations

 C Go to math class to learn new theorems

 D Nothing, they are useless

 2. The __________ property holds the value of Euler’s constant.

 3. The LN10 property holds the value of the natural __________ of 10.

 4. The LOG10E property holds the value of the logarithm of 10*E.

 A True

 B False

 5. Which of the following would correctly write the value of pi on a Web page?

 A document.write(Math.Pi);

 B document.write(Math.pi);

 C document.write(Math.PI);

 D document.write(Date.PI);

 6. The __________ property holds the value of the square root of 2.

✓

 340 JavaScript: A Beginner’s Guide

 7. The abs() method returns the __________ value of a number sent to it as a parameter.

 A absent

 B absurd

 C absolute

 D absolute square root

 8. The __________ method returns the arcsine of a number sent to it as a parameter.

 9. The pow() method returns the numeric value of the __________ parameter raised to the
power of the __________ parameter.

 10. Which of the following would correctly generate a random number between 0 and 7?

 A var rand_int= Math.floor(Math.random()*7);

 B var rand_int= Math.floor(Math.random()*6);

 C var rand_int= Math.floor(Math.random()*8);

 D var rand_int= Math.sqrt(Math.random());

 11. The __________ method returns the square root of a number sent to it as a parameter.

 12. What must be created in most cases before the Date object’s properties and methods
can be used?

 A Nights string

 B A number for reference to the date

 C A time for the date to be set

 D An instance of the Date object

 13. The __________ method returns the number of days into the week.

 14. The getMonth() method returns the same number as the number that represents the current
month (for example, returns 1 if the current month is January).

 A True

 B False

 15. Which of the following correctly assigns the day of the week for an instance of the Date
object named rightnow to a variable named weekday?

 A var weekday= rightnow.getDate();

 B var weekday= rightnow.getDay();

 C var weekday= right now.getDay();

 D var weekly= rightlater.getMinutes();

341

Chapter 13
Handling Strings

 342 JavaScript: A Beginner’s Guide

Key Skills & Concepts

● Using the Properties of the String Object

● Using the Methods of the String Object

● Using Regular Expressions

To work with strings in JavaScript, you need to learn about the various methods that handle
them. The methods come from the JavaScript String object.

This chapter first explains what the String object is and how to create strings that use its
properties and methods. Then, the String object’s properties and methods are discussed in
more detail so you can see how they work. Finally, you’ll code a script that uses some of the
properties and methods you’ve learned.

Introduction to the String Object
The String object provides properties and methods to get information about strings or
to modify strings. A String object is created in either of two ways: a programmer creates
one by using the new keyword with the constructor function, or JavaScript creates one
temporarily when one of the methods is called from a string literal. What makes a String
object and what makes a string literal? To find out, take a look at how to create a String
object in JavaScript.

The String Object
As just explained, one way to create a String object is to use the new keyword, as you’ve done
with other objects previously. The syntax is shown here:

var instance_name = new String("string value here");

You replace instance_name with the name you want to use for the instance of the String
object. You then replace string value here with the string of characters to use as the new
String object.

So, if you want to create an instance of the String object named guitar_string, you could
use the following code:

var guitar_string = new String("G");

This script creates an instance of the String object for the string “G”.
Although creating a String object with the new keyword can be useful for things such as

comparing String objects, string literals are used more often.

 Chapter 13: Handling Strings 343

The String Literal
You can create a string literal just by assigning a string value to a variable. This technique is a
bit shorter than creating a String object using the new keyword and still allows you to use all
the methods of the String object (as well as one of the properties).

A string literal is created in the code that follows. Notice that the code assigns a string
value to a variable.

var guitar_string = "G";

This makes the string “G” a string literal, which you know as a regular text string. With text
strings, you’re also allowed to use the properties and methods of the String object.

What’s the Difference?
The difference between a String object and a string literal is that a regular text string has
the value of the string itself, and it can be compared against another string easily, as in the
following code:

var guitar_string1 = "E";
var guitar_string2 = "E";
if (guitar_string1 == guitar_string2) {
 window.alert("The strings are the same!");
}
else {
 window.alert("The strings are not the same!");
}

Because this code uses regular string literals, the result is what you’d expect. An alert says that
the strings are the same.

However, if you used String objects to run through the same if block, you would see
something unexpected. The code that follows uses String objects instead:

var guitar_string1 = new String("E");
var guitar_string2 = new String("E");
if (guitar_string1 == guitar_string2) {
 window.alert("The strings are the same!");
}
else {
 window.alert("The strings are not the same!");
}

This time the alert would tell you that the strings are not the same, even though the string
values are both “E”—because a String object is an object value and not a literal value. Objects
aren’t going to be equal to one another in the same way regular text strings would be. To find
out if two objects are equal, you would have to write extra code to determine that. For most
purposes, you wouldn’t want to go to all that trouble. Instead, you would probably use string
literals and let them use the String object’s methods.

Both variables have the same string value

The strings are compared

The values are compared,
but an unexpected
answer is the result

The String objects are given
the same string values

 344 JavaScript: A Beginner’s Guide

A regular text string is able to use the String object’s methods because JavaScript takes
the string literal and turns it into a temporary String object. Once the method’s execution is
complete, it returns a string literal. This allows you to use the String object’s methods without
having to create String objects.

Using the Properties of the String Object
The String object has only three properties, so this section is relatively short. Table 13-1
provides a brief description of these properties, each of which is discussed in turn in the
sections that follow.

The constructor Property
This property performs the same task as it does in the other objects that have it (like the Date
and Array objects). It sends back the value of the constructor function. To use the constructor
property, you have to use a String object rather than a literal.

NOTE
You can use a string literal for the length property and all of the methods of the String
object, but the constructor and prototype properties require String objects.

The following code writes the value of the constructor property onto a Web page:

<body>
<script type="text/javascript">
var guitar_string = new String("G");
document.write(guitar_string.constructor);
</script>
</body>

This code produces text similar to the following:

function String() { [native code] }

The length Property
This property returns the length of the string, which is the number of characters contained in
the string. You can use it with both String objects and string literals. You’ve seen this property

Property Purpose

constructor Holds the value of the constructor function for an instance of the object

length Holds the numeric value of the length of the string (its number of characters)

prototype Allows you to add properties to the object

Table 13-1 Properties of the String Object

A new String object is created
The value of the constructor
property is printed on the page

 Chapter 13: Handling Strings 345

with other objects as well, such as the Array object. (In that case, the value was the number of
elements in an array.)

The following code uses a regular text string. It writes the length of the string variable onto
the page.

<body>
<script type="text/javascript">
var myname="John";
document.write("The name has "+myname.length+" characters.");
</script>
</body>

Notice how the name of the variable is used like an object name here. This is how to get
JavaScript to create a temporary String object to use the property. The script writes the result to
the page. Because the name has four characters, the length property has a value of 4 here.

The length property will be quite useful when you want to break strings apart to get
information or make changes to them, especially if the viewer enters the string and you don’t
know its length beforehand.

The prototype Property
As with the other objects that have the prototype property, you can use it to add properties or
methods to String objects on the page. The following code shows an example:

String.prototype.attitude="cool";
var rightnow= new String("Joe");
window.alert("This string is "+rightnow.attitude);

Now the String object “Joe” has an attitude property of “cool”!

Using the Methods of the String Object
The String object has a lot of methods, as shown in Table 13-2.

Yes, this list is quite long! The following sections take a look at the methods of the String
object.

Methods That Add HTML Tags
Many of the methods in Table 13-2 are used to create HTML tags around a string (or create
HTML tags with attribute values sent to them as parameters). Many of these effects can be
done using the more up-to-date method of accessing an element’s style and/or innerHTML
properties; however, these methods may be helpful to know in different situations.

A string literal is created

The length of the name in characters
is written on the page

The new property is used with the
instance of the String object

A new instance of the
String object is created

The prototype value adds a
property to the String object

 346 JavaScript: A Beginner’s Guide

Method Purpose
anchor() Creates an HTML anchor tag with a target on a page
big() Adds <big> and </big> tags around a string value
blink() Adds <blink> and </blink> tags around a string value
bold() Adds and tags around a string value
charAt() Finds out which character is at a given position in a string
charCodeAt() Finds the character code of a character at a given position in a string
concat() Adds two or more strings together and returns the new combined string value
fixed() Adds <tt> and </tt> tags around a string value
fontcolor() Adds and tags around a string value, which change

the color of the string to a specified color
fontsize() Adds and tags around a string value, which change

the size of the string to a specified size given as a number
fromCharCode() Uses character codes sent as parameters to create a new string
indexOf() Searches for a character sent as a parameter in a string: if it’s found, the position of

the first instance of the character is returned; otherwise, it returns –1
italics() Adds <i> and </i> tags around a string value
lastIndexOf() Searches for a character sent as a parameter in a string: if it’s found, the position of

the last instance of the character is returned; otherwise, it returns –1
link() Creates HTML links using the string as the link text and linking to the URL sent as

a parameter
match() Compares a regular expression and a string to see if they match
replace() Finds out if a regular expression matches a string and then replaces a matched

string with a new string
search() Executes the search for a match between a regular expression and a specified string
slice() Pulls out a specified section of a string value and returns a new string
small() Adds <small> and </small> tags around a string value
split() Separates a string into an array of strings based on a character sent as a parameter

to the method
strike() Adds <strike> and </strike> tags around a string value
sub() Adds _{and} tags around a string value
substr() Allows a portion of the string specified with a starting position and ending after a

certain number of characters to be returned
substring() Allows a portion of the string specified with a starting position and an ending

position to be returned
sup() Adds ^{and} tags around a string value
toString() Returns the string literal value of a String object
toLowerCase() Converts a string to all lowercase letters and returns the result
toUpperCase() Converts a string to all uppercase letters and returns the result

Table 13-2 Methods of the String Object

 Chapter 13: Handling Strings 347

The basic methods (big(), blink(), bold(), fixed(), italics(), small(), strike(), sub(), and
sup()) simply add the basic HTML tags around the string. For example, to create some small
text, you could use the small() method:

var little_bit = "I only want a little bit of cake.";
var tagged_phrase = little_bit.small();
document.write(tagged_phrase);

This code would then write the following into the HTML code:

<small>I only want a little bit of cake.</small>

When viewed in the browser, this text would appear smaller than it would normally have
appeared without the <small> and </small> tags.

NOTE
The HTML tags may be created in lowercase or uppercase, depending on the browser.
Since tags built with JavaScript after the page has loaded aren’t typically a problem
with page validation, the case of the tags likely won’t cause any issues with your HTML
code. However, the case of a tag is helpful to know if you decide to use that element
later in the script, as its tag name could, for example, be small or SMALL.

The remaining HTML tag methods (anchor(), fontcolor(), fontsize(), and link()) take in
parameters and build the tags based on the string value and the parameter(s) sent to them.
These are discussed in more detail in the following sections.

The anchor() method
This method places a text string as the text for a named anchor. The anchor() method takes a
parameter that will be the name attribute for the named anchor. Basically, it creates an HTML
tag set with the following syntax:

text_string

The parameter_string is a string you send as a parameter in the method call. The text_string is
the value of the string from which you call the method.

For example, take a look at this code:

var anchor_text = "Part 1";
var full_anchor = anchor_text.anchor("part1");
document.write(full_anchor);

Here, you assign a string literal to the variable anchor_text. You then call the anchor() method
with a parameter of “part1” from the string literal. The result is assigned to the full_anchor

The result of the anchor() method
is assigned to a variable

A string literal is created

The value of the variable
is written on the page

 348 JavaScript: A Beginner’s Guide

variable. The value of the full_anchor variable is then written on the page. The code writes the
following link into the code for the page:

Part 1

Figure 13-1 shows what this code looks like when viewed in the browser. Notice that the
viewer sees only the anchor text for the section.

The fontcolor() Method
The fontcolor() method adds font color to the text string that is used to call it. It takes in a
string parameter that indicates what color the text should be. The color can be sent using either
the color name or its red-green-blue (RGB) value.

This method formats some code around the text much like the example syntax:

text_string

Here, color_value would be replaced with the color name or RGB value sent as a parameter to
the method. The text_string part would be replaced with the text string used to call the method.

For an example, this code creates some red text on the page:

<body>
<script type="text/javascript">
var the_text = "I am so mad I am red!";
document.write(the_text.fontcolor("red"));
</script>
</body>

This script places the following code into the page source:

I am so mad I am red!

The text is given a font color
based on the color name
sent as the parameter

Figure 13-1 A named anchor is placed on the page

 Chapter 13: Handling Strings 349

You can also use the RGB value in place of the color name. In this code, the RGB value is
used instead:

<body>
<script type="text/javascript">
var the_text = "I am so mad I am red!";
document.write(the_text.fontcolor("#FF0000"));

This time, the code produced would be changed to include the RGB value in place of the color
name in the previous example, as shown here:

I am so mad I am red!

The fontsize() Method
The fontsize() method adjusts the font size of the text string that calls the method. It takes in
a numeric value to represent the size of the text (between 1 and 7).

The method formats the code so that it uses a syntax like the example here:

text_string

The number gets replaced with the number sent as the parameter in the method call, and
text_string gets replaced by the text string that is used to call the method.

The example that follows shows this method in action:

<body>
<script type="text/javascript">
var the_text = "I am pretty small!";
document.write(the_text.fontsize(2));
</script>
</body>

This script provides the code that follows in the page source:

I am pretty small!

The link() Method
The link() method works like the anchor() method, but instead it creates a typical hyperlink
on the page. It takes in a string parameter that is the value of the URL for the link, while the
text for the link will be the text string that called the method.

The method creates a link with the general syntax as shown here:

text_string

The url is replaced with the URL sent as the parameter in the method call, while text_string is
replaced with the text string that made the call.

The text is given a font color
based on the RGB code
sent as the parameter

The text is given a font size
based on the number sent
as the parameter

 350 JavaScript: A Beginner’s Guide

Look at this example that uses the link() method:

<body>
<script type="text/javascript">
var link_text = "A Web Site";
var full_link = link_text.link("http://www.pageresource.com");
document.write(full_link);
</script>
</body>

This code creates the link shown here in the page source code:

A Web Site

The technique in the preceding code example could also be used as the other side of the
anchor() method to create a link to the named anchor on the page. For example, take a look at
this code:

<body>
<p>
<script type="text/javascript">
var anchor_text = "Part 1";
var full_anchor = anchor_text.anchor("part1");
document.write(full_anchor);
</script>
</p>
<p>
Part 1 is about this, that and the other thing.

This is irrelevant text in this case used for filler.
</p>
<p>
<script type="text/javascript">
var link_text="Back to Beginning of Part 1";
var full_link= link_text.link("#part1");
document.write(full_link);
</script>
</p>
</body>

This code creates an anchor that can be referenced elsewhere on the page to get to the Part 1
text by clicking a link. You can substitute some text for whatever might be under the Part 1
section of the page. After that, a link is created that points back to the named anchor, offering
the viewer a chance to go back to the beginning of the Part 1 section of the page.

Figure 13-2 shows the result of this script when run in a browser. You get the named
anchor, the extra text, and the link back to the anchor.

The link is created based on the URL
sent as the parameter and the string

A link to the anchor is created

An anchor is created

 Chapter 13: Handling Strings 351

The Other Methods
The remaining methods of the String object—charAt(), charCodeAt(), concat(), fromCharCode(),
indexOf(), lastIndexOf(), match(), replace(), search(), slice(), split(), substr(), substring(),
toString(), toLowerCase(), and toUpperCase()—allow you to obtain information about or alter
a string. All of these are quite useful when working with strings and are discussed in more
detail in the following sections.

The charAt() Method
This method determines which character resides at a particular position in a string. You can
find out what the first or last character is, or you can find any character in between. The
charAt() method takes in a number representing the position where you want to know the
character.

Finding a Character When you want to find a character, remember that the position count
begins at 0 (as with arrays) rather than 1, so the first character is at position 0. The following
code shows how to get the first character in a string by using the charAt() method:

var the_text = "Character";
var first_char = the_text.charAt(0);
window.alert("The first character is "+first_char);

This code assigns the result of the charAt() method call to a variable named first_char,
which is then used in an alert. The alert will tell the viewer the first character in the text string
that called the method. In this case, the alert would say “The first character is C”.

Figure 13-2 A named anchor and a link back to the location of the named anchor

The charAt() method finds the character at
position 0 (the first character) in the string

 352 JavaScript: A Beginner’s Guide

Finding the Last Character with the length Property If you want to find the last character,
either you need to know how many characters are in the string before you use the method,
or you can use the length property to determine the number of characters in the string. When
using the length property, remember that it returns the number of characters, not the position of
the last character.

The length property begins counting at 1, while you must begin counting at 0 using the
charAt() method. Thus, the last character in a string will be at a position one less than the
number of characters it contains. In other words, if the string has 10 characters (1–10), the
last position (0–9) is at 9. If the string has 23 characters (1–23), the last position (0–22) is at
23–1=22.

Look at an example of this to see how it works. The code finds the last character in a
string:

var the_text = "Character";
var position = the_text.length-1;
var last_char = the_text.charAt(position);
window.alert("The last character is "+last_char);

This code assigns the value of the length of the string minus1 to a variable named position.
The position variable now holds the position of the last character in the string. The result of
calling the charAt() method with the value of position sent as the parameter is assigned to a
variable named last_char. Finally, an alert provides the last character in the string, which is r.
Thus, the viewer gets an alert saying “The last character is r”.

The charCodeAt() Method
The charCodeAt() method works the same way as the charAt() method, but it returns the
character code for the character at the positions sent as the parameter.

The character code is a numeric code that can be substituted for characters in HTML. In
HTML, you can write an angle bracket (<) to show code on a Web page—without the angle
bracket converting to HTML itself—by using a special character code. In place of a regular
angle bracket, for example, you could use <. The charCodeAt() method returns the
numeric part of that code, the 60.

The charCodeAt() method can be useful if you want to find out the character code for a
certain character. This script allows you to do this:

var the_text = "Hello";
var char_code = the_text.charCodeAt(0);
window.alert("The character code is &#"+char_code+";");

An alert would then tell you the character code at position 0 in the string (the letter H), which
is 72. The alert will add the string “&#” on the front and the string “;” to the back end of the
character code for you and say “The character code is H”.

Subtract 1 from the length property to find the
last position available in the string

The charAt() method uses that
value to find out which character
is in the last position in the string

The charCodeAt() method finds the character code for the
character at position 0 (the first character) in the string

 Chapter 13: Handling Strings 353

The concat() Method
This method works much like the Array object’s concat() method. It combines the text
string that calls the method with any number of other text strings sent as parameters and
returns the combined value. The text string calling the method comes first in the order, while
the strings sent as parameters are added in order after it.

The following code shows an example that combines three strings using the concat() method:

var string1 = "I went to the store ";
var string2 = "then ";
var string3 = "I played a video game";
window.alert(string1.concat(string2,string3));

This code combines the strings in the order string1, string2, and then string3. The result is an
alert that says “I went to the store then I played a video game”.

If you want it in a different order, you can adjust which string calls the method and the
order of the parameters, as this code shows:

var string1 = "I went to the store ";
var string2 = " then ";
var string3 = "I played a video game";
window.alert(string3.concat(string2,string1));

This time, string3 calls the method, so it comes first in the new string. The values of string2
and string3 are added in order after that. The result in this case is an alert that says “I played
a video game then I went to the store”.

The fromCharCode() Method
The fromCharCode() method creates a string from a series of character codes sent as
parameters to the method. The charCodeAt() method returns a numeric code for the character
at a given position. This is the type of value you must send to the fromCharCode() method.
Also, fromCharCode() is called directly from the String object rather than from an existing
string, because it is piecing together a string on-the-fly and doesn’t require one to run. Instead,
it uses the parameters sent to it to return a string.

So, if you want to alert the text string “HI” to the viewer, you could use the example code
shown here:

window.alert(String.fromCharCode(72,73));

This code takes in the first parameter (the character code 72) and converts it to an H. It then takes
in the second parameter (the character code 73) and converts it to an I. The two are combined in
the order they were sent to form the string “HI”, which is sent as an alert to the viewer.

The indexOf() Method
The indexOf() method finds out where a certain character or string begins in a string. It
returns the position of only the first occurrence of the character or string that is sent as the
parameter. If the character or string isn’t found in the string value, a value of –1 is returned.

The three strings are combined in
order from left to right (again)

The three strings are combined
in order from left to right

 354 JavaScript: A Beginner’s Guide

The following code looks for the letter C in the string “Cool”:

var the_text = "Cool";
var position = the_text.indexOf("C");
window.alert("Your character is at position "+position);

Remember that the position count begins at 0, so when it finds C as the first character in the
string, it returns 0. Thus, the alert will say “Your character is at position 0”.

Note that the method is case sensitive, so C and c are two different characters to JavaScript
in this case. Thus, the code that follows returns –1 (telling you the character isn’t in the string),
even though an uppercase C is in the string.

var the_text = "Cool";
var position = the_text.indexOf("c");
window.alert("Your character is at position "+position);

The alert would now say “Your character is at position –1”.
If you want to check for that –1 to keep from getting it as a position, you could use this

code to send a different alert in case the character you want to find isn’t in the string:

var the_text = "Cool";
var position = the_text.indexOf("c");
if (position == -1) {
 window.alert("Your character is not in the string!");
}
else {
 window.alert("Your character is at position "+position);
}

This time, the if statement checks to see whether the method returns –1 to the position
variable. If so, the alert says “Your character is not in the string!” Otherwise, the regular alert
will tell you the position. In the previous code, the lowercase c isn’t in the string, so the “Your
character is not in the string!” alert appears.

The indexOf() method returns the position number only for the first occurrence of the
character you send as the parameter. So, if you use the code that follows, you will be alerted
that your character is at position 1, even though it’s also at position 2:

var the_text = "Cool";
var position = the_text.indexOf("o");
if (position == -1) {
 window.alert("Your character is not in the string!");
}
else {
 window.alert("Your character is at position "+position);
}

The lowercase o is in the string twice, but indexOf() locates only the first occurrence of the
character. To locate the next occurrence, you would need to have the method look for “oo”

 Chapter 13: Handling Strings 355

instead of “o” (which will tell you the position of the first “o” but give you the knowledge
that the next position also contains an “o”) or you could have the method start looking from a
different starting point using a second parameter.

If you add an integer as the second parameter to the indexOf() method, the search for your
character or string will begin at that position rather than from the 0 position. Thus, one way
to find that second “o” would be to skip past the first one at position 1 and start looking at
position 2.

var the_text = "Cool";
var position = the_text.indexOf("o",2);
if (position == -1) {
 window.alert("Your character is not in the string!");
}
else {
 window.alert("Your character is at position "+position);
}

This time, the method returns 2 as the result, since it finds it right at the specified starting position.
Oftentimes, this method is used to ensure that a particular character or string either is or is

not present within a string. For instance, if you want a string to contain “fruit” somewhere in it,
and do not want it to contain “candy”, you could write the following code:

var the_text = "I like fruit!";
if ((the_text.indexOf("fruit") != -1) && (the_text.indexOf("candy") ==
-1)) {
 window.alert("Yes, fruit is good for you!");
}
else {
 window.alert("Please consider fruit rather than candy.");
}

This requires the string to contain “fruit” but not contain “candy”. If it passes the test, an alert
is sent praising fruit. If not, an alert is sent that offers fruit as an alternative to candy.

The lastIndexOf() Method
The lastIndexOf() method finds out where the last instance of a certain character or string is
located in the string. It returns the position of only the last occurrence of the character or string
that is sent as the parameter. If the character or string isn’t found in the string value, a value of
–1 is returned.

The following code looks for the letter C in the string “Cool Cruising Car”:

var the_text = "Cool Cruising Car";
var position = the_text.indexOf("C");
window.alert("Your character is at position "+position);

This code will display an alert that tells the viewer “Your character is at position 14.” This
method can be a handy way to find the last instance of a character or string within a string value.

 356 JavaScript: A Beginner’s Guide

The match() Method
The match() method compares a regular expression and a string to see whether they match.
Because it deals with regular expressions, I won’t go into detail about this method now, but regular
expressions will be covered later in this chapter in the section “Using Regular Expressions.”

The replace() Method
The replace() method finds out if a regular expression matches a string and then replaces
a matched string with a new string. Because it deals with regular expressions, I won’t go into
detail about this method until later in this chapter.

The search() Method
The search() method executes the search for a match between a regular expression and a
specified string. Because it deals with regular expressions, I won’t go into detail about this
method until later in this chapter.

The slice() Method
This method pulls out a portion of a string and returns a new string, which is the text string that
was sliced. The slice() method takes in two numeric parameters to tell it where to begin and
end the portion of the string to be pulled.

This method works much like the slice() method of an array. The first parameter tells it the
position at which to start slicing, while the second parameter is one greater than the position
where it will stop. For instance, take a look at the code that follows:

var the_text = "Do not cut this short!";
var shorter_string = the_text.slice(0,7);
window.alert(shorter_string);

This code slices the string from position 0 through position 6. Position 7 is where the c is in
“cut”; but it isn’t sliced because the parameter to end is not included as a position to slice, but
is one greater. Thus, the alert will say “Do not ”.

The split() Method
The split() method creates an array of string elements based on the string it splits (the opposite
of the join() method). The string is split based on a character sent as a parameter that acts as
a separator.

For instance, the code that follows has a string with a bunch of colons in it:

var the_text = "orange:apple:pear:grape";
var split_text = the_text.split(":");
var end_count = split_text.length;
for (var count=0; count<end_count; count++) {
 document.write(split_text[count]+"
");
}

The string assigned to the the_text variable has a bunch of fruits separated by colons.
The next line creates an array named split_text by using the split() method on the text string
the_text. The parameter sent is a colon, which is what is used to separate the string into array
elements. In this case, the array ends up with four elements.

 Chapter 13: Handling Strings 357

NOTE
The separator character that is sent as a parameter won’t end up in the array: it serves
only as a divider between the text so that the method knows where to begin and end
each element.

The next line gets the length of the split_text array and places that value in the variable
end_count. This information is then used to loop through the new array and print the elements
on the page.

Figure 13-3 shows the result of this script in a browser, which is a listing of fruit names.

The substr() Method
This method pulls out a portion of a string and returns the portion that is removed as a new
string. It takes two numeric parameters. The first parameter specifies the beginning of the
removal, and the second parameter specifies how many characters to remove.

For instance, the following code removes a portion of a string beginning at position 0 and
continues until seven characters are removed:

var the_text = "Do not cut this short!";
var shorter_string = the_text.substr(0,7);
window.alert(shorter_string);

This code removes everything up to the beginning of the word cut in the string. The string returned
is the portion of the string that has been removed. Thus, the alert will say “Do not ”. Notice
that the space character after “not” is included because it was the seventh character removed.

The substring() Method
This method works much like the substr() method, but it allows you to send parameters for the
beginning position and the ending position of the portion of the string you want to remove. It
then returns the removed portion as a new string.

Figure 13-3 The array elements created using the split() method are printed on the page

 358 JavaScript: A Beginner’s Guide

For example, take a look at the code that follows. Rather than specifying the number of
characters to remove, you give an ending position. The characters are removed beginning at the
starting position and ending at one less than the ending position. (Remember the slice() method.)

var the_text = "Do not cut this short!";
var shorter_string = the_text.substring(3,7);
window.alert(shorter_string);

You remove everything between the beginning of the string and the beginning of the word “cut”.
The alert will say “not ”.

The toString() Method
The toString() method returns a string literal value for a String object that calls it. Here’s an
example of how you can use this method:

var string_obj = new String("Cool");
var string_lit = string_obj.toString();

This code takes the String object and uses the toString() method to get its string literal value. It
then assigns that value to the string_lit variable.

The toLowerCase() Method
This method returns in lowercase letters the value of the string that called it. Take a look at
this code:

<body>
<script type="text/javascript">
var the_text = "I FEEL CALM, REALLY.";
document.write(the_text.toLowerCase());
</script>
</body>

This code writes the string in all lowercase letters on the page, like this sample text:

i feel calm, really.

The toUpperCase() Method
This method returns in uppercase letters the value of the string that called it. Here’s an example:

<body>
<script type="text/javascript">
var the_text = "I am yelling!";
document.write(the_text.toUpperCase());
</script>
</body>

This code writes the string in all uppercase letters on the page, like this sample text:

I AM YELLING!

That’s the last of the methods! Now you are ready to test what you’ve learned.

 Chapter 13: Handling Strings 359

Try This 13-1

pr13_1.html
prjs13_1.js

 Use charAt() to Find a First Letter
In this project, you practice using the charAt() method by creating a script that
will determine whether the first character in a viewer’s entry is valid.

Step by Step
 1. Create an HTML page that includes a “Welcome” heading and calls a JavaScript file named

prjs13_1.js. Save the HTML file as pr13_1.html.

Q: So the length property returns the number of characters in the string, but the string
methods start counting at 0. This is a little confusing, just like it is with arrays. Is there
an easy way to remember this?

A: The easiest way is probably to remember that the length property begins counting at 1,
while the methods count positions beginning at 0. Thus, the length property ends up one
greater than the last position in a string. So, if the string has a length of 5, that means the
last position in the string is position 4.

Q: Yes, but it’s also confusing because the second parameter in the slice() and substring()
methods is a position higher than the point where the methods stop removing
characters. Why is this?

A: It is confusing in the beginning. You just have to get used to how each method works.
The slice() and substring() methods are a bit confusing. But if you use them often enough,
you’ll remember which numbers to use in which situations.

Q: Why do I need the split() method? Couldn’t I just make my own array and be done
with it?

A: Yes. However, once you learn about JavaScript cookies, the split() method will be useful
because you’ll be able to split up the information stored in the cookie to make use of it.
Cookies store information in long text strings, usually with some character as a separator.
This is just one example of when the split() method can be useful to you.

Q: A lot of those methods just add tags around a text string. Couldn’t I just write out the
HTML for that? It seems easier.

A: You could, if you feel more comfortable using HTML, although with a String object, these
methods might be more useful.

Ask the Expert

(continued)

 360 JavaScript: A Beginner’s Guide

 2. Create an external JavaScript file and save it as prjs13_1.js. Use it for steps 3–6.

 3. Write code that gets the result of a prompt that asks for a name, and assign the result of the
prompt to a variable named the_name.

 4. Use the charAt() method to find out what is entered as the first character of the name in the
prompt, and assign the result to a variable named first_char.

 5. Set it up so that the page will display the name the viewer entered, but only if it started with
an uppercase S. Otherwise, display a message saying the viewer needs a name that starts
with an uppercase S to have it displayed.

 6. Save the JavaScript file and open the HTML file in your browser to see what it does.

Try This Summary
In this project, you used your knowledge of the charAt() method to create a script that
determines whether the first character in a viewer’s entry is a valid character. If the entry starts
with an uppercase S, then the viewer’s entry is displayed on the page. Otherwise, a message is
displayed to the viewer.

Putting Methods Together
Now that you know how to use the script object’s properties and methods individually, you are
ready to create a script that uses several of them to see how they can work together. You’ll do
this by creating a script that will mess with the viewer’s name (in good humor, of course).

You want the script to get the viewer’s first and last name, change the first letter of each
name, and then alert the result to the viewer. The following script does this:

<body>
<h1>Welcome!</h1>
<script type="text/javascript">
function getname() {
 var the_text=window.prompt("Enter your first and last name","");
 if (the_text.indexOf(" ") == -1) {
 window.alert("Put a space between your first and last name. Try again.");
 getname();
 }
 var split_text= the_text.split(" ");
 if ((split_text[0].charAt(0) != "Z") || (split_text[0].charAt(0) != "z")) {
 var shorter_fn_string = split_text[0].substring(1,split_text[0].length);
 new_fn_name = "Z"+shorter_fn_string;
 }

This line tests to see if
there is a space in the
entry by the viewer

The prompt allows the
viewer to input a name

The function starts over if the viewer has to try again

If there is no
space, the alert
tells the viewer
to try again

This is a test to see whether the first name started with
a Z or a z and if not, the first letter is replaced with a Z

The entry by the viewer is
split on the space character

 Chapter 13: Handling Strings 361

 else {
 var shorter_fn_string = split_text[0].substring(1,split_text[0].length);
 new_fn_name = "W"+shorter_fn_string;
 }
 if ((split_text[1].charAt(0)!= "Z") || (split_text[1].charAt(0)!= "z")) {
 var shorter_ln_string= split_text[1].substring(1,split_text[1].length);
 new_ln_name="Z"+shorter_ln_string;
 }
 else {
 var shorter_ln_string= split_text[1].substring(1,split_text[1].length);
 new_ln_name="W"+shorter_ln_string;
 }
 window.alert("Now your name is "+new_fn_name+" "+new_ln_name+"!");
}
getname();
</script>
</body>

Notice that a function named getname() is what gets things going. The first task the function
performs is to prompt the viewer for a first and last name. The idea is that the viewer will enter
a first name, a space, and a last name (although other entries are certainly possible and can be
better dealt with using regular expressions).

Once the name has been obtained, the script uses the indexOf() method to see if the entry
has a space in it. If no space exists, there will be only a single name, and that isn’t what you
want. Thus, if there is no space, the script alerts the viewer to try again and then restarts the
function from the beginning. If there is a space, then the script proceeds to the next line after
the if block.

The script then uses the split() method to create an array of any data separated by spaces.
In theory, a single space should be between the first and last names. If the viewer uses more
than one space, then only the first two elements of the resulting array will be used. (They
are specifically called later in the script.) So, if the viewer enters John Doe, the elements of
the resulting array are John and Doe. However, if the viewer enters John J Doe, the first two
elements are John and J, and the Doe won’t be used. (With more advanced validation, this
problem could alert the viewer to try again.)

Once the string is split into an array, the script uses charAt() to test the first letter of the
first element in the array (the first name). If it isn’t Z or z, then the code in the if block is
executed. The if block uses the substring() method to get all the letters in the name except the
first one, and then assigns that value to the shorter_fn_string variable. Thus, if the first name
is John, the variable would have a value of “John.” Once that’s accomplished, a string value
of Z is added to the front of that variable and the result is assigned to a variable name new_
fn_name. This basically replaces the first letter in the original name with Z. Thus, John would
become Zohn and Mary would become Zary.

If the first name starts with a Z or z, the first
letter is taken out and replaced with W

The result of the name change
is alerted to the viewer

The function is called to begin the
process while the page is loading

The same tests and tasks are
executed on the last name

 362 JavaScript: A Beginner’s Guide

Try This 13-2

pr13_2.html
prjs13_2.js

If the original name did start with Z or z, the else block is executed instead. Rather than
replacing the first letter with Z, it is replaced with W. The next if/else segment performs the
same tasks on the second entry in the array, which, if entered correctly, will be the last name.
The viewer is then alerted to the result, telling the user the new name. Figure 13-4 shows the
result of this script in a browser when the viewer enters Big Mag.

 Use indexOf() to Test an Address
In this project, you practice using the indexOf() method by creating a script that
performs a very basic test on an e-mail address that the viewer enters.

Step by Step
 1. Create an HTML page that points to a JavaScript file named prjs13_2.js. Create a button the

viewer can click with an id of “email”. Label it “Click to enter an e-mail address.” Save the
HTML file as pr13_2.js.

 2. Create an external JavaScript file and save it as prjs13_2.js. Use it for steps 3–7.

 3. Create a function named get_add(). In it, assign the results of a prompt asking for an e-mail
address to a variable named email_add.

 4. Also in the function, use indexOf() to see if the address has an at (@) character in it.

Figure 13-4 The viewer gets a new name in an alert

 Chapter 13: Handling Strings 363

 5. Also in the function, use indexOf() to see if the address has a dot (.) character in it.

 6. Also in the function, if the address has both an at (@) character and a dot (.) character, send
an alert thanking the viewer. If not, send an alert to the viewer saying that he or she needs
these characters and to try again.

 7. Save the JavaScript file and open the HTML file in your browser to see what you can do
with it.

Try This Summary
In this project, you used your knowledge of the indexOf() method to test an e-mail address
entered by the viewer for certain characters. If one of the characters is missing, an error alert is
sent to the viewer. Otherwise, an alert is sent thanking the viewer.

Using Regular Expressions
Regular expressions give you much more power to handle strings in a script. They allow
you to form patterns that can be matched against strings, rather than trying to use the String
object’s methods, which may make it more difficult to be precise.

For example, you may want to know whether the value entered in a text box for an
e-mail address included at least one character at the beginning, followed by an at (@) symbol,
followed by at least one character, followed by a dot (.), followed by at least two more
characters (matching a traditional e-mail address like jon@jon.com or the shortest type of
email address j@j.jj). Section 13-2 Try This provides a similar but simpler test for you to
try out.

The String object’s methods don’t provide a neat and clean way to perform this task
(although with enough tinkering, it may be possible). However, a regular expression can
shorten the task or even turn a match that seemed impossible with the String object’s methods
into one that can be completed.

Creating Regular Expressions
To create regular expressions, you must create an instance of the JavaScript RegExp object.
You can do this almost the same way as you would create a string literal. To create a RegExp
literal, you just assign the regular expression to a variable. Instead of using quotation marks to
surround the expression, you use forward (/) slashes, as shown here:

var varname = /your_pattern/flags;

You replace varname with the name you want to use for a variable and replace your_pattern
with the regular expression pattern of your choice. You can follow the last slash with one or
more flags (which are discussed in the upcoming section “Adding Flags”).

 364 JavaScript: A Beginner’s Guide

NOTE
JavaScript uses forward slashes to let the browser know that a regular expression is
between them, the same way quote marks are used to set off strings. Thus, if a forward
slash is used within the regular expression, it must be escaped with a backslash in order
to work properly. For instance, instead of writing /02/03/2009/, you would need to
write /02\/03\/2009/.

The easiest regular expression pattern to create is one that looks for an exact match of
characters. For instance, if you wanted to see if the sequence our is present in a string, you
could create the following regular expression pattern:

var tomatch = /our/;

The preceding code creates a RegExp literal named tomatch. Now you need a string against
which to test the pattern. If you test the word our against the expression, it’s a match.

If you test your, sour, pour, or pouring against it, then it’s a match. If you test cool, Our,
oUR, OUR, or souR, then it won’t be a match. So how do you perform this test?

Testing Strings Against Regular Expressions
To test a regular expression against a string, you can use the test() method of the RegExp
object. The basic syntax is as follows:

regex_name.test(string_to_test);

This syntax is similar to using a string method. You replace regex_name with the name of
the regular expression and replace string_to_test with a string or a string variable name. For
instance, look at the following example:

var tomatch = /our/;
tomatch.test("pour");

This code will test the “pour” string against the regular expression named “tomatch.” It doesn’t
use the result, though.

The test() method returns a Boolean value of true or false. It returns true when any portion
of the string matches the regular expression pattern. Using the test() method, you can already
write a short script, as shown here:

var thename = window.prompt("Enter your name","");
var tomatch = /John/;
var is_a_match = tomatch.test(thename);
if (is_a_match) {
 window.alert("Wow, we have the same name!");
}
else {
 window.alert("Not my name, but it will work!");
}

The prompt gets a name
from the viewer

A regular expression is
set up to see if the name
entered will match it

A variable is used to hold the
result of the test() method

If the result is true,
this alert appears

If the result is not true,
this alert appears

 Chapter 13: Handling Strings 365

The prompt gathers a name and holds the value in a variable. The pattern to match is John, and
it is case sensitive. Thus, only an entry containing John with a capital J followed by lowercase
o, h, and n will create a match and return true when it is tested (though it could contain more
than just John, so entries such as Johnny or John Doe would also return true—if you want only
a specific set of characters, you need to use some additional special characters, which will be
discussed later in this section).

The result of the test() method is assigned to a variable named is_a_match. The variable
is then used as the condition for the if statement. If the variable holds a value of true, then the
viewer gets the “Wow, we have the same name!” alert. If it holds a value of false, the viewer
gets the “Not my name, but it will work!” alert instead.

If you want to shorten the script, you can just make the result of the test() method the
condition for the if statement (rather than create another variable), as in the following code:

var thename = window.prompt("Enter your name","");
var tomatch = /John/;
if (tomatch.test(thename)) {
 window.alert("Wow, we have the same name!");
}
else {
 window.alert("Not my name, but it will work!");
}

Because the method returns true or false, it can be placed as the condition for the if statement
on its own. (You could make it (tomatch.test(thename)==true) if you wanted to, though.)

Adding Flags
Flags allow you to make the match case insensitive or to look for every match in the string
rather than just the first one (a global test). To add a flag, place it after the last slash in the
regular expression. You can use three options, as shown in Table 13-3.

If you wanted to adjust the name script used previously to be case insensitive, you could
add an i flag to the regular expression, as shown in the following code:

var thename= window.prompt("Enter your name","");
var tomatch=/John/i;
if (tomatch.test(thename)) {
 window.alert("Wow, we have the same name!");
}
else {
 window.alert("Not my name, but it will work!");
}

The result of the test() method
is used as the condition

Flag(s) Purpose
i Makes the match case insensitive
g Makes the match global
m Makes the match work in multiline mode

Table 13-3 Regular Expression Flags

The i flag makes this regular
expression case insensitive

 366 JavaScript: A Beginner’s Guide

The test() method will now return true as long as the pattern of John is in the string. It can
be in any case, so now John, JOHN, john, and even JoHn are all matches and will cause the
test() method to return true.

You can also use more than one flag or all three flags at once. For example, if you want
to have the match be both case insensitive and global (where it grabs each match in the entire
string), you could use the following:

var tomatch=/John/ig;

Creating Powerful Patterns
Although it’s nice to be able to create such an exact pattern, you won’t always be looking for
a match that is so precise. In many cases, you will be looking to match a more general pattern,
such as an entry that needs to have at least three characters or that needs to have two characters
of any type followed by a special character.

By using special characters in your expressions, you can create the type of patterns you need
to match a given sequence you want. JavaScript regular expressions use the syntax of Perl regular
expressions as a model. Thus, if you’ve used regular expressions in Perl, much of this material
will be familiar. Table 13-4 lists a number of the characters to help you create your patterns.

As you can see, extensive options exist for creating the pattern you need. Now you could
easily verify strings according to the standards you decide to set.

Now, if you want to make sure a text field contains one or more digits, you could use the
/d and + characters from Table 13-4 with the following HTML and JavaScript code, starting
with the HTML code:

<body>
<form>
Enter some text: <input type="text" id="has_digits" />
<input type="button" id="t_btn" value="Test" />
</form>
</body>

Next, the JavaScript code:

var t_button = document.getElementById("t_btn");
t_button.onclick = function() {
 var has_num = document.getElementById("has_digits").value;
 var tomatch = /\d+/;
 if (tomatch.test(has_num)) {
 window.alert("Your entry contained one or more numbers!");
 }
 else {
 window.alert("Your entry did not contain any numbers!");
 }
}

 Chapter 13: Handling Strings 367

Character Purpose Example

^ Matches only from the beginning of a line /^c/ matches c in corn
/^c/ does not match c in acorn

$ Matches only at the end of the line /r$/ matches r in Car
/r$/ does not match t in Cat

* Matches the character preceding it if the
character occurs zero or more times

/co*/ matches co or c
/co*/ does not match pi

+ Matches the character preceding it if it occurs
one or more times

/co+/ matches co or cooooo
/co+/ does not match ca

? Matches the character preceding it if it occurs
zero or one time

/o?l/ matches style or column
/co?l/ does not match cool

. Matches any individual character, excluding
the newline character

/.l/ matches al or @l
/.l/ does not match \nl or l

(x) By replacing x with characters, matches that
sequence and keeps it in memory to be used
later; used for grouping of expressions

/(a)/ matches a
/(cool)/ matches cool
/(cool)/ does not match coal

| Used as a logical OR symbol to allow a
match of what is on the left of the symbol OR
what is on its right

/cool|bad/ matches cool
/cool|bad/ matches bad
/cool|bad/ does not match car

{x} Using a number to replace x, matches
when there are exactly x occurrences of the
character preceding it

/n{1}/ matches n
/nn{2}/ matches nnn
/nn{1}/ does not match nnn

{x,} Using a number to replace x, matches when
there are x or more occurrences of the
character preceding it

/n{1,}/ matches n
/n{1,}/ matches nnnnn
/n{3,}/ does not match nn

{x,y} Using numbers to replace x and y, matches
when there are at least x occurrences of the
character preceding it but no more than y
occurrences of it

/n{1,2}/ matches n
/n{1,2}/ matches nn
/n{2,3}/ does not match n
/n{4,7}/ does not match nnn

[] Matches a character set of your choice; will
match when any one of the characters in
the brackets (such as [abc]) or any one of a
range of characters (such as [a-k]) is present

/[abc]/ matches a
/[abc]/ matches b
/[abc]/ matches c
/[a-k]/ matches j
/[a-k]/ does not match n

[^] Matches when the characters in your
character set are not present; may be a set
(such as [abc]) or a range (such as [a-k])

/[^abc]/ matches d
/[^abc]/ does not match b
/[^a-k]/ matches n
/[^a-k]/ does not match j

Table 13-4 Regular Expression Codes (continued)

 368 JavaScript: A Beginner’s Guide

Character Purpose Example

\ Used to escape special characters or to make
a normal character special

\@ escapes the @ character
\n represents a newline character

[\b] Matches a BACKSPACE keystroke /[\b]/ matches a backspace

\b Matches when the character before or after it
is located at a word boundary, such as before
or after a space character; to match the
beginning of a word, place the character to
the right of the symbol (\bc); to match the end
of a word, place the character to the left (c\b)

/\bc/ matches c in my car
/\bm/ matches m in my car
/\bc/ does not match c in ace
/\bm/ does not match m in Sam
/m\b/ matches m in Sam
/c\b/ matches c in Mac W
/m\b/ does not match m in emu
/c\b/ does not match c in my car

\B Matches a character that is not located at a
word boundary

/\Ba/ matches a in car
/\Bc/ does not match c in car

\cX Using a letter character to replace X, matches
when the user presses the CTRL key followed
by typing the letter X

/\cX/ matches CTRL-X
/\cV/ matches CTRL-V
/\cS/ does not match CTRL-Z

\d Matches if the character is a single numeric
character

/\d/ matches 4
/\d/ does not match s

\D Matches a single character if it is not a
numeric character

/\D/ matches s
/\D/ does not match 4

\f Matches if there is a form feed /\f/ matches a form feed

\n Matches if there is a new line /\n/ matches a new line

\r Matches if there is a carriage return /\r/ matches a carriage return

\s Matches a single character if it represents
white space (such as a space or a new line)

/\s/ matches the space in b c
/\s/ matches the tab in b c
/\s/ does not match bc

\S Matches a single character if it does not
represent white space

/\S/ matches d
/\S/ does not match a blank space

\t Matches if there is a tab /\t/ matches the tab in b c

\v Matches if there is a vertical tab /\v/ matches a vertical tab

\w Matches any single character that is a letter,
number, or underscore

/\w/ matches 4
/\w/ does not match @

\W Matches any single character that is not a
letter, number, or underscore

/\W/ matches @
/\W/ does not match g

Table 13-4 Regular Expression Codes (continued)

 Chapter 13: Handling Strings 369

This code simply checks to see whether any digits are in the string. If you want to ensure that
the viewer typed in only digits without any other types of characters, you need to be sure the
regular expression is written to test from the beginning to the end of the string. Using the ^ and
$ symbols from Table 13-4, you can ensure that the string is tested for the match starting at the
beginning of the string and ending at the end of the string. Thus, the following patterns would
allow only digits:

var tomatch = /^\d+$/;

Since the only valid characters from the beginning to the end of the string are digits, this will
return true only for entries containing digits without other characters present in the string. This
is especially helpful for validating forms and other types of user input to ensure that it is the
type of input you expect.

NOTE
Regular expressions can be quite powerful for validation because they allow less
erroneous information to be accepted.

Client-side validation of form submissions with data such as e-mail addresses or phone
numbers can save unnecessary trips to the server. However, users may disable JavaScript
support and make form submissions directly. Therefore, client-side validation should support
server-side validation (by a CGI script or a Java servlet, for example), but should never replace
it (it could cause a great security risk to store or display data from a viewer that has not been
validated).

Grouping Expressions
You will notice in Table 13-4 that an expression surrounded by parentheses indicates a group
that can be stored for later use in the expression (or using a method such as the match() method
where it will store each match of a group along with the overall match in an array).

For example, you might decide to use a particular sequence of numbers and to have that
sequence repeat a particular number of times. To match the number of times something is
repeated, you can use curly brackets ({}) along with a number or number range. For instance,
if you want to match five instances of the number 3, you could use the following expression:

/3{5}/

If you wanted this to be a match if the number 3 occurs at least five times but no more than ten
times, you could use the following expression:

/3{5,10}/

Now, suppose you wanted the match to start with a 3 and have any digit as the next
character, and wanted to match that entire sequence five times (thus, something like
3234353637 would be a match). You might write the following:

/3\d{5}/

 370 JavaScript: A Beginner’s Guide

The trouble with this is that it gets the 3 correct, but matches five digits afterward without
the need to repeat the 3. Thus, a number like 387643 would match even though you wanted to
have five sets of two numbers with each set beginning with a 3. To fix this, you can
group the 3 and the \d together with parentheses, and follow that with the number of times it
should repeat:

/(3\d){5}/

This time, the 3 and the second digit are grouped together, and that sequence must be repeated
five times.

Grouping is a helpful way to get more out of your use of regular expressions, and you will
see more of this when you get to form validation in the next chapter.

The replace(), match(), and search() Methods
These methods of the String object were mentioned earlier in the chapter, and will make more
sense now that regular expressions have been introduced.

The replace() Method
To replace information in a string, you can use regular expressions and the replace() method of
the String object. The syntax for using the replace() method is as follows:

varname= stringname.replace(regex,newstring);

You replace varname with the name of the variable that will hold the new string value once the
information has been replaced. You replace stringname with the name of the string variable
that will undergo the replacement. You replace regex with the name of the regular expression
to be used to match against the string. Finally, you replace newstring with the string or string
variable to replace any matched values in the string.

As an example, the following code replaces the first instance of “car” in mystring with
“skunk”:

var mystring= "I like the way a new car smells, and cars are fun.";
var toreplace=/car/;
var newstring= mystring.replace(toreplace,"skunk");
window.alert(newstring);

The preceding code replaces only the first instance of car, giving the alert “I like the way a
new skunk smells, and cars are fun.” If you want to change every instance of “car” instead, the
g flag is helpful at the end of the regular expression, as shown in the following code:

var mystring= "I like the way a new car smells, and cars are fun.";
var toreplace=/car/g;
var newstring= mystring.replace(toreplace,"skunk");
window.alert(newstring);

The first instance of a match is replaced in the
string, and the result is assigned to a variable

The pattern to replace is set as a regular expression

The alert shows the updated string

A string literal is created

Adding the g flag causes all
matches of the pattern to be
replaced when the replace()
method is run

 Chapter 13: Handling Strings 371

The g flag will match every instance of the regular expression it finds in the string. Thus, when
the replace() method is run, all instances of “car” will be replaced with “skunk.” The viewer
will see this alert: “I like the way a new skunk smells, and skunks are fun.”

You could also use the replace() method to make a name-changing script that is shorter and
somewhat less complex than the one earlier in this chapter. By using the replace() method with
a regular expression, the first letter of the first and last name can be changed more easily. The
following code shows how:

function getname() {
 var tomatch=/^[A-Za-z]+\s[A-Za-z]+$/;
 var toreplace=/\b[A-Za-z]/gi;
 var thename=window.prompt("Enter your first and last name","");
 if (tomatch.test(thename)) {
 newname=thename.replace(toreplace,"Z");
 window.alert("Now your name is "+newname);
 }
 else {
 window.alert("Name invalid. Please Try Again");
 getname();
 }
}
getname();

This script changes the first letter of the first and last name to Z regardless of what it was
before. The regular expression for the replacement simply looks for a letter at the beginning of
a word using the word boundary (\b) code. Each time a letter is at the beginning of a word, it is
replaced.

The validation of the input keeps the script from getting more than two names and one
space, and it also ensures that at least one letter is in each name, with no numbers or special
characters. The illustration shows the result of the script if the viewer enters Debra Loo at the
prompt: the viewer’s name is changed.

The match() Method
The match() method compares a regular expression and a string to see whether they match. It
returns an array containing one or more matches, depending on how it is used. If no match is
found, it returns –1.

Regular expressions are used to validate and change the viewer’s entry

 372 JavaScript: A Beginner’s Guide

The basic use of the match() method is as follows:

string.match(regex);

The string will be your string literal, and regex will be your regular expression literal. Note the
difference in the order between this method and the test() method. You could use it in this way:

var mystring = "I am Ironman!";
var tomatch = /Iron/;
if (mystring.match(tomatch)) {
 window.alert("Your string contains Iron!");
}
else {
 window.alert("Sorry, no Iron in your string.");
}

If this is used with the g flag or with grouping using (), it will remember each match made
(including matches on groups or nested groups) and return each match as an array element.

The search() Method
The search() method executes the search for a match between a regular expression and a
specified string. If a match is found, it returns the position in the string where the beginning of
the match was found. Otherwise, it returns –1. Here is an example of this method in action:

var mystring = "I am Ironman!";
var tomatch = /Iron/;
if (mystring.search(tomatch)) {
 window.alert("Iron found at position "+mystring.search(tomatch)+"!");
}
else {
 window.alert("Sorry, no Iron in your string.");
}

As you can see, the syntax is much like that of the match() method.

More Information
For more information on regular expressions and how to create more complex patterns, you
can look at the following online resources:

● www.regular-expressions.info/

● www.regular-expressions.info/javascript.html (includes specifics on the JavaScript engine)

● https://developer.mozilla.org/en/Core_JavaScript_1.5_Guide/Regular_Expressions

With these techniques down, you are ready to move on to working with forms in
JavaScript and working on the validation of form contents.

www.regular-expressions.info/
www.regular-expressions.info/javascript.html
https://developer.mozilla.org/en/Core_JavaScript_1.5_Guide/Regular_Expressions

 Chapter 13: Handling Strings 373

 Chapter 13 Self Test
 1. The __________ object provides properties and methods to get information about strings or

to modify strings.

 2. What are the two ways in which you created String objects?

 A Creating an instance of the String object and creating a string literal

 B Creating an instance of the Array object and creating a string literal

 C Creating a numeric variable and creating a numeric object

 D Creating a string and adding numbers

 3. You can create a string __________ by assigning a string value to a variable.

 4. A regular text string is able to use the String object’s methods because:

 A It is already a String object

 B It can use other methods as well, so it can use the methods of the String object

 C JavaScript takes the string literal and turns it into a temporary String object

 D The String object uses the string literal as-is

 5. Which property of the String object can you use with both String objects and string literals?

 A prototype

 B constructor

 C length

 D color

 6. The __________ property returns the length of a string.

 7. Which of the following correctly creates a string literal?

 A var the_text= “Look at me!;

 B var the_text= “Look at me!”;

 C var the_text= Look at me!;

 D var the_text= new String(“Look at me!”);

 8. Which method of the String object can you use to find which character is at a given position
in a string?

 A indexOf()

 B charAt()

✓

 374 JavaScript: A Beginner’s Guide

 C charIsAt()

 D indexOfThePosition()

 9. The __________ method adds <big> and </big> tags around a string value.

 10. The concat() method __________ two or more strings together and returns the new
combined string value.

 11. Which one of the following statements is true?

 A The charAt() method returns a numeric value that is the position of a character sent as
a parameter.

 B The split() method creates a new string by removing a portion of the string and
returning the string minus the portion removed.

 C The length property allows you to add longer properties and methods to the String object.

 D The indexOf() method returns a numeric value that is the position of a character sent as
a parameter, but only the position of the first occurrence of that character.

 12. The __________ method adds <i> and </i> tags around a string value.

 13. The __________ method returns the string literal value of a String object.

 14. To replace information in a string, you can use regular expressions and the method of the
String object.

 15. The __________ method compares a regular expression and a string to see whether
they match.

375

Chapter 14
JavaScript and Forms

 376 JavaScript: A Beginner’s Guide

Key Skills & Concepts

● Accessing Forms

● Using the Properties and Methods of the Form Object

● Ensuring the Accessibility of Forms

● Validating Forms

● Using Forms for Navigation

When you use JavaScript to access forms, you can create new scripts for your Web pages.
This chapter begins by explaining how to access a form with JavaScript. Then you’ll

learn about the various properties and methods to use with forms and form elements. You’ll
also learn about forms and accessibility, how to validate form elements, and how to use
<select></select> elements as navigational tools.

Accessing Forms
Each time you add a set of <form> and </form> tags to an HTML document, a form object
is created. To access one of the forms using JavaScript, you can use any one of the following
options:

● Use the forms array of the document object

● Name the form in the opening form tag and use that name to access the form

● Give the form an id in the opening form tag and access it using the document.getElementById()
method

Using the forms Array
The forms array allows you to access a form using an index number in the array. Each set of
<form> and </form> tags on the page will create an additional element in the forms array, in
the order in which they appear in the document. Thus, you can reference the first form in a
document like this:

document.forms[0]

As you will recall, arrays begin counting at 0, so the previous example will access the first
form in the document. If you want to access the second form, you could use the following:

document.forms[1]

 Chapter 14: JavaScript and Forms 377

This will work for the rest of the forms on the page in the same way. Just remember to
begin counting at 0 rather than 1 to access the correct form.

Accessing the form doesn’t do anything on its own. The form that you access is an object.
To use it, you need a property or method of the object. The properties and methods of the form
object are listed in a later section, “Using the Properties and Methods of the Form Object,” but
for now, take a look at the length property to see what it does.

A Property Value
The examples in this section use the form object’s length property. This property allows you to
find out how many elements exist (such as input boxes, select boxes, radio buttons, and others)
in an HTML form. For example, take a look at this code:

<body>
<form>
Name: <input type="text" />
E-mail: <input type="text" />
<input type="submit" value="Submit" />
</form>
</body>

The code creates a short form that contains three elements: two text boxes and the submit
button. Because it’s the only form on the page, it will be the first form, allowing you to access
it using document.forms[0]. To use the length property, add it to the end like this:

document.forms[0].length

Using the preceding code, you can create a short script to tell the viewer how many elements
are in the form. (You wouldn’t typically use the length property this way, but it’s good for an
example.) The code that follows will write the information on the page after the form:

<body>
<form>
Name: <input type="text" />

E-mail: <input type="text" />

<input type="submit" value="Submit" />
</form>
<p>
<script type="text/javascript">
document.write("The form has "+document.forms[0].length+" elements.");
</script>
</p>
</body>

This code informs the viewer that the form has three elements. Figure 14-1 shows this script’s
results when run in a browser.

The first element is this text box

The second element is this text box

The third element is this submit button

The elements of the form are here

The number of elements in the
form is printed on the page

 378 JavaScript: A Beginner’s Guide

Covering Two Length Properties
If you want to try to show the number of elements in the forms on a page when there is more
than one form, you can use a more complex script that prints a message for each form on the
page. Recall that because forms are an array, you can find the length of the array.

The length of the array is the number of forms on the page (much like the length property
of a particular form is the number of elements in the form). To find the number of forms on
the page rather than the length of a form, remember not to specify a form by leaving off the
brackets and the index number, as in the following example:

document.forms.length

This syntax finds the number of forms on the page. Thus, you must remember this:

● document.forms.length finds the number of forms on the page.

● document.forms[x].length finds the number of elements in a specific form on the page,
where x is the index number of the form to be accessed.

This syntax might look a bit confusing, but just remember that one length property is for the
array in general, while the other length property is used on a specific form.

CAUTION
Remember the difference between document.forms.length and document.forms[x]
.length. The former finds the number of forms on the page, while the latter finds the
number of elements in a specific form (by replacing x with a number).

Figure 14-1 The number of elements in the form is displayed to the viewer

 Chapter 14: JavaScript and Forms 379

The following script uses both of the length properties and a loop to cycle through each
form. The code displays the number of elements in each form on the page. First, the HTML
code (save as lengths.html):

<body>
<h1>Form Lengths</h1>

<h2>Form 1</h2>
<form>
Name: <input type="text" />

E-mail: <input type="text" />

<input type="submit" value="Submit" />
</form>

<h2>Form 2</h2>
<form>
Favorite Color: <input type="text" />

Favorite Food: <input type="text" />

<input type="reset" value="Reset" />
<input type="submit" value="Submit" />
</form>

<h2>Results</h2>
<script type="text/javascript" src="lengths.js"></script>

</body>

Next, the JavaScript code (save as lengths.js):

for(var count=0;count<document.forms.length;count++) {
 var formnum = count+1;
 document.write("Form "+formnum+" has "+document.forms[count].length);
 document.write(" elements.
");
}

The code creates two forms in the HTML document. The script then opens a loop
beginning at 0 (where arrays begin counting) and ending before it gets to the value of
document.forms.length, which is the number of forms on the page. Because there are two
forms (which will make 2 the value of document.forms.length), the count runs from 0 to 1 and
then stops. The count allows you to access the forms array at positions 0 and 1, which will turn
out to be Form 1 and Form 2 in the HTML code.

The formnum variable has the value of the position number in the array plus one, which
is the number of the form as seen in the HTML code. The script then writes the number of
elements in each form on the page using the document.write() statements.

The elements of the first form

The elements of the second form

The loop to cycle through all the forms on the page begins

A variable is created to hold the form
number (one more than its index number)

The results are written on the page

 380 JavaScript: A Beginner’s Guide

The forms array is used with the value of the count variable as the index number, which
finds the number of elements in the specified form each time through the loop. Figure 14-2
shows the results of this code when run in a browser.

Using Form Names
Using form names allows you to name the forms on the page that you want to access later.
This option can help eliminate any confusion between document.forms.length and document
.forms[x].length because you won’t need to use the latter unless you’re trying to loop through
each element in each form on the page.

To use a form name, you must add a name=“yourname” attribute to the opening form tag
on the form you want to access. Replace yourname with a name you want to use for the form,
as in the following code:

<form name="info_form">
Name: <input type="text" />

<input type="submit" />
</form>

Figure 14-2 The number of elements in each form is displayed

 Chapter 14: JavaScript and Forms 381

The name of the form is now info_form, and you can use this name to access the form in
your script.

The name of the form allows it to become an instance of the form object that you can
access through its name. To use JavaScript to access a form that uses a form name, you can use
the syntax shown here:

document.yourname

Replace yourname with the name given to the form in the name=“yourname” attribute in its
opening form tag. Thus, if you wanted to write a script to find the number of elements in
a named form, you could use the following code:

<body>
<form name="info_form">
Name: <input type="text" />

<input type="submit" />
</form>
<p>
<script type="text/javascript">
 document.write("The form has "+document.info_form.length+" elements.");
</script>
</p>
</body>

Notice how the form is accessed in the document.write() statement. Instead of the forms array,
the name of the form is in its place. It can now access the properties of the form object and
does so by accessing the length property.

Using an ID
The third way to access a form is to use an id attribute and to then use document.getElementById()
to access the form element. This is often the clearest way to access a form and its elements,
because you can access each element by using its individual id, whereas the previous two
access methods require you to know which array index the form is at or the form name and the
element’s name.

If you wanted to write the script from the previous section using the id method, you could
use the following code:

<body>
<form id="info_form">
Name: <input type="text" />

<input type="submit" />
</form>
<p>
<script type="text/javascript">
 var f_length = document.getElementById("info_form").length;
 document.write("The form has "+f_length+" elements.");
</script>
</p>
</body>

The form is given a name

The form is given an id

The number of elements in the
named form is written on the page

The number of elements in the
named form is written on the page

 382 JavaScript: A Beginner’s Guide

Since you are familiar with using document.getElementById() from previous chapters, this
should be a straightforward method for you.

The method you use to access a form and its elements will depend on the types of scripts
you are writing. If you are using multiple forms on a page, then the forms array can be a handy
way to cycle through each form. If you are trying to get as much backward compatibility
with older browsers as possible, using the name method may be the way to go. On the other
hand, trying to validate in XHTML 1.0 strict will require you to use an id to name each form
element, so using the id method would be more appropriate in that case.

Using the Properties and
Methods of the Form Object

The JavaScript form object will help you when you need to access certain elements or
attributes of the form in a script. The form object has only a few properties and methods. The
properties are described first.

Properties
The form object’s properties provide information you might need when working with forms in
your scripts. Table 14-1 lists the properties of the form object and their values.

Most of these properties just hold values corresponding to the various attributes in an
HTML form tag. A few of them have different types of values, though, as explained next.

The action Property
This property allows you to access the value of the action=“url” attribute in the opening
form tag. This attribute is used to send the form to a server-side script for processing (such

Property Value

action The value of the action attribute in the HTML form tag

elements An array that includes an array element for each form element in an HTML form

encoding The value of the enctype attribute, which varies with different browsers

length The value of the total number of elements in an HTML form

method The value of the method attribute in an HTML form tag

name The value of the name attribute in an HTML form tag

target The value of the target attribute in an HTML form tag

Table 14-1 Properties of the Form Object

 Chapter 14: JavaScript and Forms 383

as a Perl or PHP script). The following example shows how to access the property with
a named form:

<body>
<form name="info_form" action="http://someplace.com/php/form.php">
Name: <input type="text" />

<input type="submit" />
</form>
<p>
<script type="text/javascript">
 document.write("The form goes to "+document.info_form.action);
</script>
</p>
</body>

This script writes the URL on the page given in the action attribute. Figure 14-3 shows the
result of this script when run in a browser.

The elements Property (Array)
The elements property is an array that allows you to access each element within a specific
form in the same order it appears in the code, starting from 0. It works much like the forms
array but has an entry for each element in a given form.

To use the elements array to access an element in a form, use the index number for the
element you want to access. For instance, the following form has two elements:

<form name="info_form">
Name: <input type="text" />

<input type="submit" />
</form>

An action attribute is defined

The value of the action property
is written on the page

Figure 14-3 The value of the action attribute in the form is printed on the page

 384 JavaScript: A Beginner’s Guide

To access the first element (the text box), you can use the syntax shown here:

document.info_form.elements[0]

Alternatively, if you want to use the forms array (assume this is the first form on the page),
you could use this syntax:

document.forms[0].elements[0]

Yet another option to access the text box is to name it (like with the form) and access it
using its name. You can do this with each element, as well as the form itself; you can choose
which method is best for accessing a form and its elements in each situation.

The following code gives the form and the text box a name, and allows you to access them
using those names:

<form name="info_form">
Name: <input type="text" name="yourname">

<input type="submit">
</form>

In this case, you could access the text box using the form name and the text box name, as in
the syntax shown here:

document.info_form.yourname

Also, you can of course use the id method:

<form>
Name: <input type="text" id="yourname">

<input type="submit">
</form>

Then, you can access the input element using document.getElementById():

document.getElementByID("yourname");

To create scripts that use the elements of a form, you must be able to access a property
for a form element. Each form element is an instance of an object with its own properties and
methods, as shown in Table 14-2.

The form elements all have their own selection of properties and methods, but many of
them are used with most or all of the form elements. The following sections look in more
detail at the properties and methods listed in Table 14-2 and how they are used with the
form elements.

The checked Property
This property is used with check boxes and radio buttons. It has a Boolean value, which is true
if the box or button is checked and false if it isn’t. For instance, use the following code to try it
out with a check box:

 Chapter 14: JavaScript and Forms 385

<body>
<form>
Check box to say Yes: <input type="checkbox" id="yes_no">

<input type="button" value= "See the Answer" onclick="is_it_checked();" />
</form>
<script type="text/javascript">
 function is_it_checked() {
 var y_n = document.getElementById("yes_no");
 if (y_n.checked) {
 window.alert("Yes! The box is checked!");
 }
 else {
 window.alert("No, the box is not checked!");
 }
}
</script>
</body>

The HTML body has the form with a check box with the id of yes_no. A button will call the
function is_it_checked() when it is clicked. The function then checks whether the check box is
currently checked using an if/else statement. The if condition uses a shortcut that allows you to
shorten it from

if (y_n.checked==true)

to this:

if (y_n.checked)

Element Type Object Name Properties Methods

Button button form, name, type, value blur(), click(), focus()

Check box checkbox checked, defaultChecked, form, name,
type, value

blur(), click(), focus()

Hidden field hidden form, name, type, value None

Radio button radio checked, defaultChecked, form, name,
type, value

blur(), click(), focus()

Reset button reset form, name, type, value blur(), click(), focus()

Select box select form, name, options, selectedIndex, type blur(), focus()

Submit button submit form, name, type, value blur(), click(), focus()

Text box text defaultValue, form, name, type, value blur(), focus(), select()

Text area textarea defaultValue, form, name, type, value blur(), focus(), select()

Table 14-2 Form Elements with Their Objects and Methods

The check box is given an id

The button starts the function to
check the state of the check box

The condition of the check box is
checked using the checked property

 386 JavaScript: A Beginner’s Guide

The checked property will return true or false without needing to test the value of the checked
property against anything. The checked property already has a value, so the value doesn’t need
to be compared to anything (unless you prefer to do it that way, which is also okay).

The defaultChecked Property
This property is also a Boolean value of true or false. The value depends on whether the
check box or radio button has the checked attribute in its HTML (which sets the element to be
checked by default on the page). If the element has the checked attribute, the value is true. If
not, the value is false.

For instance, the following HTML code uses the checked attribute:

<form>
Do you want us to send you e-mail updates and offers?

Yes <input type="checkbox" id="yes" checked="checked" />
No <input type="checkbox" id="no" />
</form>

Because the first check box has the checked attribute set to checked, the checked property for
that element would return true. For the second check box element, the property would return
false.

The defaultValue Property
You use this property with text boxes and text areas. It holds the value of the default value
set in the value attribute of the element’s tag. This capability can be useful if you set a default
value in a text box, the user deletes it, and then the user decides it would be nice to have the
default value back. You could code a button to return that value if clicked by the viewer, as
shown in the following code:

<body>
<form>
Favorite URL:

<input type="text" id="favurl" value="http://www.yahoo.com">

<input type="button" value="Reset Default" onclick="back_to_default();">
</form>
<script type="text/javascript">
 function back_to_default() {
 var url_box = document.getElementById("favurl");
 url_box.value = url_box.defaultValue;
 }
</script>
</body>

In the HTML code, the value attribute in the input tag for the text box is set to http://www
.yahoo.com. This gives it a default value. When the function is called, it assigns this default
value back to the text box by changing its current value (url_box.value) to the default value
(url_box.defaultValue).

The button calls the function
that resets the default value

The text box is assigned a default value

The current value of the check box is
changed back to the default value

http://www.yahoo.com
http://www.yahoo.com

 Chapter 14: JavaScript and Forms 387

NOTE
This technique is useful if you desire to switch specific values back to their defaults. If
you want to change everything back to default values, you can simply use a reset button
in your HTML code (that is, <input type=“reset” value=“Reset” />).

The form Property
This property is often used with the keyword “this” to refer to the form that contains the
element that uses it. For instance, if you want to change the value of a text box by clicking a
button, you could refer to the form by using this.form rather than needing the name or id of
the form:

<form>
Favorite URL:

<input type="text" name="favurl" value=http://www.yahoo.com />

<input type="button" value="Change"
 onclick="this.form.favurl.value='http://www.lycos.com';" />
</form>

This code changes the current value of the text box to http://www.lycos.com when the button
is clicked. Using this.form.favurl.value allows you to access the same form from an element
within it without having to go back and use a form name or id, which is a bit longer.

The name Property
This property holds the value of the name attribute of an element. For instance, the following
code prints the value of the name of the first element (the text box) on the page:

<body>
<form name="info_form">
Name: <input type="text" name="yourname" />

<input type="submit" value="Submit" />
</form>
<p>
<script type="text/javascript">
 document.write("The first element is "+document.info_form.
elements[0].name);
</script>
</p>
</body>

This is a handy way to find an element name without having to search the code for it.

The options Property (Array)
The options property is an array that contains an element for each option listed in a select box
in a form. The index numbers count from 0, and each option is placed in the array in the order
in which it is written in the HTML code. The following code shows how you can access the

http://www.lycos.com

 388 JavaScript: A Beginner’s Guide

value of an option (this is the value in the value attribute of the option tag, not the content of
the tag) and write it on the page:

<body>
<form>
Fruits:
<select id="optlist">
<option selected="selected" value="orange">Orange</option>
<option value="apple">Apple</option>
<option value="pear">Pear</option>
</select>
</form>
<p>
<script type="text/javascript">
 var fbox = document.getElementById("optlist");
 document.write("The second option is ");
 document.write(fbox.options[1].value);
</script>
</body>

Figure 14-4 shows the results of this script when run in a browser. Notice that the value
printed is the value contained in the value attribute of the option tag (all lowercase) rather than
the content of the tag (first letter capitalized).

The selectedIndex Property This property holds the value of the index number of the option
(in the options array just discussed) that the viewer has selected. If the first option is selected,
the value is 0. If the second option is selected, the value is 1. This property is discussed in
more detail when it is used for a navigation script later in this chapter.

The first option

The second option

The third option

The value of the second
option is written on the page

Figure 14-4 The value of the second option is written on the page

 Chapter 14: JavaScript and Forms 389

The type Property
This property holds the value of the type property for a form element, such as type=“text” or
type=“button”. The value of the type attribute for these is text and button, respectively.

The value Property
This property holds the current value of an element. For instance, a text box may have no
default value; but when the viewer inputs information into the box, the text box has a current
value. If nothing is in the box, the current value would be an empty string. (You used this
property for some scripts in previous chapters.)

You will use this property frequently for information, validation, and navigation with
forms. You’ll see it used a lot more throughout this chapter.

The blur() Method
This method allows you to create a blur event on an element in your code. For example, if you
want to keep your default value in a text box from being adjusted by the viewer, you could use
the blur() method to remove focus from an element if it receives focus from the viewer. An
example of this is shown in the following code:

<body>
<form>
Your Favorite Food
<input type="text" name="fav_food" value="Pizza"
 onfocus="this.form.fav_food.blur();" />
</form>
</body>

Clicking the text box gives it focus, but the onfocus event handler catches the focus on the
text box and then uses the blur() method on the element to remove focus from it. Of course,
you could also use this script with no default value to create a text box that can’t be filled out
because it can’t receive focus. In either case, this script is overridden if the viewer turns off
JavaScript in the browser and thus is not recommended as a protection from the user filling
in something in a field. Such things can be handled via input validation on the client side and
server side.

The click() Method
This method allows you to create a click event on a button in your code. However, a click
created this way doesn’t activate the onclick event handler if it is used in the button. Thus, the
click() method is most useful for activating buttons such as submit and reset buttons, which
don’t need an onclick event handler to be able to work.

For instance, a reset button will reset a form when clicked. If you want to reset a form
when a field loses focus (and really irritate the viewer), you could use the following code:

<body>
<form>
Your Favorite Food
<input type="text" name="fav_food" onblur="this.form.annoy.click();"

 390 JavaScript: A Beginner’s Guide

/>

Drink <input type="text" />

<input type="reset" name="annoy" value="Reset Form">
</form>
</body>

This code uses the onblur() event to cause the button named “annoy” (the reset button) to be
called to action when the viewer removes focus from the first text box.

The focus() Method
The focus() method lets you create a focus event in your code so that you can bring a certain
form element into focus for the viewer.

For example, you might want to give focus to the first form element on a page (usually a
text box) as soon as the page loads so that the viewer doesn’t have to click the element to bring
it into focus and begin typing. The following code shows how you can do this:

<body>
<form>
Your Favorite Food
<input type="text" id="fav_food" />

Drink <input type="text" />
</form>
<script type="text/javascript">
 var f_box = document.getElementById("fav_food");
 f_box.focus();
</script>
</body>

The script is loaded after the form and its elements exist. It then uses the focus() method to
give focus to the first text box for the viewer.

The select() Method
This method allows you to automatically select (highlight) the contents of a text box or a text
area for the viewer. This is useful if you have set a default value for the element and would like
the viewer to be able to quickly delete the value to type a new one, or if you want to make it
easy for the viewer to copy and paste the contents of the element.

The following code selects the text in a text area when the viewer gives it focus, making it
possible for the viewer to quickly delete the text or to easily copy it to the clipboard:

<body>
<form>
<textarea name="sometext" onfocus="this.form.sometext.select();">
This text is the default text for the text
 area and is selected when the text area is given focus by the viewer.
</textarea>
</form>
</body>

 Chapter 14: JavaScript and Forms 391

The onfocus event handler causes the call to the method to be executed when the viewer
clicks inside the text area. All of the default text within the <textarea> and </textarea> tags is
selected.

That’s the end of the properties and methods of the form elements. It’s time to return to the
properties of the form object.

The encoding Property
This property often holds the value of the enctype attribute of a form tag. However, the results
can be different for each browser.

The length Property
The length property holds the number of elements in a given form on a page. This chapter has
already covered this property pretty extensively, so there’s no need to discuss it again here.

The method Property
This property holds the value contained in the method attribute of a form tag. Thus, if you’re
sending the form to the server to be processed, you might use something similar to the
following code:

<form name="f1" method="post" action= "http://site.com/cgi-bin/form.cgi">
<!-- form contents here -->
</form>

The value of the method property for this form would be post because it’s within the method
attribute of the form.

The name Property
This property holds the value of the form’s name, which is given to it in the name attribute of
the form tag. You might have some code like this:

<form name="cool_form">
<!-- form contents here -->
</form>

Here, the value of the name property is cool_form, because it’s the value inside the name
attribute of the form.

The target Property
This property holds the value given in the target property in a form tag. For instance, you
might have the following code:

<form name="cool_form" target="place" action="program.cgi">
<!-- form contents here -->
</form>

Here, the value of the target property is place, because it’s the value inside the target attribute
of the form.

 392 JavaScript: A Beginner’s Guide

Methods
Now take a look at the form object’s methods. The form object has only two methods, reset()
and submit(), which are described next.

The reset() Method
This method enables you to reset a form using your script, allowing you to reset the form on
any event you like. So, if you want to reset a form after the viewer removes focus from an
element, you could use the following:

<body>
<form>
Your Favorite Food
<input type="text" name="fav_food" onblur="this.form.reset();" />

Drink <input type="text" />

<input type="reset" value="Reset Form" />
<input type="submit" value="Submit Form" />
</form>
</body>

The submit() Method
This method allows you to submit a form without the viewer clicking the submit button. The
following code shows how to do this when the viewer removes focus from an element (much
the same way as with the reset() method):

<body>
<form action="http://site.com/php/form.php">
Your Favorite Food
<input type="text" name="fav_food" onblur="this.form.submit();" />

Drink <input type="text" />

<input type="submit" value="Submit Form" />
</form>
</body>

Ensuring the Accessibility of Forms
Ensuring that your forms are accessible to viewers can be somewhat challenging because your
preferred layout might not be interpreted properly by an assistive technology (such as Jaws
or Homepage Reader). There are several things you can do to help ensure that most of your
viewers can access and use your forms. You can place elements and their labels in the expected
order, use <label></label> tags, use <fieldset></fieldset> tags, and be sure not to assume the
user has client-side scripting (such as JavaScript) enabled.

The form is reset if this field loses focus

The form is submitted
if this field loses focus

 Chapter 14: JavaScript and Forms 393

Using Proper Element and Label Order
In your HTML code, the order of your label text and form elements can help assistive
technology in reading the form. For instance, consider the following input fields:

<input type="text" name="yourname" id="yourname" /> Name

<input type="text" name="zip_code" id="zip_code" /> Zip Code

Here, an assistive technology looks for label text to appear before the form element. Since
the first input element does not have any label text before it, the viewer is simply prompted
for input, with no indication of what information to enter. Afterward, the label text “Name” is
associated with the zip_code text box, which can cause the viewer to enter unexpected input.

To correct this, you can simply move the label text and place it before the form element, as
in the following code:

Name <input type="text" name="yourname" id="yourname" />

Zip Code <input type="text" name="zip_code" id="zip_code" />

Now, the assistive technology likely will pick up the form label and allow the user to enter
the expected information. Using both the name and id attributes also helps, because various
assistive technologies will pick these up as well.

This works for text boxes, text areas, and select boxes as well. However, when dealing
with check boxes and radio buttons, many assistive technologies expect the element
first, followed by the descriptive label. Thus, these should be switched around when
being used.

When dealing with buttons (such as submit, reset, or created buttons), be sure to use the
value attribute to describe what the button does, as that is what assistive technologies will
likely expect.

Using <label></label> Tags
Using label tags helps you to further specify which label text belongs with which form
element. Here is an example:

<label for="yourname">Name</label>
<input type="text" name="yourname" id="yourname" />

Here, you assign the for attribute of the opening label tag the value of the id attribute for the
form element that will use the label text contained within the <label> and </label> tags. In the
preceding example, the for attribute contains yourname, which links the text to the element
with the id of yourname in the HTML code.

Using <fieldset></fieldset> Tags
Using a fieldset can be helpful when dealing with radio buttons and check boxes in order to
group them together into a logical set. Using a legend tag to label the options to choose from

 394 JavaScript: A Beginner’s Guide

allows the user to know what is expected to be selected. The following code uses a fieldset to
group together a group of radio buttons used to select a type of fruit:

<fieldset>
<legend>Select a Fruit:</legend>
<input type="radio" name="fruits" id="fruits1" value="Orange" />
<label for="fruits1">Orange</label>
<input type="radio" name="fruits" id="fruits2" value="Banana" />
<label for="fruits2">Banana</label>
<input type="radio" name="fruits" id="fruits3" value="Apple" />
<label for="fruits3">Apple</label>
</fieldset>

Here, you group all of the radio buttons within the <fieldset> and </fieldset> tags and use a
legend tag after the opening fieldset tag to give the group a label. Then, each element is labeled
normally within the fieldset (also using the label tags).

Not Assuming Client-Side Scripting
When initially coding a form, it’s best not to assume JavaScript or another client-side
technology will be available. If JavaScript is required to make the form usable, then a number
of users will not be able to use it because they will have JavaScript disabled for any number of
reasons, such as security.

The best practice is to allow the form to be sent to the server side (which will handle the
form and provide the most important validation routines) even if JavaScript is unavailable.
Code like the following wouldn’t be usable for those without JavaScript:

<input type="button" onclick="this.form.submit();" value="Submit Form" />

In this case, a JavaScript event handler and method are required to submit the form. It would
be better to use the traditional submit element to create a submit button.

If you are using some JavaScript validation, you could use code such as the following:

<form method="post" action="form.php" onsubmit="return check_form();">
<!-- form contents here -->
<input type="submit" name="submit" id="submit" value="Submit Form" />
</form>

This allows you to run the JavaScript function check_form() if JavaScript is available.
Otherwise, the onsubmit event handler will be ignored and the form will be submitted to the
server-side script for validation and handling. If JavaScript is available, that validation routine
can save a trip to the server side. If not, the server-side script will need do the work, but the
user will still be able to use the form as expected.

 Chapter 14: JavaScript and Forms 395

Validation
Validating JavaScript forms is extremely useful. For example, you can validate input before it
is submitted, to help reduce the number of forms with incomplete or inaccurate information.
Validation of form data prior to submission to, say, a Common Gateway Interface (CGI)
script, PHP script, or a Java servlet can save time and reduce load on the server. To begin with
validation, you will look at how to use the onsubmit event handler with the return statement as
well as learn some validation techniques.

onsubmit and the return Statement
To validate the contents of one or more elements in a form, you need to know when the viewer
tries to submit the form. When the viewer clicks the submit button, a submit event occurs,
which can be captured with the onsubmit event handler in the opening form tag.

Thus, the following form would be able to do something when the submit button is
clicked, before acting on its action attribute:

<form method="post" action="form.php" onsubmit="script">
<label for="yourname">Name:</label>
<input type="text" name="yourname" id="yourname" />

<input type="submit" name="submit" id="submit" value="Submit">
</form>

You would replace script here with some JavaScript to be executed when the submit button is
clicked. This is often a call to the function that will be run to test one or more of the form fields.

For the function to do its work, however, you must be sure the submit button is not able to
perform its default action if the viewer’s input doesn’t pass the validation. This means that you
need a return statement in the onsubmit event handler. You want this statement to return true if
the validation passes and to return false if the validation fails. Thus, you want an end result
to be either

onsubmit="return true;"

which allows the submission to continue normally, or

onsubmit="return false;"

which makes the submission void and thus does nothing.
For the technique in the preceding code to work with a function, the return statement in

the onsubmit event handler must call a function that returns a value of true or false. Thus, you
would get a statement like this:

onsubmit="return yourfunction();"

You would replace yourfunction with a real function name.

 396 JavaScript: A Beginner’s Guide

The key here is that the function must return a value of true or false so that the previous
statement will evaluate to what you need (return true; or return false;). The function itself can
do anything else, but it needs to have a return statement that sends back a value of true or false
to the event handler.

So, you could perform a validation on a form to be sure a text box is not left completely
blank. The following code shows how to do this using a function with the onsubmit event
handler. First, the HTML code (save as val_form.html):

<body>
<form method="post" action="form.php" onsubmit="return check_it()">
<label for="yourname">Name:</label>
<input type="text" name="yourname" id="yourname" />

<input type="submit" name="submit" id="submit" value="Submit">
</form><script type="text/javascript" src="val_form.js"></script>
</body>

Next, the JavaScript code (save as val_form.js):

function check_it() {
 var thename = document.getElementById("yourname").value;
 if (thename.length < 1) {
 window.alert("Name field is blank, please try again.");
 return false;
 }
 else {
 return true;
 }
}

The function uses an if statement to check whether the text field has been left blank (using
the value of the text element’s length property). If so, an alert tells the viewer to try again
and the function returns false. Otherwise, the function will return true. If it returns true, the
submission continues. Otherwise, the form is not submitted and the viewer can try again by
entering the necessary information and clicking the submit button again. Keep in mind that the
check_it() function invalidates only a totally empty form field. You would need to make the
function more complex to eliminate submission of names such as a space, a pound (#) symbol,
and so on (which could be handled using regular expressions).

Techniques
For the most part, validation can be as simple or as complex as you need it to be for your
purposes. All you need to do is create your own custom functions to validate the form fields of
your choice based on the information needed.

 Chapter 14: JavaScript and Forms 397

For instance, the example in the preceding section checked for an empty text box in a
name field. However, for a Zip code, you could check whether the field contains five digits by
using a regular expression. If it does not, then you can send an alert telling the viewer the Zip
code is invalid and asking for it to be reentered. The following code shows a way to do this:

<body>
<form method="post" action="form.php" onsubmit="return check_it()">
<label for="zip_code">Zip Code:</label>
<input type="text" name="zip_code" id="zip_code" />

<input type="submit" name="submit" id="submit" value="Submit">
</form>
<script type="text/javascript">
 function check_it() {
 var zip = document.getElementById("zip_code").value;
 var tomatch = /^\d{5}$/;
 if (tomatch.test(zip)) {
 return true;
 }
 else {
 window.alert("An invalid zip code was entered");
 return false;
 }
 }
</script>
</body>

The code uses the regular expression to check for five digits. If anything other than five digits
is entered, then the function will return false. You can, of course, expand this to allow for the
extra four digits that are sometimes used to designate more precisely a specific area within
a Zip code. To do so, add another input field and require that it have four digits if a value is
entered in that second field.

You can make the validation as strict or as loose as you need it in your JavaScript. Keep in
mind, though, that at the application layer (your server-side script or program) you will need to
take extra care with your validation routines to ensure that bad and/or malicious data cannot be
submitted to your application.

TIP
One way to find validation scripts is to try checking some JavaScript sites on the Web.
A number of them have special functions that are made to validate different types of
data. This can save you some work if you can find a function to suit your purposes.

 398 JavaScript: A Beginner’s Guide

Try This 14-1

pr14_1.html
prjs14_1.js

Q: All of the elements like text areas and select boxes have too many properties and
methods to remember. Any suggestions?

A: A number of these properties and methods are used with all of the element types, while
only a few are more specific. As you continue to write scripts, you will start to know which
elements have which properties and methods, so it won’t be as confusing. If you notice
which properties and methods are used with each element, it will be easier to see when
there is one that is specific to a certain type of element.

Q: What types of input can I validate?

A: For the most part, you can validate anything you like in the manner you see fit. You can
validate dates, names, times, addresses, e-mail addresses, phone numbers, or anything else
you might need.

Q: Can I validate the selections in a select box or the text in a text area, or maybe some of
the other input types?

A: In some of these cases, you will already have your own values built into the elements. However,
if you can, you should still validate those values against other information to be sure the
information you receive matches your needs. You just need to adjust your function to perform
the needed tasks based on the different types of input devices (text areas, radio buttons, and so
on). For instance, the next section covers select boxes as they relate to navigation. However,
some of the information (such as the selectedIndex property) is useful for validation as well.

Q: I don’t use server-side scripts, but I use JavaScript for fun and want to validate the
information. Do I really need to add a server-side script?

A: The need for a server-side script depends on your purposes. If you have a form that needs
to have information saved, sent by e-mail, or sent to a database, then you need a server-side
application.

Ask the Expert

 Request a Number
In this project, you create a script for basic validation of a phone number entered
by the viewer, such as 222-222-2222.

 Chapter 14: JavaScript and Forms 399

Step by Step
 1. Create an HTML page with a form and a text box with the label text “Phone Number

(XXX-XXX-XXXX):”. Make sure the form has a submit button and calls the JavaScript
function check_it() to validate the input. Insert the necessary script tags after the form to
call an external JavaScript file named prjs14_1.js. Save the HTML file as pr14_1.html.

 2. Create an external JavaScript file and save it as prjs14_1.js. Use it for step 3.

 3. Use a regular expression to ensure that the number entered into the text box is in the format
XXX-XXX-XXXX. If it is, send an alert saying “Phone number validated.” Otherwise,
send an alert saying “Invalid phone number entered. Valid format is XXX-XXX-XXXX.”

 4. Save the JavaScript file and open the HTML file in your browser. See if it works by typing
various values into the text box and submitting the form.

Try This Summary
In this project, you used your knowledge of JavaScript and forms to create a script to validate
a form. The script validates a time entry by the viewer to see if it is a valid phone number by a
particular set of standards.

Using Forms for Navigation
By using JavaScript with forms, you can create some alternatives to the regular text link and
image link navigation if you wish. This section discusses how to create navigation for your site
using select boxes.

This type of navigation allows the viewer to choose a destination from a list in a select box
and then go to the new location either by clicking a button or by changing the value. To get
started, you will create a navigation select box that uses the viewer’s click of a button to go to
the new location.

Clicking a Button
Creating a select box is pretty straightforward. First, you set up the code for the select box like
this (save the HTML as select.html):

<form>
<label for="s1">Select Page:</label>
<select name="s1" id="s1">
<option selected="selected" value="page1.html">Page 1</option>
<option value="page2.html">Page 2</option>
<option value="page3.html">Page 3</option>
</select>
</form>

 400 JavaScript: A Beginner’s Guide

Note that the select box is given an id of s1. Also, notice the value attributes are given
URL values (local URLs here). These are the destinations you want the viewer to go to when
he or she chooses the specified option from the list and clicks the button. Finally, the text to be
shown for each option is added inside the <option> and </option> tags.

Next, code the script that will set this in motion when a button is clicked. The button needs
to perform the action of transferring the viewer to the new destination. To do this, the script
must be able to access the option that has been selected in the select box and get its value (the
URL). Then, the browser needs to take the viewer to the new URL.

To access the option that has been selected, you must work your way down to the options
array for the select box. Recall that the select box was given an id of s1, so you can set up
a variable to hold the select box element:

var s = document.getElementById("s1");

Then, to get to the options array for this select box, you can use the following syntax:

s.options[]

The question is, which option do you want to get from the array? You don’t want to guess
by just inserting an index number of choice; you want the index number of the option that has
been selected by the viewer. This is where the selectedIndex property of a select box becomes
useful. Recall that this holds the value of the index number of the option that has been
selected by the viewer. By using the value of this property as the index number in the options
array, you can access the correct option when the viewer makes a selection. The following is
the syntax to use:

s.options[s.selectedIndex]

You now have the correct option from the list. Next, you must get its value so that the URL
in the value attribute is retrieved. To do this, you just need to add the value property on the end
of the long line, like this:

s.options[s.selectedIndex].value

This is now the value you want, which is the URL of the selection made by the viewer.
Next, you must get this syntax into a working form. This value is the URL where you want

the browser to go when a button is clicked. Thus, you need to add a submit button and then
use the onsubmit event handler to change the window.location property to this value when it is
clicked. The following code creates a button to do this:

<body>
<form onsubmit="return go_there();">
<label for="s1">Select Page:</label>

 Chapter 14: JavaScript and Forms 401

<select name="s1" id="s1">
<option selected="selected" value="page1.html">Page 1</option>
<option value="page2.html">Page 2</option>
<option value="page3.html">Page 3</option>
</select>
<input type="submit" name="go" id="go" value="Go!" />
</form>
<script type="text/javascript" src="select.js"></script>
</body>

This now tells the browser to run a JavaScript function named go_there() when this form is
submitted (by clicking the Go! button). It also calls an external JavaScript file named select.js,
which is where you will place the code that makes the change to the new URL:

function go_there() {
 s = document.getElementById("s1");
 window.location = s.options[s.selectedIndex].value;
 return false;
}

Notice how the selected value is used to change the window.location property to the new
URL. Returning false prevents the form from being submitted to the server so that the client-
side script can handle it. The viewer should be able to navigate by making a selection from the
box and clicking the Go! button. Figure 14-5 shows the initial drop-down box when viewed in
a browser.

Figure 14-6 shows the result of selecting the option for Page 2 and clicking the Go! button.
A new page is shown in the browser as a result.

Figure 14-5 The drop-down box before a selection is made and the button is clicked

 402 JavaScript: A Beginner’s Guide

If you want to make this script more accessible, you can use a server-side script to back up
the JavaScript. You would write the code for the server-side script, add the method attribute,
and add the action attribute to the HTML code:

<body>
<form method="post" action="/php/select.php" onsubmit="return go_there();">
<label for="s1">Select Page:</label>
<select name="s1" id="s1">
<option selected="selected" value="page1.html">Page 1</option>
<option value="page2.html">Page 2</option>
<option value="page3.html">Page 3</option>
</select>
<input type="submit" name="go" id="go" value="Go!" />
</form>
<script type="text/javascript" src="select.js"></script>
</body>

Now, if the viewer does not have JavaScript available, the onsubmit attribute will be ignored,
but the action attribute will be used to handle the form. This will go to a script named select.php
in the php directory on the server (these are simply example file and directory names). The
server-side script can then do the work of sending the viewer to the new URL, allowing the
script to work even for those without JavaScript.

One more thing that should be noted is that this script will only work if the viewer’s browser
can handle the document.getElementById() method. If you anticipate that some of your users might
have older browsers, it may be a good idea to ensure that they use the server-side script in this case
(or you can add options for this to work using the forms array or using a form name and select box
name). To keep older browsers from running the JavaScript code, you could do the following:

function go_there() {
 if (document.getElementById && document.createTextNode) {
 s = document.getElementById("s1");

Figure 14-6 The page displayed after the selection is made and the button is clicked

 Chapter 14: JavaScript and Forms 403

Try This 14-2

pr14_2.html
prjs14_2.js

 window.location = s.options[s.selectedIndex].value;
 return false;
 }
 return true;
}

Now, the code will work only for those browsers that support getElementById() and
createTextNode() (this is added for browsers that support only getElementById() but don’t
support it quite the way one would expect). Otherwise, the script will return true and the
server-side script will be called.

No Button
To create a select box for navigation without a button, you would use the onchange event
handler. However, for accessibility reasons, this type of navigation is not recommended
because it not only makes it very difficult for those using assistive technology to select the
desired option, but also can be confusing in general as the viewer is taken immediately to the
selected destination once it is selected.

If you are using the script for leisure and do not need the script to be accessible, you can
find numerous versions of this type of navigation script on the Web.

 Build a Select Box Navigation Script
In this project, you build a navigational select box that will have five destinations
for the viewer to choose.

Step by Step
 1. Create an HTML document and add script tags so that the HTML file will call an external

JavaScript file named prjs14_2.js. Save the HTML file as pr14_2.html.

 2. Create a select box with a button for navigation. You can choose whichever destination sites
and descriptions you like. Name the select box s1. Save the HTML file.

 3. Create a JavaScript file and save it as prjs14_2.js. Use it for step 4.

 4. Add the code in this file so that the browser will open the selected URL when the button
is clicked.

 5. Save the JavaScript file and open the HTML file in your browser. Check to see whether the
navigation system works.

Try This Summary
In this project, you used your knowledge of JavaScript and forms to create a navigational system.

 404 JavaScript: A Beginner’s Guide

 Chapter 14 Self Test
 1. Each time you add a set of <form> and </form> tags to an HTML document, a(n) _______

object is created.

 2. The forms __________ allows you to access a form using an index number.

 3. Which of the following would access the fourth form on a page?

 A document.forms[4]

 B document.forms[3]

 C document.forms(4)

 D document.forms(3)

 4. Which of the following would find the number of elements in the third form on a page?

 A document.forms[2].length

 B document.forms[3].length

 C document.forms.length

 D document.forms(3).length

 5. Which of the following holds the value of the number of forms in a document?

 A document.forms[0].length

 B document.form.length

 C document.forms.length

 D document.forms[1].length

 6. Using form __________ allows you to name the forms on the page that you want to
access later.

 7. Which of the following accesses the value of an element named e1 in a form named f1?

 A document.f1.e1.value

 B document.e1.f1.value

 C document.f1.e2.value

 D document.forms1.e1.value

 8. The __________ property allows you to access the value of the action=“url” attribute in the
opening form tag.

 9. The __________ property is an array that allows you to access each element in a specific
form.

✓

 Chapter 14: JavaScript and Forms 405

 10. The options property is an array that contains an element for each __________ listed in a
select box in a form.

 11. The __________ method allows you to reset a form using your script.

 12. Which type of value should a function return when it is used to validate a form?

 A yes or no

 B true or false

 C maybe so

 D a floating-point number

 13. When the viewer clicks the submit button on a form, a submit event occurs and can be
captured with the __________ event handler.

 14. The __________ method allows you to submit a form without the viewer clicking the
submit button.

 15. What do you use to get the currently selected option in a select box?

 A The length property

 B The reset() method

 C The getSelected() method

 D The selectedIndex property

This page intentionally left blank

407

Chapter 15
JavaScript and Frames

 408 JavaScript: A Beginner’s Guide

Key Skills & Concepts

● An Introduction to Frames

● Accessing Frames

● Changing Frames

● Frame Navigation

Although using frames to create Web sites typically isn’t recommended, because of usability
and accessibility issues, occasionally they (especially inline frames) are the right choice

to achieve particular purposes. You can perform some helpful tasks with frames in JavaScript.
This chapter provides a basic overview of frames and then explains how you can access frames
from other frames. You’ll also learn how to change one frame from another frame, and then
you’ll use some fun frame navigation tricks. Finally, you’ll learn how to use variables across
frames to store and retrieve information.

An Introduction to Frames
The decision of whether or not to use frames on your Web site is up to you. It depends on
your navigational requirements and other Web site issues you might have. If you don’t know
anything about frames, learning some basic information will help you determine whether they
would be useful to you.

If you’re already comfortable using frames, you can skim this section or skip it entirely.
However, if you have little or no experience with frames, you should read this introduction
to frames thoroughly. Frames can get quite messy, especially when you add JavaScript to
the picture.

Purpose of Frames
Frames divide a window into two or more separate areas (a frameset), each containing
different content. This differs from tables in that the divisions in a frameset each contain a
separate Hypertext Markup Language (HTML) document, and you can change one of the
sections without affecting the other sections.

NOTE
Each frame shown on a Web page is actually a separate HTML document.

 Chapter 15: JavaScript and Frames 409

For example, Figure 15-1 shows a Web page with two frames. Each frame is actually
a separate HTML document. The HTML document that creates the frames uses a set of
<frameset> and </frameset> tags to create a frameset.

Frames have several applications. For instance, you can use them to create a site-wide
navigation system, or you can create a reference system where the table of contents is in one
frame and the corresponding content appears in another.

The Code Behind the Frames
The following code contains the frameset element. It puts together the number and structure
of the frames that will be shown when the document is opened.

<html>
<frameset cols="20%,80%">
<frame src="frame1.html"></frame>
<frame src="frame2.html"></frame>
</frameset>
<noframes>
Sorry, your browser does not support frames. Use the link
 below to go to the frameless version of the site.

Frameless Site
</noframes>
</html>

This code creates a basic frameset that produces a smaller frame on the left side of the
window and a larger frame on the right. Here’s how it works:

 1. The opening frameset tag tells the browser that a frameset is to begin. Notice that it replaces
the body tag used in a regular window.

Figure 15-1 A frameset containing two frames

The first frame and
its URL are set

The frameset begins, setting up
two frames from left to right

The second frame
and its URL are set

The frameset ends

 410 JavaScript: A Beginner’s Guide

 2. The cols attribute of the opening frameset tag tells the browser the window will be divided
into two columns (which move from left to right). The first column (left) is to take up
20 percent of the screen space, while the second column (right) is to take up 80 percent
of the screen space.

 3. The first frame tag creates the first frame on the page. The browser displays the frames from
left to right, top to bottom, in the order that they appear in the source code. Thus, this frame
is in the top-left portion of the page—which, in this case, is just the left side of the page.

 4. The src attribute tells the browser the URL of the HTML document to display as the
contents of the frame, which is actually what the viewer sees on the left side of the window.
In this case, the document is a file named frame1.html.

 5. The second frame tag does the same thing as the first, but the frame is the next one in order from
left to right and top to bottom. Again, because there are only two columns, this frame is just
on the right side of the window. The src attribute points to the URL of the HTML document
to be displayed in this frame. In this case, the document is a file named frame2.html.

 6. The </frameset> tag ends the frameset.

 7. The content between the <noframes> and </noframes> tags is displayed in browsers that
don’t support frames so that the viewer has something displayed on the screen. You can
place a link to a version of the site with no frames, or you can use any other HTML code
you wish. I used the text and the link to keep the section short for the example.

The document created from the previous code is the page you want to open in the browser
to display the frames. Save this document as frameset.html so you can use it once you add
some code for the documents used in the frames.

Once the frameset is created, you must create the documents that will fill in the frames.
First, create a document to be used for the left frame (frame1.html):

<html>
<body>
I am frame1.html, and I am on the left side!
</body>
</html>

This simple code tells you which document is being shown in which frame. (You can make the
code as complex as you wish.) Save this as frame1.html in the same directory as frameset.html.

Next, you must supply code for the other frame (frame2.html):

<html>
<body>
I am frame2.html, and I am on the right side!
</body>
</html>

Save this as frame2.html in the same directory as frameset.html and frame1.html.

 Chapter 15: JavaScript and Frames 411

Now, when you open frameset.html in your browser, it should display the window with
two frames, each containing the appropriate HTML document, as shown in Figure 15-2.

Frame Options
As you have seen, the opening frameset tag can take on the cols attribute to divide the window
into columns. In the same way, it can instead use the rows attribute to divide the page into
rows from top to bottom. Here is an example of code that creates a frameset with two rows:

<html>
<frameset rows="20%,80%">
<frame src="frame1.html"></frame>
<frame src="frame2.html"></frame>
</frameset>
<noframes>
Use the link below to go to the frameless version of the site.

Frameless Site
</noframes>
</html>

This time, the page is divided into two frames, one on top and the other. An example of what
this might look like if both frame1.html and frame2.html exist is shown in Figure 15-3.

Rows or Columns
If you prefer, the numbers used in the rows or cols attribute can be in pixels rather than
percentages. Also, you can use an asterisk (*) if you want a certain frame to take all of the
space remaining after other frames have been set. For example, look at this code:

<html>
<frameset rows="150,*">
<frame src="frame1.html"></frame>

Figure 15-2 A frameset with two frames, one in each column created by the frameset

This time the frames go from top to
bottom, since the rows attribute is used

The asterisk tells the second frame to take any
remaining space not used by the first frame

 412 JavaScript: A Beginner’s Guide

<frame src="frame2.html"></frame>
</frameset>
<noframes>
Use the link below to go to the frameless version of the site.

Frameless Site
</noframes>
</html>

This time, the first row (top) takes up 150 pixels, while the second row (bottom) takes the rest
of the remaining space in the window.

More Than Two Rows or Columns
Of course, you aren’t limited to only two rows or two columns. You can have as many rows or
columns as you like. For instance, if you want a frameset with three columns, you could use
this code:

<html>
<frameset cols="150,*,150">
<frame src="frame1.html"></frame>
<frame src="frame2.html"></frame>
<frame src="frame3.html"></frame>
</frameset>

Figure 15-3 A frameset based on rows instead of columns

The asterisk tells the middle frame to use any
remaining space not taken by the other frames

 Chapter 15: JavaScript and Frames 413

<noframes>
Use the link below to go to the frameless version of the site.

Frameless Site
</noframes>
</html>

Here, the left and right columns have a width of 150 pixels each. The column in the center
takes all of the remaining space in the window.

Nesting to Allow Both Rows and Columns
Finally, if you want to have a more complex frameset that includes both rows and columns,
you must nest one frameset within another. For instance, you may want a row that spans the
top portion of the page that is 100 pixels in height. Then, you might want to have two columns
below it: one on the left taking up 150 pixels and one on the right taking the remaining area.

To do this, you need to have a frameset that represents the rows (because the top row must
span the entire top portion of the page). Inside the bottom row, you need another frameset that
uses columns to divide the lower row into the two areas. The following code shows how this
nesting can be done:

<frameset rows="100,*">
 <frame src="frame1.html"></frame>
 <frameset cols="150,*">
 <frame src="frame2.html"></frame>
 <frame src="frame3.html"></frame>
 </frameset>
</frameset>
<noframes>
Use the link below to go to the frameless version of the site.

Frameless Site
</noframes>

Notice that in place of another frame tag for the frame in the second (bottom) row, a new
frameset is used, dividing the bottom row into two more frames. These frames run in columns
and go from left to right.

TIP
Be sure to close each <frameset> tag with a </frameset> tag. As with tables, forgetting
one of these can cause the frames to be displayed improperly or not at all.

Figure 15-4 shows an example of how this nested frameset appears in a browser (assuming
all the documents and files exist).

The main frameset begins

The frameset nested in the
bottom frame begins

The nested frameset ends
The main frameset ends

 414 JavaScript: A Beginner’s Guide

Accessing Frames
How do you access a frame in JavaScript? You can either use the frames array or name the
frame and use the frame name instead. To begin, take a look at how to access a frame using the
frames array.

The frames Array
You use the frames array to access frames based on their order in the source code. You will
access one frame from within another frame, so you must be able to find the frame you want
to access.

Recall that the frames array comes from the window object. Frames carry most of the same
properties and methods as regular windows, but you access them differently. For instance, take
a look at this code, which creates a frameset with two frames. Name it frameset1.html. (This
replaces the previous example.)

<html>
<frameset cols="60%,40%">
<frame src="frame1.html"></frame>
<frame src="frame2.html"></frame>
</frameset>
<noframes>
Use the link below to go to the frameless version of the site.

Frameless Site
</noframes>
</html>

Figure 15-4 A nested frameset allows both rows and columns to be used in a window

 Chapter 15: JavaScript and Frames 415

If you’re coding some script inside the first frame (frame1.html) and want to know the
value of the location property in the second frame (frame2.html) to display it for the viewer,
you must figure out how to access the second frame. Remember, you’re working inside a
frameset. You are working in the code for one of the documents that will be the content for
the first frame within the frameset. Thus, to access the other frame, you need to find a way
to get back to the main window and reference the frame. Recall from Chapter 10 that the
window object’s top property allows you to access the topmost window in a frameset (the main
window).

You can now use the frames array because you have access to that main window, which
contains the code for the frameset. The frames array contains an entry for each frame tag in the
code. The count starts at 0 and continues in the order that each frame tag appears in the source
code. Thus, to access the first frame in a frameset, you could use the following syntax:

top.frames[0]

Using the top property allows you to access the main window and the frameset code. Then,
frames[0] is used to access the first frame in the source code. So, if you’re coding within the
second frame and want to access the first frame, you would use this syntax:

top.frames[0]

Now, you can make the code in the second frame access the needed information in the first
frame for the viewer. The following code is for the first frame (frame1.html):

<body>
I am frame 1 and the other frame took information from me! How rude!
</body>

To complete this script, you could use the following code for frame2.html:

<body>
The first frame is from:

<script type="text/javascript">
 document.write(top.frames[0].location);
</script>
</body>

Now you can see the result by opening the main window (frameset1.html). The right frame
should tell you the location of the document used for the left frame. Figure 15-5 shows
how this may appear in a browser. (Your location value will probably be different from
the filename.)

The frames array is a good way to access unnamed frames or to access frames if you need
to loop through them. If you recall from Chapter 10, the length property of the frames array
provides the number of frames in a document. Thus, you could loop through the frames array
to print the location of each of the frames in one frame for your viewer to see. First, you will
need the document containing the frameset to be used.

The value of the location of the second
frame is printed on the page using the
frames array to access the information
in the frame

 416 JavaScript: A Beginner’s Guide

For this example, save this main window as frameset2.html. The code for this document is
shown here:

<html>
<frameset cols="20%,80%">
<frame src="frame1.html"></frame>
<frame src="frame2.html"></frame>
</frameset>
<noframes>
Use the link below to go to the frameless version of the site.

Frameless Site
</noframes>
</html>

This time, frame1.html will just have a brief statement:

<html>
<body>
I am frame 1!
</body>
</html>

Now, frame2.html is where the script and results will appear, and could be coded as
shown here:

<body>
<script type="text/javascript">
 for (var count=0; count<top.frames.length; count+=1) {
 var framenum = count+1;
 document.write("Frame "+framenum+" is from "+top.frames[count].location);
 document.write("
");
 }
</script>
</body>

Figure 15-5 The second frame shows information taken from the first frame

The loop begins, using the length
property to know when to quit

A new variable is created to number the frames

The results are printed on the page
using the frames array for access

 Chapter 15: JavaScript and Frames 417

As you’ve seen in previous scripts, the length property determines when the loop should
end. The framenum variable prints out the frame number beginning at 1 rather than its index
number in the array (which begins at 0). The frames array is then used in the document.write()
statement to print the value of the location property for each frame.

Figure 15-6 shows the results of this script when run in a browser (when frameset1.html is
opened). Again, your location values will probably differ from the filenames.

Using a Frame Name
Another way to access one frame from another is to use the name of the frame (much like the
way you used form names in the previous chapter). For example, this code gives each frame a
name by adding the name attribute to the frame tag (call this frameset3.html):

<html>
<frameset cols="50%,50%">
<frame src="frame1.html" name="left_side"></frame>
<frame src="frame2.html" name="right_side"></frame>
</frameset>
<noframes>
Use the link below to go to the frameless version of the site.

Frameless Site
</noframes>
</html>

You can now access one of the frames from the other using the frame name rather than the
frames array. Thus, if you want to access the second frame (right_side) from the first one, you
could use this syntax:

top.right_side

Figure 15-6 The location value for each frame is printed in one of the frames

 418 JavaScript: A Beginner’s Guide

In the same way, you could access the first frame from within the second frame with this
syntax:

top.left_side

Now you can make each frame tell the viewer the location of the other frame by coding
the frames with a short document.write() statement in each. The document for the first frame
(frame1.html) could be coded like this:

<body>
The second (right) frame is from:

<script type="text/javascript">
 document.write(top.right_side.location);
</script>
</body>

After that, frame2.html could be coded as follows:

<body>
The first (left) frame is from:

<script type="text/javascript">
 document.write(top.left_side.location);
</script>
</body>

Each frame now gives out information about the other one.

Changing Frames
To change the content of one frame from another frame, you can use the target attribute in
HTML for a single change. However, by using the location property in JavaScript, you can
change more than one frame at a time. The following sections cover both possibilities.

Change a Single Frame
In HTML, if you want to change one frame from within another, use the target attribute within
your link tag and give it the value of the name of the frame. For instance, if you want to
change the contents of a frame named right_side from another frame in the frameset, you could
create a link like this:

Next Page

This would open nextpage.html in the frame right_side rather than in the current frame (which
is the default for a link).

TIP
Be sure the target matches the frame name exactly. If it doesn’t match a frame name
or a predefined target, the page to be displayed will open in a new browser window
instead of in the frame or window you intended.

The name of the right frame is used to
print information from it in the left frame

The name of the left frame is used to print
information from it in the right frame

 Chapter 15: JavaScript and Frames 419

To perform the same task with JavaScript, you can use the frame name along with the
location property to make it work, as in the following syntax:

top.right_side.location="nextpage.html";

Here, right_side is the name of the frame to have its contents changed, and nextpage.html is
the page that appears in place of the original document. To code this into a link, you could use
the return false technique used in previous chapters:

New Page

On the other hand, you could also use a method that allows you to point the href attribute
of a link tag to perform JavaScript statements, as shown here:

New Page

Notice the addition of the word “javascript” in lowercase followed by a colon. After that, you
can use JavaScript statements as you would use them in an event handler.

The technique in the preceding code also eliminates the need to add the return false
statement to the code. Either method works (aside from the accessibility issues involved with
both of them since the links don’t work without JavaScript enabled… you could change this to
link to the file and use scripting to override it when JavaScript is available, but when changing
multiple frames you couldn’t make the single link change both frames without JavaScript).

Change Multiple Frames
To change more than one frame at a time, you can use JavaScript. Grab the basic frameset
again and save it as frameset4.html. Here’s the code:

<html>
<frameset cols="20%,80%">
<frame src="frame1.html" name="left_side"></frame>
<frame src="frame2.html" name="right_side"></frame>
</frameset>
<noframes>
Use the link below to go to the frameless version of the site.

Frameless Site
</noframes>
</html>

To change the contents of both frames, you need two additional HTML files so that the
two documents in the two frames can be changed to two new documents. Thus, you need
a document list similar to the following:

● frameset4.html (the main window code)

● frame1.html (document initially shown in the left frame)

 420 JavaScript: A Beginner’s Guide

● frame2.html (document initially shown in the right frame)

● frame3.html (new document to appear in the left frame)

● frame4.html (new document to appear in the right frame)

You already have the code for frameset4.html, so you just need the code for the four
remaining documents. The fun occurs in the example in frame1.html, so that’s where you’ll start.

Frame 1, the Action Frame
This frame contains the link that makes both frames show a new HTML document. To do this,
you can use a function and then call the function from the link. Here’s the code for frame1.html:

<body>
<script type="text/javascript">
 function twoframes() {
 top.right_side.location="frame4.html";
 self.location="frame3.html";
 }
</script>
Change Both Frames
</body>

The link tag calls the twoframes() function. The function first changes the contents of the
right frame by referring to its name (right_side). It then changes the location of its own frame
(recall that “self” is a way to refer to the current window or frame, which makes what is being
changed in the code a little less ambiguous). When the link is clicked, both documents will
change to the new documents.

NOTE
You will notice that the frame you are not currently in is changed first and the
self.location is changed last. This is because if you change the self.location before
you change any other frame locations, the browser will move on and the script will not
finish executing.

The Other Frames: Basic Code
In the remaining frames, you can just add some simple code to make the frame identify itself.
Here is some code for frame2.html:

<body>
I am frame 2!
</body>

Here is some code for frame3.html:

<body>
I am frame 3!
</body>

The current frame
is changed

The right frame is changed

The link calls the function
to change both frames

 Chapter 15: JavaScript and Frames 421

Finally, here is some code for frame4.html:

<body>
I am frame 4!
</body>

Once these are all set up, open frameset4.html to see the link change both frames. Figure 15-7
shows the initial view of frameset4.html before the link is clicked.

Figure 15-8 shows the page after the link has been clicked and the content of both frames
has been changed.

Figure 15-7 The view of the frameset before the link is clicked

Figure 15-8 After the link is clicked, two new documents appear in the frames

 422 JavaScript: A Beginner’s Guide

Try This 15-1

pr15_1.html
pr15_1_frame1.html
pr15_1_frame2.html
pr15_1_frame3.html
pr15_1_frame4.html
pr15_1_frame5.html

You could certainly use more detailed code if you wanted to. You could set it up with
more frames and then change as many of them as you like. You could also code one of the new
frames to have a link that takes the viewer back to the original two frames. In addition, you
could use the URLs or filenames as parameters to the function.

 Change Frames
In this project, you create framesets and change more than one frame at
once. You also create a frameset that will use one frame to change the
contents of two other frames in the document.

Step by Step
 1. Create an HTML document to serve as the frameset. Create a frameset that contains three

frames from top to bottom (rows). The top and bottom frames should each use 33 percent of
the available window space, while the middle frame should use the remaining space.

 2. Use the following filenames for each frame:

 Top frame: pr15_1_frame1.html
Middle frame: pr15_1_frame2.html
Bottom frame: pr15_1_frame3.html

 3. Use these names for each frame:

 Top frame: t_frame
Middle frame: m_frame
Bottom frame: b_frame

 4. Save the file as pr15_1.html.

 5. In the code for the top frame (pr15_1_frame1.html), provide a link that causes the two
lower frames to receive new content. Use these filenames for the two new frames: pr15_1_
frame4.html and pr15_1_frame5.html.

 6. Save the file (pr15_1_frame1.html).

 7. Add any content you like to the remaining frame files (pr15_1_frame2.html, pr15_1_
frame3.html, pr15_1_frame4.html, pr15_1_frame5.html).

 8. Open pr15_1.html in your browser and try out the link. It should change the lower two
frames in the frameset while the top frame remains the same.

Try This Summary
In this project, you used your knowledge of JavaScript and frames to code a frameset. When
opened in a browser, the viewer can change multiple frames by clicking a link.

 Chapter 15: JavaScript and Frames 423

Frame Navigation
JavaScript also provides handy frame navigational techniques. For instance, you could adjust
the select box navigation created in Chapter 14 to work from one frame to another. Or, you
could create code to allow your viewers to break out of frames. You also could create code that
sends viewers to your frames if they accidentally enter on a page that should be in a frameset.

Using the Select Box with Frames
If you want the select box in one frame to open a document in another frame, you must alter
select box navigation slightly. To do this, you need to change only one part of the code in the
select box.

Let’s use the filename frameset5.html to see how the frames will be shown. The code is
shown here:

<html>
<frameset rows="120,*">
<frame src="frame1.html" name="t_frame"></frame>
<frame src="frame2.html" name="b_frame"></frame>
</frameset>
<noframes>
Use the link below to go to the frameless version of the site.

Frameless Site
</noframes>
</html>

In this case, the frames are going from top to bottom using rows. The top frame (t_frame)
spans 120 pixels from the top, and the bottom frame (b_frame) takes up the remaining space
on the page.

In the preceding example, a select box changes when the viewer makes a choice (no
button). The select box is placed in the top frame to allow the viewer to change the document
shown in the bottom frame. Thus, you need to see the code in frame1.html, as shown here:

<body>
<form onsubmit="return go_there();">
<label for="s1">Change the lower frame:</label>
<select id="s1">
<option selected="selected" value="#">Choose Destination</option>
<option value="frame3.html">Frame 3</option>
<option value="frame4.html">Frame 4</option>
<option value="frame2.html">Back to Frame 2</option>
</select>
<input type="submit" id="submit" value="Go!" />
</form>
<script type="text/javascript">
function go_there() {
 s = document.getElementById("s1");

 424 JavaScript: A Beginner’s Guide

 top.b_frame.location = s.options[s.selectedIndex].value;
 return false;
}
</script>
</body>

Notice that the only major difference in the code for the select box is the second line of the
code in the go_there() function. Instead of using window.location (which changes the same
frame), it uses the name of the bottom frame so that its location is changed (top.b_frame
.location).

The three available choices are to go to Frame 3 (frame3.html), Frame 4 (frame4.html),
or back to the frame that was there initially (frame2.html). Choosing one changes the bottom
frame to the new page.

The only other task is to add some code to the other frame files (frame2.html, frame3.html,
and frame4.html) so there is something to view in the bottom frame. Figure 15-9 shows how
frameset5.html might look initially, before a choice is made (depending on the code you add to
frame2.html).

Figure 15-10 shows an example of how the window might appear if Frame 3 is chosen
from the drop-down box (depending on the code you add to frame3.html).

Breaking Out of Frames
Sometimes another Web site will code links that don’t break the user out of the site’s frames
before arriving at your site. Your site is then left in a smaller portion of the viewer’s window
with the navigation from the other site still showing in other frames. When this happens, you

Figure 15-9 A possible initial appearance of the frameset

 Chapter 15: JavaScript and Frames 425

may want to offer your viewers a way to break out of the other site’s frames, or you may want
to do it automatically.

Using an Optional Link
You can place a link on your page for viewers to click to break out of frames. You need to add
a special target in the <a> tag, as shown here:

Break Out of Frames

The target of _top tells the browser to use the full window when opening the URL in the link,
rather than opening the link inside a frame. You just need to replace the URL in the tag with
your own.

NOTE
Using a target of _top in an anchor (<a>) tag tells the browser to use the full window
when opening the URL in the link, rather than opening the link inside a frame.

If you use frames on your site and want to be sure viewers aren’t stuck in your frames
when going to a new site, you can use this same target to be sure the new URL is opened in the
full window rather than in the frame. The following code shows an example of this:

Another Site

This technique doesn’t even require JavaScript (you could do it with JavaScript if you really
felt like it), but the next technique does.

Figure 15-10 A possible appearance once the Frame 3 option is chosen

 426 JavaScript: A Beginner’s Guide

Automatically Removing Frames
To remove frames automatically, you must find out if your Web page is inside a frameset when
it loads. If your page doesn’t use frames, then you can determine whether or not it is stuck in
frames from another site pretty easily by using the length property.

If your page is inside a frameset, the value of the length property will be greater than 0
for the frames array in the main window. Thus, you can check for a value greater than 1 in the
length property and reload your page in the full window if there are frames. Try this code:

<head>
<script type="text/javascript">
 function check_frames() {
 if (top.frames.length > 0) {
 top.location="http://yoursite.com";
 }
 }
</script>
</head>
<body onload="check_frames();">
<h1>Welcome to my Page</h1>
</body>

The check_frames() function is called as the page loads. The function checks whether any
frames are in the main window. If so, then the location of the top window is changed to the
URL of your page, making your page open in the main window instead of within a frame. You
would replace the URL shown in the code with your own URL.

Sending Viewers to Frames
When you use frames, a visitor might enter your site on one of your pages meant to be inside
your frameset rather than in the full window. This can happen when a search engine is used,
which may index the document and list it. The viewer sees it but may not be able to navigate
through the rest of the site because the frames aren’t there.

The following code checks whether the page is loaded without frames and redirects the
viewer to the main page of the site if the frames have not been loaded:

<head>
<script type="text/javascript">
 function check_frames() {
 if (top.frames.length == 0) {
 top.location="http://www.yoursite.com";
 }
 }
</script>
</head>
<body onload="check_frames();">
<h1>Some Inner Page</h1>
I should be inside a frameset; the script that is run
 when this page loads will check to see if I am.
</body>

The main window is reset to show in the
entire window if frames are present

The function is called

The number of frames in the
main window is checked

This time the check is to see whether the main
window is lacking the necessary frames

 Chapter 15: JavaScript and Frames 427

The check_frames() function checks whether the length property is 0. If so, your frameset
hasn’t been loaded. In that case, the viewer is taken to your main page, where your frameset
can be loaded. You would replace the URL in the code with the URL for the document
containing your frameset (usually your main page).

Q: Why do I need to nest framesets to get rows inside columns or columns inside rows?
Why can’t I just use both the rows and cols attributes on one frameset instead?

A: You must nest framesets so that the browser knows where to place all of the rows and
columns. If you just tell the browser you want three rows and two columns, it won’t
necessarily know where to place all of them. For instance, does one of the columns hold
the three rows, or does one of the rows hold both of the columns? When the framesets are
nested, the browser knows where you want things to appear.

Q: What is that “self” thing again?

A: Flip back to Chapter 10 for a short explanation of this concept. Basically, it’s another way
to write “window.” Instead of window.location, you can write self.location. (You can do
this with any of the window properties or methods.) It is just a way to help make the code
clearer, because with frames, in some cases, it’s easier to determine what the code means if
you use “self” rather than “window.”

Q: Why would I ever want to change more than one frame at a time?

A: Some Web sites have so much information that, for navigational purposes, changing more
than one frame at a time can be helpful. Also, if you have more than two frames, sometimes
it’s helpful to be able to change all but one of the frames, leaving the lone frame the same
for navigation.

Q: I don’t like frames and don’t plan to use them. Do I really need to read this stuff
about them?

A: Although you may not use them yourself, learning about frames can help you if you
need to code them for someone else, or debug someone’s code, break out of frames from
other Web sites, or even if you just want to understand what a Web site is doing while
you’re surfing.

Ask the Expert

 428 JavaScript: A Beginner’s Guide

Using Variables Across Frames
Another advantage of using frames is that you can use variables stored in one frame in another
frame. You could store form information in one frame and use it again in another frame after
that frame has loaded a new document, for instance.

The script you’ll create takes information a viewer entered in a form and stores it in the
other frame when the viewer clicks the button to send the information. The information can
then be used on the page to which the viewer is sent.

First, you need a frameset. You can use a simple two-frame system for this, like the
following code:

<html>
<frameset cols="150,*">
<frame src="frame1.html" name="left_side"></frame>
<frame src="frame2.html" name="right_side"></frame>
</frameset>
<noframes>
Use the link below to go to the frameless version of the site.

Frameless Site
</noframes>
</html>

Save this as frameset6.html. You should have a frame on the left (left_side) that spans 150 pixels
and a frame on the right (right_side) that takes the remaining window space.

In the left frame, you want a document that contains some variables. This is the frame that
won’t be changed, so it can keep track of the variable values while the contents in the other
frame are changed. For this script, you want to have a variable named thename and a variable
named thefood to hold information the viewer will enter into a form in the other frame. Here is
some code for frame1.html:

<head>
<script type="text/javascript">
 var thename="";
 var thefood="";
</script>
</head>
<body>
This is frame1.html; it holds the variable values.
 You can put any content you like here.
</body>

The variables are initially given a value of an empty string. The values will be changed
when the viewer sends the information from the other frame.

The document shown initially in the right frame contains a form that allows the viewer to
enter a name. This name is then stored in the thename variable in the left frame. The code for
frame2.html is shown here:

Two variables are declared to hold values
that will be taken from the other frame

 Chapter 15: JavaScript and Frames 429

<body>
I'd like to get your name. Please enter it below.

<form onsubmit="return store_info();">
<label for="yourname">Your Name:</label>
<input type="text" id="yourname" size="25" />

<input type="submit" value="Continue" />
</form>
<script type="text/javascript">
 function store_info() {
 var yn = document.getElementById("yourname").value;
 top.left_side.thename= yn;
 self.location="frame3.html";
 return false;
 }
</script>
</body>

The store_info() function is called when the viewer clicks the button to continue. Notice
the use of top.left_side to access the left frame. Then the variable name is added (top.left_side
.thename) to access the thename variable in the other frame. The value that has been entered
into the text box in the form is then assigned to the thename variable in the left frame. After
that, the document in the frame is changed to frame3.html, which will be able to get the
information back from the left frame.

In the frame3.html document, the viewer’s name is written in a greeting. It is also filled
into a field in a new form to keep the viewer from writing it over again. (This just shows a use
for the stored variable value; you don’t really need the name in the form again in this case.)
The form also asks for the viewer’s favorite food, which the viewer must enter. The code for
this page is shown here:

<body>
<script type="text/javascript">
 document.write("Hi, "+top.left_side.thename+"!
");
</script>
Now I'd like to get your favorite food. Please enter it below:

<form onsubmit="return more_info();">
<label for="yourname">Your Name:</label>
<input type="text" id="yourname" size="25" />

<label for="yourfood">Favorite Food:</label>
<input type="text" id="yourfood" size="25" />

<input type="submit" value="Continue" />
</form>
<script type="text/javascript">
 var tn = document.getElementById("yourname");
 tn.value = top.left_side.thename;

The document in the frame is changed

The variable in the left frame is given a
value from the form in the current frame

The value of the variable in the left
frame is used to write a greeting

The value of the first text box is
set using information stored in
a variable in the left frame

 430 JavaScript: A Beginner’s Guide

 function more_info() {
 var fd = document.getElementById("yourfood");
 top.left_side.thefood= fd.value;
 self.location="frame4.html";
 return false;
 }
</script>
</body>

Here, the form field for the name is given the value from the left frame when the page loads.
The name is also printed in a greeting on the page. After the viewer fills in a food and clicks
the button, the value is stored in the thefood variable in the left frame and the document in the
frame is changed to frame4.html.

In frame4.html, the values of both of the variables stored in the left frame will just be used
to print a special message for the viewer on the page, as shown in the following code:

<body>
<script type="text/javascript">
 function print_info() {
 document.write("Thank you, "+top.left_side.thename+"!");
 document.write("

");
 document.write("You must really like "+top.left_side.thefood+"!");
 }
print_info();
</script>
</body>

The information is just printed out in a message to the viewer in the preceding code. The
printed information marks the end of the line for this script because there are no more forms
or variables to use. (You could add more forms and variables if you wanted to, though.)
Figure 15-11 shows how frameset6.html looks initially, before anything is changed.

The value from the Food field in the form
is stored in the variable in the left frame

The document in the frame is changed

The information stored in variables in
the left frame is printed for the viewer

The function is called here

Figure 15-11 The initial appearance of the frameset

 Chapter 15: JavaScript and Frames 431

Figure 15-12 The result of entering John into the first form and clicking the button

Figure 15-13 Eating sandpaper is not recommended!

Figure 15-12 shows how the page looks if the viewer enters John as the name in the first
form and clicks the button.

Figure 15-13 shows how the page looks if the viewer enters sandpaper as the food in the
second form and clicks the button. This doesn’t sound very tasty.

Remember that even though frames are useful in various contexts, you shouldn’t go
overboard. Frames require minimal screen real estate and may not be suitable for devices
with small screens. If you do want to use them, just remember to add the tag set <noframes>
and </noframes> and to offer a frameless version for viewers with smaller screens or screen
resolutions (or better yet give all viewers an option not to use frames).

 432 JavaScript: A Beginner’s Guide

Try This 15-2

pr15_2.html
pr15_2_frame1.html
pr15_2_frame2.html
pr15_2_frame3.html

 Use Variables
In this project, you practice storing variable values in a static frame
and using them in another frame. You’ll create a form that first lets the
viewer fill in some information and then uses that information when the
document in the frame is changed.

Step by Step
 1. Create a frameset with two frames, one on the left taking up 150 pixels and one on the right

that uses the remainder of the window space. Name the left frame left_side and the right
frame right_side. The filename for the first frame should be pr15_2_frame1.html, and the
filename for the second frame should be pr15_2_frame2.html. Save the frameset file as
pr15_2.html.

 2. In pr15_2_frame1.html, create three variables and assign empty strings as their initial
values. Use these variable names:

thename
thecolor
thecar

 3. In pr15_2_frame2.html, create a form that asks the viewer for a name, a favorite color, and
a favorite car. When a button is clicked, the information should be stored in the variables in
the left frame and the document should be changed to pr15_2_frame3.html.

 4. In pr15_2_frame3.html, the following greeting should be printed on the page for the viewer,
using the values stored in the variables in the left frame:

Hello, <viewer’s name>! I bet you would really love to have a <favorite color> <favorite
car>! Too bad I can’t give you one!

 5. Open pr15_2.html in your browser and try it out.

Try This Summary
In this project, you used your knowledge of JavaScript and frames to create a frameset that
uses variables across frames. The viewer is able to enter information in one frame and see the
results in another frame.

 Chapter 15: JavaScript and Frames 433

 Chapter 15 Self Test
 1. __________ divide a window into two or more separate areas, each containing different

content.

 2. Frames differ from tables because the divisions in a frameset contain separate _________
documents.

 3. The __________ tags are used to create a frameset.

 4. A single frame is created with the __________ tags.

 5. The __________ attribute divides a frameset into columns.

 6. If you want to have a more complex frameset that includes both rows and columns, you can
__________ one frameset within another.

 7. What are two methods that can be used to access frames?

 A The frames array or a frame name

 B The frame array or a frame name

 C The frames array or a special code

 D There is only one way to do it

 8. Using JavaScript, you can change the content of more than one frame at a time.

 A True

 B False

 9. What is the value of the length property of the frames array?

 A The length of a specific frame based on its width or height

 B The number of framesets on a page

 C The number of frames in a window

 D The number of arrays in a frame

 10. What does an asterisk (*) mean when used in the rows or cols attribute of a frameset?

 A There’s no room for another frame.

 B The frame should take up any remaining space in the window.

 C The frame never ends.

 D The frame is shown in a pop-up window.

✓

 434 JavaScript: A Beginner’s Guide

 11. What is used to access the main window so that you can access another frame?

 A top

 B self

 C window

 D this

 12. Which of these would correctly change the document in a frame named right_side to
frame3.html from another frame?

 A self.location=“frame3.html”;

 B top.right_side.location=“frame3.html”;

 C self.location=“frame3.htm”;

 D top.location=“frame03.html”;

 13. Using a target of _________ tells the browser to use the full window when opening a URL
rather than opening the URL in a frame.

 14. You can use variables stored in one frame in another frame.

 A True

 B False

 15. The __________ attribute divides a frameset into rows.

435

Chapter 16
An Introduction to
Advanced Techniques

 436 JavaScript: A Beginner’s Guide

Key Skills & Concepts

● Debugging Scripts

● JavaScript and Accessibility

● Using Cookies

● Working with Images

● JavaScript Security

● Introduction to AJAX

● JavaScript Libraries

This chapter introduces a number of advanced techniques that you may wish to pursue further
once you have finished this book. You’ll learn about debugging troublesome scripts (which

is helpful when things go wrong), JavaScript and accessibility (which helps users access
your information when JavaScript is disabled), using cookies (which allows you to store and
retrieve small bits of information for the user), working with images (which allows you to
preload and change images), JavaScript security (which helps you protect your users), AJAX
(which enhances the user experience), and JavaScript libraries (which can be helpful to keep
you from rewriting code). In addition to what is covered in this book, further information on
these topics can be found in links provided at the end of the chapter.

Debugging Scripts
Even though JavaScript is fun, sometimes it can also be quite frustrating. One error in the code
can cause an entire script to run incorrectly or not run at all. Debugging a script can be a time-
consuming and arduous process, but there are a few techniques you can use that may help save
some time while looking over the code. The first step in debugging a script is to figure out
what type of error is likely to be causing the problem.

Types of Errors
The two main types of errors are syntax errors and logical errors. A syntax error occurs when
the coder forgets to add a semicolon, forgets a quotation mark, misspells a word, and so on.
A logical error occurs when the code is implemented incorrectly.

For example, a while loop could go on infinitely if the condition for executing the loop
never becomes false. While it may be coded with the correct syntax, the results won’t be what
the programmer expected.

 Chapter 16: An Introduction to Advanced Techniques 437

Find the Syntax Errors
A syntax error could be as simple as leaving out a necessary semicolon. For example, the
following code is missing a semicolon between statements:

<input type="button" value="Click" onclick="analert() analert2()" />

In this case, the semicolon is very important because the two statements (function calls) are on
the same line. To fix this, you just need to add the needed semicolon, as shown here:

<input type="button" value="Click" onclick="analert();analert2()" />

Syntax errors often cause the browser to display an error message so that you can debug the
script. For example, you might see a message like the one in Figure 16-1.

These messages can help you figure out what’s causing the problem. The line number
shown in the error message often tells you where the error is. For instance, if the message
says the error is on line 15, you would start at the 15th line from the top of your document
and see what’s there. The rest of the message might tell you what’s missing or what has been
placed improperly.

However, sometimes the line stated in the message is not the line where the actual problem
is located. It could be on the preceding line, a few lines away, or even somewhere else entirely.
You will need to do a little searching to figure out where the problem started. (The upcoming
section “Scanning the Script” covers this in more detail.)

Use the Error Message If you get an error message, it can either make the problem easier
to find or give you a bigger headache. Some messages are just better than others. First,
go to the line given in the error message. If the text in the message makes any sense (such as
“Expected ‘;’”), then look to see if the message is leading you in the right direction.

Figure 16-1 A JavaScript error message

 438 JavaScript: A Beginner’s Guide

For example, if it tells you it was expecting a semicolon, then look to see if a semicolon is
missing on that line or on a line near it.

If you don’t see a problem in the near vicinity, you’ll have to search for it. If the line in
question is calling a function or using a variable from another part of the script, take a look at
where the function or variable was defined. Go to the function or variable to see if the name
is the same as what you used to call it. If so, see if all the syntax is correct (such as the curly
brackets, quotation marks, and parentheses). For instance, look at the following code:

<body>

<form>
<input type="button" value="Click" onclick="cool();"></input>
</form>

<script type="text/javascript">
 function cool()
 window.alert("Cool!");
 }
</script>

</body>

When you click the Click button, the code will produce an error message that says “Object
Expected” (this will differ depending on the browser used) and points to the line in the code
where the button is placed on the page (line 4, in this case). If you look at that line, nothing
appears to be wrong. However, if you go further in the code (line 8) to the function cool() that
is called on that line, you will notice that the opening curly bracket is missing. The missing
bracket is the problem, and adding it will fix the code.

Scanning the Script If the error message doesn’t help you locate the problem, try scanning
the script for errors on your own. This solution can be more tedious, but it may help you
find the problem if the error message isn’t helpful. Table 16-1 shows some items you should
try to find.

Notice that the opening
bracket is missing

Item Appearance

Missing semicolon ;

Missing curly or square brackets { } []

Missing parenthesis ()

Missing single or double quote ' "

Misspelling coool instead of cool, for example

Table 16-1 Items to Look for When Scanning a Script for Errors

 Chapter 16: An Introduction to Advanced Techniques 439

The following code is riddled with errors; see how many of them you can find.

<script type="text/javascript">
var mycar="Mustang";
function send_alert()
 window.alery("You like+mynar+"!");
 window.alert("Cool";
}
var somearray= neq Array(2)
somearray[0]="Me";
somearray1]="Me2";
for var count=0;count<somearray.length;count+=1) {
 document.write(somearray[0+"and"+somearray[1]);
</script>

The code is missing a number of necessary items. Following is the list of items you should
have found:

● Between lines 3 and 4: The function is missing its opening curly bracket.

● Line 4: The word alert is misspelled as alery; the double quote mark is missing after the
word like; the mycar variable is misspelled as mynar.

● Line 5: The alert method is missing a closing parenthesis.

● Line 7: The word new is misspelled as neq.

● Line 9: The array index number is missing its opening square bracket.

● Line 10: The opening parenthesis for the loop is missing.

● Line 11: The index number for somearray[0] is missing its closing square bracket.

● Between lines 11 and 12: The closing curly bracket to end the loop is missing.

You probably won’t make that many errors, but the example provides a nice way to see
how to catch them while scanning a script. After you become more experienced with locating
these small errors, you’ll be able to find them quickly when you have a problem in a script.

Find the Logical Errors
Logical errors are often tougher to find because the syntax of the code is correct. You will be
trying to find a mistake in how the code was implemented. For example, look at the following
code (but do not run it!):

<script type="text/javascript">
x=1;
y=2;
while (x<=y) {
 window.alert("Hi");
}
</script>

Problem: x is never
greater than y!

 440 JavaScript: A Beginner’s Guide

The code has no syntax errors. All the semicolons and quote marks are where they should
be. The problem here is that the variable x is never greater than the variable y. This situation
would cause an infinite loop, possibly crashing the browser.

You can fix the code by adding a line inside the loop to increase the value of x, decrease
the value of y, or both increase x and decrease y. The important point is that something must be
done to make the condition false. The following code shows a possible fix for this problem:

<script type="text/javascript">
x=1;
y=2;
while (x<=y) {
 window.alert("Hi");
 x++;
}
</script>

The techniques described in the following sections can help you find logical errors.

Alert Technique for Problem Variables One way to find the problem in the previous
example is to go back and rerun it with an alert to test the value of one or both variables each
time through the loop (assuming it didn’t crash the browser). An alert can be an excellent way
to find out what is happening, and it can give you an idea of how to fix the problem.

For example, the following code takes the previous example (before the fix) and adds an
alert that shows the values of x and y each time the loop is run:

<script type="text/javascript">
x=1;
y=2;
while (x<=y) {
 window.alert("x is: "+x+" and y is "+y);
 window.alert("Hi");
}
</script>

Provided the script doesn’t crash the browser, you will be able to see what the problem is.
Each time the alert shows up, it will say the same thing: “x is 1 and y is 2.” Therefore, you’ll
know you need to make an adjustment in the loop to fix it.

This technique is quite helpful when you have a variable that goes through numerous
reassignments and calculations in a script. By using a well-placed alert, you can find out where
the problem starts. For example, take a look at this code:

<script type="text/javascript">
 var item1="10";
 var item2=20;
 var total=item1+item2;
 upcharge=5;
 total+=upcharge;
 window.alert("The total is $"+total);
</script>

 Increasing x within the loop will allow
x to become greater than y over time

The alert gives you the value of both
variables to help you find the problem

This alert does not display
the expected result

 Chapter 16: An Introduction to Advanced Techniques 441

The variable total is assigned on the fourth line and then reassigned by adding another variable
to it on line six. The alert with the total after all the calculations gives a funny result of 10205.
Do you see the problem? If not, you could place an alert after the first assignment to see if the
calculation of item1+item2 works correctly:

<script type="text/javascript">
 var item1="10";
 var item2=20;
 var total=item1+item2;
 window.alert(total);
 upcharge=5;
 total+=upcharge;
 window.alert("The total is $"+total);
</script>

The alert allows you to see whether the
first calculation is working correctly

Q: The error message I get says something I don’t understand. What should I do?

A: Error messages don’t always make sense and don’t always point to the right line in the
code. You may need to trace any variables or functions you have called on the line that the
message gave you or check the lines near it for errors. Once you’ve seen an error message a
few times, its meaning becomes easier to figure out.

Q: Something in my code crashed the browser when I tried to run it, and I can’t try
adding alerts to help find the problem because it crashes every time! What should I do?

A: If the script crashes the browser, look closely at your variables, loops, objects, and
functions. As a last resort, write some new code from scratch.

Q: An error in my code crashed not only the browser, but also the computer! What do I do?

A: Restart the computer but do not run the code again. Check it very carefully to see if you can
find the problem.

Q: Can any other strategies help me debug my scripts?

A: Some text editors use color coding to mark HTML tags, JavaScript code, or other types
of code. Color coding helps you see the code more clearly and makes it easier to detect
an error. (Try the Vim or NoteTab text editor.)

Ask the Expert

 442 JavaScript: A Beginner’s Guide

When you run the script again, the first alert gives a result of 1020. Now the problem becomes
a bit clearer. For some reason, the script is adding item1 and item2 as strings and not as
numbers, causing the two numbers to be combined instead of adding them mathematically.

Looking back at the assignment for item1, notice that it was assigned as a string
accidentally. Removing the quotation marks around the 10 fixes the script and gives you the
expected final result of 35.

The Hard Way: Trace Everything or Make Changes If all the shortcuts fail, then the final
option is to try to run through the entire script piece by piece again to see if you can detect an
error. If not, see if you can find another way to code the task. For example, try using a different
type of loop. Hopefully, a new strategy will help you clear up the problem and complete
the script.

JavaScript and Accessibility
One topic you have seen many times in this book is how a script or HTML code for the script
relates to accessibility. In some cases, such as Web sites of government agencies, a state or
federal law (such as the Americans with Disabilities Act) might require that the Web site be
accessible to viewers with disabilities. Even if it is not a legal issue for your Web site, it is
still a usability issue: you will want as many visitors as possible to be able to use your site and
access the information you have for them.

The general theme for accessibility is that content needs to be made accessible to all
browsers and other software that may access a Web site. This means that your content should
be readable not only by various Web browsers, but also by assistive technologies like screen
reading software (for example, JAWS from Freedom Scientific), or Web browsing software on
portable devices like cellular phones.

Separate Content from Presentation
The first step in making your Web site content accessible typically is to build the accessibility
into your HTML/XHTML code, but you’ll also need to tweak your JavaScript code. As you
may already know, when coding your HTML you can use Cascading Style Sheets (CSS) for
presentation of the content (how many columns are displayed, the font style, the width of
various divisions, and so forth) while using HTML to simply mark up the content itself (such
as dividing it into sections with <div></div> tags or inserting objects like images). This takes
care of issues dealing with plain HTML content because the use of a style sheet rather than
HTML markup for presentation ensures that you can offer different CSS styles for different
types of browsers, or that those not using browsers with CSS capabilities will still get the
structural markup of the plain text (for example, there won’t be columns or font colors, etc.),
which allows them to still view the content of the page.

With JavaScript, making the content accessible often means making sure that the content
you use in your script is already displayed on the page or is available through a link or other
means. One thing that may help is to move all JavaScript code (or as much as possible) into
external JavaScript files while leaving as little JavaScript code in the HTML code as possible.

 Chapter 16: An Introduction to Advanced Techniques 443

For example, you might have a Web page that uses the following code:

<body>
<script type="text/javascript">
function send_alert() {
 window.alert("Hi, there is a sale today! 20% off everything!");
 return false;
}
</script>
Hi
</body>

This code will function just fine for those with JavaScript. However, having the script in the
HTML code makes for a lot of extra scrolling through the file when you need to update the
HTML code (especially if you have a long script). Thus, the first move you may want to make
is to move the script to an external file, as shown in the following code samples. First the
new HTML code:

<body>
Hi
<script type="text/javascript" src="myscript.js"></script>
</body>

Next, the myscript.js JavaScript file:

function send_alert() {
 window.alert("Hi, there is a sale today! 20% off everything!");
 return false;
}

This makes the HTML file shorter and easier to read because the JavaScript functionality is
placed in its own file and out of the way of the HTML code.

The next move you may want to make is to change the use of the onclick event handler in
the HTML tag. Though valid, it becomes troublesome if you decide to use a function with a
different name or decide to make it a normal link without JavaScript, because you will need
to update each HTML file to accommodate the change cleanly (you can simply change the
script to have the new function use this function name or just do nothing when called, but
this could be confusing for those who may need to update the code later). To get this onclick
event handler out of the HTML code, you could rewrite the JavaScript slightly and give
the anchor tag an id (much like what you have done earlier in this book). First, the updated
HTML code:

<body>
Hi
<script type="text/javascript" src="myscript.js"></script>
</body>

 444 JavaScript: A Beginner’s Guide

Next, the myscript.js JavaScript file:

function send_alert() {
 window.alert("Hi, there is a sale today! 20% off everything!");
 return false;
}
var s_alert = document.getElementById("sale");
s_alert.onclick = send_alert;

Now the HTML code has no JavaScript commands sprinkled in with it, just a call at the
end to the external script. The anchor tag is given an id of sale, which can be used by the
JavaScript code to capture the click event on that element. The JavaScript code now uses
document.getElementById() to grab the anchor element and then assigns it a function to run
when clicked.

The final note here is that the link simply does nothing for those without JavaScript. Since
the content of the alert is something you need the visitor to know (so that they will know there
is a sale), you will want to be sure that even those visitors without JavaScript can get this
message. You can either display it elsewhere on the page, use a set of <noscript></noscript>
tags to display the message inline, or code the link so that it leads to an HTML page with the
message, as in the following code:

<body>
Hi
<script type="text/javascript" src="myscript.js"></script>
</body>

Then, you can place your message in the sale_alert.html file:

<body>
Hi, there is a sale today! 20% off everything!
</body>

This ensures that all users can access the message with or without JavaScript.

Enhancing Content
One technique for ensuring wide accessibility that has become widely used is one that provides
the content for the viewer first, then uses JavaScript to make the experience more appealing for
those that can run it. This is typically called “progressive enhancement” and allows all viewers
to use the site while providing a richer experience for those with modern browsers.

This is what you did (on a small scale) with the script in the previous section. By offering
the “sale” message when the link is clicked, you made it accessible to all viewers. However,
those with JavaScript were able to view the alert without leaving the page and needing to go
back, enhancing their experience somewhat.

This process can be simple, as in the previous example, or it can be as complex as adding
a lot of JavaScript code to work with various browsers and/or adding server-side scripting to

 Chapter 16: An Introduction to Advanced Techniques 445

Try This 16-1

pr16_1.html
sales.html
prjs16_1.js

aid those without JavaScript. You can learn more about progressive enhancement at http://
developer.yahoo.com/yui/articles/gbs/#progressive-enhancement. Yahoo! has a very detailed
and organized system of progressive enhancement that allows the JavaScript code to work with
as many browsers as possible, but also provides server-side scripts or HTML content for those
without JavaScript.

TIP
For information on accessibility with JavaScript and forms, refer to Chapter 14, which
discusses this topic and the use of forms with JavaScript.

 Make This Code Accessible
To practice making JavaScript more accessible, you will take an HTML page
and work with it to separate the JavaScript and HTML code as much as possible.
You’ll also use code that ensures that those without JavaScript can also obtain
any additional content.

Step by Step
 1. Create an HTML document named pr16_1.html and use the following HTML code for the

body section:

<body>
<script type="text/javascript">
function new_win() {
 window.open('sales.html','newwin''width=300,height=200');
}
</script>
<div>
<h1>Sales:</h1>
</div>
<div>
Click for Sale
Information
</div>
</body>

 2. Create an HTML document named sales.html and use the following HTML code for the
body section:

<body>
<h1>Sales:</h1>
Clothes: 25% off

Electronics: 10% off

Appliances: 15% off (with coupon)
</body> (continued)

http://developer.yahoo.com/yui/articles/gbs/#progressive-enhancement
http://developer.yahoo.com/yui/articles/gbs/#progressive-enhancement

 446 JavaScript: A Beginner’s Guide

 3. Make the code accessible and usable for those without JavaScript by making any necessary
adjustments and moving as much JavaScript code as possible to a JavaScript file named
prjs16_1.js.

 4. For an added bonus, try removing the new window from this entirely and placing the sales
information in the division that simply has the text “Sales:” in it for those with JavaScript.

 5. Save the HTML and JavaScript files and open the HTML file in your browser. The content
should now be accessible in any browser with which you choose to open the page.

Try This Summary
In this project, you used your knowledge of accessibility to make a document and script more
accessible for the viewer.

Using Cookies
A cookie is a small text file that is stored on the end user’s computer. It can be referenced any
time the viewer returns to your site, provided the cookie hasn’t been deleted or expired. Of
course, if the viewer doesn’t accept cookies, then a cookie won’t be able to be set or referenced
later. Keep the following points in mind when using cookies:

● Cookies must be 4KB (4000 characters) each or less.

● A browser can accept up to only 20 cookies from a single domain.

● If a number of viewers don’t accept cookies, this eliminates any advantages of your
cookie(s) to those viewers.

Netscape invented cookies to help users browse your site more effectively. For instance, if
you use a script on your main page that sends one or more alerts while the page is loading, you
won’t want that to happen every time the viewer goes to another page on your site and then
returns to the home page. It would likely be so aggravating that you wouldn’t have a visitor
after it happened a few times.

The alerts pop up each time the page loads, because HTTP lacks state persistence. Cookies
fill that gap because they allow the browser to “remember” that the viewer has seen the pop-up
alert before and thus not display it on subsequent page visits. With cookies, you can fix problems
like these for any viewers who have cookies enabled.

Setting a Cookie
Setting a basic cookie is as easy as giving a value to the cookie property of the document object.
The only restriction is that you can’t have spaces, commas, or semicolons inside the string.

 Chapter 16: An Introduction to Advanced Techniques 447

For example, you can set a cookie that will store a name so that you can identify it if you set
more than one cookie later. The following code sets a basic cookie:

function set_it() {
 document.cookie="name=tasty1";
}

CAUTION
Remember when setting a cookie not to use spaces, commas, or semicolons inside the
string that sets the cookie data.

The preceding code sets a cookie with a value of name=tasty1 when the function is called.
You can set any delimiter you want, though (or none at all, but setting delimiters allows you to
store multiple values like a query string), so the following code would work as well:

function set_it() {
 document.cookie="name:tasty1";
}

The only problem is that you may need to use a space, comma, or semicolon in your
cookie at some point. For instance, you might want to add in some text that tells what your
favorite kind of cookie is. Adding the additional information isn’t very difficult as long as the
value does not need a space, as shown in the following code:

function set_it() {
 document.cookie="name=tasty1&fav=Sugar";
}

As you can see, the value of the cookie is being formatted in name=value pairs, and each pair
is separated with an ampersand (&). Again, you can choose any type of separators you want.
The following code is fine as well:

function set_it() {
 document.cookie="name:tasty1|fav:Sugar";
}

In this case, the names and values are separated with colons, while the pipe (|) symbol separates
them into pairs. You can use anything that you are comfortable using.

The escape() Method
If you want to use spaces, commas, or semicolons in your cookie, you need a way to “escape”
them so that they are translated into something a cookie accepts.

A cookie will accept character codes like a CGI program often does. They may look like
%20, %41, or something similar. To turn spaces, commas, and semicolons into these codes,
you must use the JavaScript escape() method. It is a method under the window object, so, as
you have seen in previous chapters, you can just use escape() rather than window.escape().

 448 JavaScript: A Beginner’s Guide

The following code shows how you could use the escape() method to set a cookie with
a space in it:

function set_it() {
 var thetext="name=tasty1&fav=Chocolate Chip"
 var newtext=escape(thetext);
 document.cookie=newtext;
}

The thetext variable is set to include the string you want to use in the cookie. The newtext
variable is set to hold the result of using the escape() method on thetext. The escaped text is
then used as the string for the cookie, which will now have the code for the space character in
it (when you want to use this data, you will need to unescape it).

Allowing User Input
By using the escape() method, you can prompt the viewer for the information, escape it, and
then use it in the cookie. The following code shows how to do this to get the viewer’s favorite
type of cookie:

function set_it() {
 var thefav=window.prompt("Enter your favorite type of cookie","");
 var thetext="name=tasty1&fav="+thefav;
 var newtext=escape(thetext);
 document.cookie=newtext;
}

Now the viewer can help decide the information that will be set in the cookie, and you can
use the information your viewers enter on your site on their next visit.

Setting an Expiration Date
Adding an expiration date to a cookie will keep it from being deleted once the browser is
closed, or it can be used to expire a cookie you no longer want to use. To set an expiration
date, add a little more to your string for the cookie, as shown in the following code:

function set_it() {
var thetext="quote=I have a quote";
var expdate=";expires=Mon, 30 Mar 2009 13:00:00 UTC";
var newtext=escape(thetext);
newtext+=expdate;
document.cookie=newtext;
}

Basically, you are adding on another name/value pair that adds an expiration date (notice the
name/value pairs are separated with a semicolon). It needs to be in this form:

expires=date (in UTC format)

A string literal is created with
information to be used in the cookie

The string is escaped so it
can be used in the cookie

The value of the escaped
string is placed into a cookie

The escaped string is
placed into a cookie

The string is escaped so it
can be used in a cookie

The value entered in the prompt is then
added to a string to be used for a cookie

The viewer is able to enter
information into this prompt

An expiration date is given

The expiration date is added to the text

The cookie is given the value of the combined text and expiration date

 Chapter 16: An Introduction to Advanced Techniques 449

In the code, an expiration date for the cookie was added by adding the date in UTC format.
Then the result is added to the variable that will be used to set the string for the cookie.

If you want a cookie to last a long time, you can set the date far into the future. If you want
to expire a cookie you have decided not to use anymore, set a date in the past and the cookie
will expire.

Reading a Cookie
Reading cookies is fairly simple if you have only a single cookie set and want to read it. To read
the cookie, you just need to get the value of the document.cookie property from the browser:

function read_it() {
 var mycookie=document.cookie;
}

However, the preceding code will only give you a long and possibly messy string for the value
of the mycookie variable. It might look like this:

name=tasty1&fav=Chocolate%20Chip

The %20 got in the code when the input for the cookie was escaped using the escape() method.
To fix that, use the unescape() method to get the data in a more readable format.

Thus, the following code would provide the string you need:

function read_it() {
 var mycookie=document.cookie;
 var fixed_cookie= unescape(mycookie);
}

Next, you must find a way to extract the information you need from the cookie. Assuming
the cookie contained the string just used as an example (name=tasty1&fav=Chocolate%20Chip),
the string would now look like this:

name=tasty1&fav=Chocolate Chip

Notice that the text is divided in two different ways. The ampersand divides the string into
name/value pairs, while the equal signs divide the name/value pairs into their names and values.

Assuming the string name=tasty1&fav=Chocolate Chip is what is now in the fixed_cookie
variable from the code, you could use that variable to create a new array by splitting the string
on the ampersand character:

function read_it() {
 var mycookie=document.cookie;
 var fixed_cookie= unescape(mycookie);
 var thepairs= fixed_cookie.split("&");
}

The cookie string is split
into an array on the &

The value is unescaped so the string
will have readable characters

The value of the cookie
property is read

 450 JavaScript: A Beginner’s Guide

The preceding code splits the string into two array values:

thepairs[0] with a value of name=tasty1
thepairs[1] with a value of fav=Chocolate Chip

You split each of these into a new array that will have a name and a value. Therefore, you need
some code like this:

function read_it() {
 var mycookie=document.cookie;
 var fixed_cookie= unescape(mycookie);
 var thepairs= fixed_cookie.split("&");
 var pair1=thepairs[0];
 var pair2=thepairs[1];
 var namevalue1=pair1.split("=");
 var namevalue2=pair2.split("=");
}

Now you have all the information you need using the namevalue1[] and namevalue2[]
arrays:

namevalue1[0] with a value of name
namevalue1[1] with a value of tasty1
namevalue2[0] with a value of fav
namevalue2[1] with a value of Chocolate Chip

You can use them in any way you like, such as placing them in alerts:

function read_it() {
 var mycookie=document.cookie;
 var fixed_cookie= unescape(mycookie);
 var thepairs= fixed_cookie.split("&");
 var pair1=thepairs[0];
 var pair2=thepairs[1];
 var namevalue1=pair1.split("=");
 var namevalue2=pair2.split("=");
 window.alert("The cookie's "+namevalue1[0]+" is "+namevalue1[1]);
 window.alert("My favorite type of cookie is "+namevalue2[1]);
}

You might want to be sure document.cookie exists before you try to run all the code in the
function. Any cookie you set to expire later can be read, but those without the cookie may get
an error. By making the check, you can ensure the existence of the cookie or send the viewer
to the function that sets the cookie. To do that, add an if/else block around the code in the
function, as shown here:

function read_it() {
 if (document.cookie) {
 var mycookie=document.cookie;

The new variables are
split on the equal sign

The values of the array elements
are assigned to variables

The values obtained from
the cookies are used

 Chapter 16: An Introduction to Advanced Techniques 451

Try This 16-2

pr16_2.html
prjs16_2.js

 var fixed_cookie= unescape(mycookie);
 var thepairs= fixed_cookie.split("&");
 var pair1=thepairs[0];
 var pair2=thepairs[1];
 var namevalue1=pair1.split("=");
 var namevalue2=pair2.split("=");
 window.alert("The cookie's "+namevalue1[0]+" is "+namevalue1[1]);
 window.alert("My "+namevalue2[0]+"orite type of cookie is
"+namevalue2[1]);
 }
 else {
 set_it();
 }
}

The preceding code assumes that the set_it() function exists and will set the cookie so it can
be used. It also assumes that this cookie is the only cookie set from this domain and that it is
formatted a particular way. If you plan to use multiple cookies, you will need to do additional
testing to ensure you grab the cookie you need.

 Remember a Name
In this project, you use a cookie to remember a name when a visitor returns to
the page.

Step by Step
 1. Create a new HTML document that uses an external JavaScript file named prjs16_2.js. Save

the HTML file as pr16_2.html.

 2. Create an external JavaScript file and save it as prjs16_2.js. Use it for the remaining steps.

 3. Create a function named set_it() that will set a cookie. Set the expiration to a future date.
Allow the viewer to enter a name in a prompt and then use the viewer’s entry in the cookie.

 4. Create a function named read_it() that will check whether the cookie exists and, if so,
read the cookie and send an alert to the viewer with the name in it, in the following format
(replace <name> with the name read from the cookie):

Welcome, <name>!

 5. If the cookie exists, call the read_it() function. If the cookie doesn’t exist, call the set_it()
function.

 6. Save the JavaScript file and open the HTML file in your browser. Enter your name. Close
your browser and open the page again. This time, you should get an alert with your name
rather than the prompt.

(continued)

 452 JavaScript: A Beginner’s Guide

Try This Summary
In this project, you used your knowledge of setting and reading cookies with JavaScript.
You created a Web page that remembers the viewer’s name when the viewer returns to the
Web page.

Working with Images
JavaScript uses the image object to preload images, create rollover effects, and even create
slide shows or animations. The image object’s properties will help when you want to create
such scripts. Table 16-2 lists and describes the image object’s properties.

The src property is used the most in this chapter because it allows the source of an image
to be changed to create a rollover effect.

Preloading
When you code your Web pages, sometimes you may want to preload your images. Preloading
an image allows it to be in the browser’s cache before it is called in the HTML or JavaScript
code in the browser. This way, the image will show up much more quickly when it is called
and the viewer will not have to wait for an image to load.

One technique for preloading is to load on your main page an image that will be used on
other pages in your site. The image will be in the browser’s cache on each of the other pages
and will load instantly. For example, you may want your Web site’s logo to appear on every
page of the site. When it is loaded on the first page, the other pages will load it instantly.

Property Purpose

name Holds the value of the image’s name from the name attribute

src Holds the value of the URL from the src attribute

width Holds the value of the width from the width attribute

height Holds the value of the height from the height attribute

border Holds the numeric value of the border property from the border attribute

hspace Holds the numeric value of the hspace property from the hspace attribute

vspace Holds the numeric value of the vspace property from the vspace attribute

lowsrc Holds the value of the URL from the lowsrc attribute

complete Indicates whether an image has finished loading

Table 16-2 Properties of the Image Object

 Chapter 16: An Introduction to Advanced Techniques 453

Of course, doing this with HTML makes sense because you are likely to want the logo
to appear on the main page as well as all the other pages. Therefore, when you code the img
element, the image is loaded into the cache.

In some cases, you may want to preload images that will appear later on the same page.
This practice is common when using rollovers or other scripts that call images after the page
has finished loading. In such a case, you don’t want the viewer to be stuck waiting on a new
image to load, because it keeps the script from working as well as it should.

For instance, if you have set a new image to appear when the viewer moves the mouse
over an image, you want the new image to show up immediately. If the viewer has to wait
a few seconds for the image to load, it can ruin the intended effect.

With JavaScript, you can create a new instance of the image object and then give its src
property the URL of the image you want to preload, as shown in the following code:

if (document.images) {
 var pic1= new Image(120,35);
 pic1.src="image1.gif";
 var pic2= new Image();
 pic2.src="image2.gif";
}

Recall a similar bit of code in Chapter 9 when the images array was discussed. The first
instance (pic1) of the image object defines a width and height for the image. The second (pic2)
does not, but it will get those values from the actual width and height of the image.

You don’t have to use both methods. You can choose the method you prefer and use it for
all of the images you want to preload.

The HTML page with the img elements could look something like this:

<body>
<script type="text/javascript" src="preload.js"></script>
<h1>Some Images</h1>

</body>

The JavaScript code could look like this:

if (document.images) {
 var pic1= new Image(120,35);
 pic1.src="image1.gif";
 var pic2= new Image();
 pic2.src="image2.gif";
}

Of course, the preloading really isn’t serving a purpose in this case. To give the technique of
preloading a purpose, you want a script that shows a new image when an event occurs, such as
in a rollover script.

 454 JavaScript: A Beginner’s Guide

Rollovers
Image rollovers (also known as hover buttons, image flips, and other similar names) can
add some zest to your navigational images. When the viewer moves the mouse over a linked
image, the image changes. This change could be anything from a simple color change to a
completely different image, which can create more viewer interest in the navigational system.

The effect described in the last two sentences is a simple rollover, but you can also change
an image from a mouseover event on another linked image or text link, or even change more
than one image at a time.

A Simple Rollover
A simple rollover just changes one image to another when the mouse moves over the initial
image. First, you create two images and make the second image different in some way. For
example, examine the two images shown here:

NOTE
For each rollover effect you create, you need two separate images.

Once you have two images, you can begin working on the code for the image rollover.
First, you preload the images so that your rollover won’t need to download the second image
from the server when the viewer moves the mouse over the first image. Technically, you need
to preload only the second image, as the first image will be loaded as the page loads.

if (document.images) {
 //Preload image that will show on the mouseover event
 var pic1_new= new Image();
 pic1_new.src="image1_c.gif";
}

Notice that the names of the image object begins with pic1, has an underscore (_) character,
and uses the word new. By using this naming convention for the image object, you can add more
images to the script later with a consistent system that may help you keep track of the images
(but is not necessary).

Now, you can code your initial image into your HTML document, giving it an id:

<body>
<h1>The image below changes! Move your mouse over it!</h1>

</body>

 Chapter 16: An Introduction to Advanced Techniques 455

The anchor element is used around the image element so that the image can be used as a
navigational link; it is not necessary (in modern browsers) for the image rollover, as you can
use document.getElementById() to access the image elements directly.

In your JavaScript code, you will simply need to get the image element by its id and assign
it a new value for the src property on a mouseover event. Then you will simply change it back
on a mouseout event. The following is the JavaScript code:

var im1 = document.getElementById("pic1");
im1.onmouseover = function() { im1.src = pic1_new.src; };
im1.onmouseout = function() { im1.src = "image1.gif" };

Notice that the src property is changed to pic1_new.src on the mouseover event. This can be
done because a new image object was created for the second image and the src property was
set for it at that time (which also preloaded it). You could go back to the preloading script to
do the same for image1.gif if you desired, which would allow you to use the property value
instead of hard-coding the image URL back into the script. This can be useful if you have
numerous rollover images on the page.

Now, go back and use these three files to create the effect. First, the HTML file:

<body>
<script type="text/javascript" src="preload.js"></script>
<h1>The image below changes! Move your mouse over it!</h1>

<script type="text/javascript" src="change.js"></script>
</body>

Notice that the preload.js script is called first so that the second image will be preloaded
as soon as possible. The change.js script is placed after the image so that the necessary
image element will have been loaded before the script tries to get it by its id. Next, the
preload.js file:

if (document.images) {
 //Preload image that will show on the mouseover event
 var pic1_new= new Image();
 pic1_new.src="image1_c.gif";
}

Finally, the change.js file:

var im1 = document.getElementById("pic1");
im1.onmouseover = function() { im1.src = pic1_new.src; };
im1.onmouseout = function() { im1.src = "image1.gif" };

 456 JavaScript: A Beginner’s Guide

The closest you can get to seeing the results here is to see a before and after set of images.
Figure 16-2 shows the initial image, while Figure 16-3 shows the result when the mouse is
moved over the image.

Changing a Different Image
You may decide you want to change a different image from the one the mouse is moved over.
To do this, the setup is the same as in the preceding section except that you need to change
which element is changed when the mouse moves over the initial image.

You could change the code you have been using to leave the first image static and to
change a different image. Thus, you will want to preload the second image on the image that
will change. Here is the code for each file, starting with the HTML code:

<body>
<script type="text/javascript" src="preload.js"></script>
<h1> The first image below changes the second image! Move your mouse over
it!</h1>

<script type="text/javascript" src="change.js"></script>
</body>

This simply adds the new image (image2.gif) after a couple of line breaks. Next, the
preload.js file:

if (document.images) {
 //Preload image that will show on the mouseover event
 var pic2_new= new Image();
 pic2_new.src="image2_c.gif";
}

This changes everything from pic1 and image1 (which will no longer be changed) to pic2 and
image2 (which will now be the image that will be changed).

Figure 16-2 The initial image

 Chapter 16: An Introduction to Advanced Techniques 457

Finally, the change.js file:

var im1 = document.getElementById("pic1");
var im2 = document.getElementById("pic2");
im1.onmouseover = function() { im2.src = pic2_new.src; };
im1.onmouseout = function() { im2.src = "image2.gif" };

Here, the im2 variable is added to grab the second image by its id (pic2). It is then changed
when the viewer moves the mouse over the first image (im1).

Now the mouse can move over the first image and change the second image. Figures 16-4
and 16-5 show another set of before and after screens.

Figure 16-3 The new image appears when the mouseover event occurs

Figure 16-4 The images shown before the mouseover event

 458 JavaScript: A Beginner’s Guide

Changing Multiple Images
To change more than one image at a time, you need to have a set of two images for each image
you want to change. For simplicity, the example you will use only contains two pairs of images.
The code created will cause a mouseover event on the first image to change both itself and
the second image on the page at the same time. The images used for this script are image1.gif,
image1_c.gif, image2.gif, and image2_c.gif.

The HTML code will be the same as in the previous example (other than the heading):

<body>
<script type="text/javascript" src="preload.js"></script>
<h1>The image below changes itself and another image!</h1>

<script type="text/javascript" src="change.js"></script>
</body>

Next, the code for preload.js:

if (document.images) {

 var pic1_start = new Image();
 pic1_start.src = "image1.gif";
 var pic1_new= new Image();
 pic1_new.src="image1_c.gif";

Figure 16-5 The images shown after the mouseover event

 Chapter 16: An Introduction to Advanced Techniques 459

 var pic2_start = new Image();
 pic2_start.src = "image2.gif";
 var pic2_new= new Image();
 pic2_new.src="image2_c.gif";

}

The major difference is that you are now preloading both images in both image sets (which
will help with organization as the script grows and allows you to use the src property later for
the starting images). Finally, the changes to the change.js file:

var im1 = document.getElementById("pic1");
var im2 = document.getElementById("pic2");
im1.onmouseover = function() {
 im1.src = pic1_new.src;
 im2.src = pic2_new.src;
};
im1.onmouseout = function() {
 im1.src = pic1_start.src;
 im2.src = pic2_start.src;
};

This adds the second set of images and changes both of them on the mouseover event to their
respective second images, then back on the mouseout event. Notice that you are able to use
the pic1_start.src and pic2_start.src properties since the starting images were also assigned as
image objects in the preload.js script.

When the code is run, you will see something like the before and after screens shown in
Figures 16-6 and 16-7.

Figure 16-6 The images before the mouseover event

 460 JavaScript: A Beginner’s Guide

JavaScript Security
You may have noticed that when you try to use the window.close() method on the main
browser window, a confirmation box appears asking if you really want to allow the window
to be closed. This situation is one of the issues of JavaScript security. The browser does not
want a site to close a window that the viewer opened without permission from the viewer. If
that were allowed, the programmer would have some control of the viewer’s computer, which
could be a problem.

Another aspect of security is the mistaken belief that you can “protect” Web pages with
passwords or keep the source code of the page from being viewed by a user.

Yet another aspect of security is protecting against cross-site scripting, the use of JavaScript
to grab information from a server-side application that didn’t properly filter user input.

Security and Signed Scripts
To get viewer permission to close the main browser window or to use certain properties
or methods in JavaScript, you must use signed scripts. Signed scripts will open up some
additional JavaScript features, but you must do some additional work.

Basically, you digitally sign the script using a special tool. The viewer then gets a message
when entering the page that asks whether to allow the signed script, with some information
about the signed script. If the viewer accepts, then you will be able to use the additional
features. If not, you’ll need to have alternative code ready to avoid JavaScript errors.

For further information about this subject, go to the Web site www.mozilla.org/projects/
security/components/signed-scripts.html.

Page Protection
Many scripts attempt to keep viewers out in some way, such as by using password protection
or by using a “no-right-click” script to keep the source code of the page from being viewed.

Figure 16-7 The images after the mouseover event

www.mozilla.org/projects/security/components/signed-scripts.html
www.mozilla.org/projects/security/components/signed-scripts.html

 Chapter 16: An Introduction to Advanced Techniques 461

However, these security strategies are largely ineffective because these “password” and
“no-right-click” scripts can often be bypassed by turning off JavaScript or by doing a little
extra work.

Passwords
Some password systems are better than others, but none really seems to offer true Web page
security. If you don’t want someone to view a page, much better methods exist than using a
JavaScript system, such as using server-side languages or using certain setups on your Web server.

If you are on a free Web-hosting service, the better methods may or may not be available.
However, keep in mind that a JavaScript password system is not foolproof and that you should
not protect anything important with such a system.

Hiding Web Page Source Code
Many people would love to hide the source code of a Web page. However, JavaScript isn’t
going to do the trick. A number of scripts try various means of disabling the right-click.
Basically, these strategies don’t work because they can be bypassed in a couple of ways:

● If the right-click is disabled, you can always try selecting View | View Source.

● If the preceding method does not work, you can always turn off JavaScript or look in your
cache directory on your computer. The browser must have the code to display the page, so
a copy of it goes into the browser’s cache.

In the long run, these scripts just make viewing the source code more difficult (and they
can be annoying). For more information about this topic, go to http://webhome.idirect.com/
~bowers/copy/copy1.htm.

Cross-Site Scripting
Cross-site scripting (often shortened to XSS) uses JavaScript code (or other types of code) in a
malicious way to obtain information from users of various Web sites with vulnerable applications.
With this information, a person can use someone else’s cookie or session information and access
the Web site as though they were the user from which they obtained the information. This, of
course, can lead to big trouble, especially if that user is an administrator in that application or if the
application deals with money (such as a banking or shopping application).

While JavaScript is one of the ways used to perform such an attack, the vulnerable
application is usually one that is server-side and displays user input on the page. If the user
input is not sanitized (validated) in the server-side application, then any number of possible
malicious scripts could be entered instead of the expected input.

For example, you might have a form that uses a server-side script to allow people to send
comments. The script displays the comment the user submitted back to the user as a confirmation.
If the input is not sanitized, it is possible to enter something like this into the comments field:
<script>alert(“You’ve been had!”);</script>. If someone submits this and sees an alert on the
response page, the person will know there is a potential vulnerability and could simply direct
a subsequent user to a malicious URL where the user’s cookie or session information can be
taken. Figure 16-8 shows how a vulnerable application would display such an alert (this one also
included some comment text to help disguise the intent of the person submitting the form).

http://webhome.idirect.com/~bowers/copy/copy1.htm
http://webhome.idirect.com/~bowers/copy/copy1.htm

 462 JavaScript: A Beginner’s Guide

Cross-site scripting has evolved over the years. In the beginning, it was that a bad Web site
could load a good Web site in a frame (or in a pop-up browser window) and then access the
text boxes, cookies, and other data (user id and password) using JavaScript—thus the name
“cross site.” It should be noted that modern browsers, within the past four or five years, don’t
allow this type of cross-site scripting. One domain cannot access the contents of a different
domain. Most of the modern cross-site scripting attacks are injection attacks like the example
here (though often much more complex).

This introduction just scratches the surface of this type of security issue. The main thing to
remember is that when you are using server-side applications, you must sanitize any user input
to be sure that you receive the type of input you expect. For more information on this topic, go
to www.owasp.org/index.php/Cross_site_scripting.

AJAX
AJAX stands for Asynchronous JavaScript and XML, which is a way JavaScript can obtain
information from an XML file without the need to reload a page. For example, a synchronous
request to the Web server requires that the current page be reloaded to use the new information.
An asynchronous request allows the information to be obtained and used without the need to
wait for the entire page to reload.

This type of scripting is useful in progressive enhancement, as it allows applications to
enhance the user experience for those with JavaScript enabled in modern browsers. Instead of
waiting for a page to load again, the information can be obtained and used on-the-fly.

Figure 16-8 Oh no! This would not be good for users of this Web site!

www.owasp.org/index.php/Cross_site_scripting

 Chapter 16: An Introduction to Advanced Techniques 463

In JavaScript, an XMLHttpRequest object is created, which can then be used to make
HTTP requests to the server in the background and allow the user to continue using the
application without interruption.

In-depth coverage of this topic is beyond the scope of a beginner’s guide; however, more
information on AJAX and how to use it in your applications can be found at the following
Web sites:

● https://developer.mozilla.org/en/AJAX

● www.w3schools.com/Ajax/Default.Asp

JavaScript Libraries
There are a number of JavaScript libraries available that can help you write higher-level scripts
with less effort than it would take to write all of the code from scratch. Some of these are listed
here in case you would like to look into them further:

● jQuery http://jquery.com

● Prototype www.prototypejs.org

● Yahoo! YUI http://developer.yahoo.com/yui

Q: Where can I find free cut-and-paste JavaScript code on the Web?

A: http://javascript.internet.com
http://webdeveloper.earthweb.com/webjs
www.javascriptcity.com

Q: Where can I learn more about JavaScript?

A: https://developer.mozilla.org/en/JavaScript
www.javascriptkit.com
www.quirksmode.org/js/contents.html
www.pageresource.com/jscript

Q: Where can I learn more about Cascading Style Sheets?

A: www.w3schools.com/Css/default.asp
www.csszengarden.com

Q: Where can I learn more about DHTML?

A: http://webreference.com/dhtml
www.dynamicdrive.com

Ask the Expert

https://developer.mozilla.org/en/AJAX
www.w3schools.com/Ajax/Default.Asp
http://jquery.com
www.prototypejs.org
http://developer.yahoo.com/yui
http://javascript.internet.com
http://webdeveloper.earthweb.com/webjs
www.javascriptcity.com
https://developer.mozilla.org/en/JavaScript
www.javascriptkit.com
www.quirksmode.org/js/contents.html
www.pageresource.com/jscript
www.w3schools.com/Css/default.asp
www.csszengarden.com
http://webreference.com/dhtml
www.dynamicdrive.com

 464 JavaScript: A Beginner’s Guide

 Chapter 16 Self Test
 1. Which of the following lines does not create a JavaScript syntax error?

 A var myvar=“cool;

 B function 1cool()

 C document.write(“Is there an error?”);

 D window.alert “what is this?”);

 2. Which of the following lines does not create a JavaScript syntax error?

 A var else=3;

 B window.alert(“Cool!”);

 C document.write(“Cool!’);

 D function while()

 3. __________ errors are often tougher to find because the syntax of the code is correct.

 4. __________-__________ scripting might allow someone to obtain information from a user
of an application.

 5. __________ enhancement provides content for all viewers, but enhances it for those with
JavaScript in modern browsers.

 6. It’s a good idea to remove as much JavaScript code from the HTML file as possible and
move it to an external file.

 A True

 B False

 7. __________ stands for Asynchronous JavaScript and XML.

 8. JavaScript __________ may make some advanced coding tasks easier by making the code
easier to write.

 9. JavaScript should be used for password protection of important information.

 A True

 B False

 10. A __________ is a small text file that is stored on the end user’s computer.

 11. Which property is used to set and read a cookie?

 A The cookie property of the window object

 B The cookie property of the document object

✓

 Chapter 16: An Introduction to Advanced Techniques 465

 C The cook property of the document object

 D The set_or_read_cookie property of the document object

 12. Which property of the image object sets the source of an instance of the image object?

 A width

 B height

 C img_width

 D src

 13. In which type of script would you want to preload images on a page?

 A Status bar text change

 B Rollover effect

 C Animating text

 D Disabling a right-click

 14. Is it effective to try to hide the source code of a page using JavaScript?

 A Of course!

 B Why not?

 C No, but it can make reading it more difficult or annoying.

 D Works every time!

 15. Is JavaScript fun?

 A Yes!

 B No!

 C I was forced to learn this by my boss, so it can never be fun!

 D What is your definition of fun?

This page intentionally left blank

467

Appendix
Answers to Self Tests

 468 JavaScript: A Beginner’s Guide

Chapter 1: Introduction to JavaScript
 1. C. HTML

 2. A. A Web browser

 3. C. JavaScript

 4. B. False

 5. D. lenient

 6. A. True

 7. C. LiveScript

 8. A. object based

 9. B. client

 10. B. It can validate the information before it is sent to the server.

 11. C. scripting

 12. A. True

 13. D. The Web browser

 14. D. It is added to an HTML document.

 15. A. <script> and </script> HTML tags

Chapter 2: Placing JavaScript in an HTML File
 1. D. All of the above

 2. B. To be sure the browser does not interpret your JavaScript as another scripting language
and to ensure the Web page validates in XHTML

 3. A. Yes

 4. The noscript tag provides content for those without JavaScript.

 5. A. .js

 6. B. <script type= “text/javascript” src=“yourfile.js”></script>

 7. In older versions of HTML, the script tag is not case sensitive. However, with XHTML, the
script tag must be in lowercase.

 8. D. semicolon

 9. A. document.write()

 10. C. When the script is very long or needs to be placed in more than one HTML document

 Appendix: Answers to Self Tests 469

 11. JavaScript comments can be very useful for the purpose of documenting or debugging
your code.

 12. C. //

 13. A. /*

 14. D. */

 15. A. close

Chapter 3: Using Variables
 1. A variable represents or holds a value.

 2. A. They can save you time in writing and updating your scripts, and they can make the
purpose of your code clearer.

 3. To declare a variable, you use the var keyword.

 4. D. =

 5. C. var pagenumber=240;

 6. B. False

 7. A variable name must begin with a letter or an underscore character.

 8. A. True

 9. B. var my_house;

 10. In JavaScript, the variable values, or types, can include numbers, strings, Booleans, and nulls.

 11. To denote an exponent in JavaScript, you use a letter e right after the base number and
before the exponent.

 12. C. var mytext= “Here is some text!’;

 13. D. document.write(“John said, \“Hi!\””);

 14. Special characters enable you to add things to your strings that could not be added
otherwise.

 15. B. document.write(“I like to ” +myhobby+ “ every weekend”);

Chapter 4: Using Functions
 1. In general, a function is a little script within a larger script that is used to perform a single

task or a series of tasks.

 2. B. They provide a way to organize the various parts of the script into the different tasks that
must be accomplished, and they can be reused.

 470 JavaScript: A Beginner’s Guide

 3. On the first line of a function, you declare it as a function, name it, and indicate whether it
accepts any parameters.

 4. C. function

 5. A. Curly brackets – {}

 6. A. True

 7. B. False

 8. C. function get_text()

 9. Parameters are used to allow a function to import one or more values from somewhere
outside the function.

 10. B. parentheses – ()

 11. D. Comma

 12. D. window.alert(“This is text”);

 13. B. some_alert(“some”,“words”);

 14. A. var shopping=get_something();

 15. A local variable can be used only within the function in which it is declared.

Chapter 5: JavaScript Operators
 1. A(n) operator is a symbol or word in JavaScript that performs some sort of calculation,

comparison, or assignment on one or more values.

 2. Mathematical operators are most often used to perform mathematical calculations on
two values.

 3. The addition operator adds two values.

 4. When the increment operator is placed before the operand, it increases the value of the
operand by 1, and then the rest of the statement is executed.

 5. D. $#

 6. A. Assigns a new value to a variable

 7. The add-and-assign (+=) operator adds the value on the right side of the operator to the
variable on the left side and then assigns to the variable that new value.

 8. C. Compares two values or statements, and returns a value of true or false

 9. A. 4!=3

 10. D. 4<=3

 Appendix: Answers to Self Tests 471

 11. The logical operators allow you to compare two conditional statements to see if one or both
of the statements is true and to proceed accordingly.

 12. B. !(17>=20)

 13. B. (4>=4)&&(5<=2)

 14. Bitwise operators are logical operators that work at the bit level.

 15. In JavaScript, the operators have a certain order of precedence.

Chapter 6: Conditional Statements and Loops
 1. A conditional statement is a statement that you can use to execute a bit of code based on

a condition, or do something else if that condition is not met.

 2. You can think of a conditional statement as being a little like cause and effect.

 3. A. True

 4. B. if (y<7)

 5. C. Curly brackets

 6. The switch statement allows you to take a single variable value and execute a different line
of code based on the value of the variable.

 7. A loop is a block of code that allows you to repeat a section of code a certain number
of times.

 8. B. False

 9. A. for (x=1;x<6;x+=1)

 10. A while loop looks at a comparison and repeats until the comparison is no longer true.

 11. B. while (x=7)

 12. A. True

 13. B. False

 14. B. False

 15. D. As many times as you like

Chapter 7: Event Handlers
 1. A. True

 2. Event handlers are useful because they enable you to gain access to the events that may
occur on the page.

 472 JavaScript: A Beginner’s Guide

 3. To use an event handler, you need to know the keyword for the event handler and where to
place the event handler in the HTML code.

 4. C. <input type=“button” onclick=“window.alert(‘Hey there!’);”>

 5. The load event occurs when a Web page has finished loading.

 6. D. The viewer moves the mouse cursor over an element on the page.

 7. B. False

 8. The unload event occurs when the viewer leaves the current Web page.

 9. The blur event is the opposite of the focus event.

 10. A. <input type=“text” onfocus=“major_alert();”>

 11. The change event occurs when a viewer changes something within a form element.

 12. The submit event occurs when the viewer submits a form on a Web page.

 13. A. True

 14. C. onmousedown

 15. The addEventListener method and the attachEvent method are two new ways to register
events.

Chapter 8: Objects
 1. An object is a way of modeling something real, even though the object is a(n) abstract

entity.

 2. When you think of an object, you’ll probably want to visualize something general.

 3. Objects are useful because they give you another way to organize things within a script.

 4. B. dot operator

 5. The rules for naming objects are similar to those for naming variables and functions.

 6. You can create JavaScript objects using either a constructor function or an object
initializer.

 7. A. True

 8. B. False

 9. C. Assuming the myhouse object exists, it assigns the value of the kitchen property of the
myhouse object to the variable x.

 10. D. this.cost=get_cost;

 11. B. window.alert(“You are using ”+navigator.appName);

 Appendix: Answers to Self Tests 473

 12. C. Assuming the myhouse object exists, the kitchen property is assigned a new string value.

 13. In JavaScript, there are many predefined objects you can use to gain access to certain
properties and methods you may need.

 14. The navigator object gives you access to the various properties of the viewer’s browser.

 15. C. appType

Chapter 9: The Document Object
 1. The document object is an object that is created by the browser for each new HTML page

that is viewed.

 2. The referrer property of the document object returns the URL of the document that referred
the viewer to the current document.

 3. A. True

 4. D. getElementById()

 5. B. False (it is added as the last child node rather than the first)

 6. C. www.pageresource.com

 7. The anchors property of the document object is an array that contains all of the anchor
(<a>) tags on the page.

 8. The innerHTML DOM node property allows you to change the HTML content of an
element node.

 9. The lastModified property holds the value of the date and time the current document was
last modified.

 10. A. True

 11. A. True

 12. C. URL

 13. C. It adds a JavaScript newline character at the end of the line.

 14. A. When a form is given a name, the name of the form becomes the property name.

 15. B. document.write() and document.writeln() statements

Chapter 10: Window Object
 1. A window object is created for each window that appears on the screen.

 2. A. True

www.pageresource.com

 474 JavaScript: A Beginner’s Guide

 3. The length property holds the value of the number of frames within a window.

 4. A. True

 5. The name property holds the name of the current window and also allows you to give the
window a name.

 6. A. The window object is the default object in JavaScript.

 7. The self property is another way of saying “the current window” in JavaScript.

 8. C. Newer browsers do not allow the window status to be changed by default, so the user
would need to change security settings in order for it to work.

 9. A. The parent property goes to the top of the current frame set, while the top property goes
to the top window of all frame sets on the page.

 10. The alert() method pops up a message to the viewer, and the viewer has to click an OK
button to continue.

 11. A. true

 12. The print() method enables the viewer to print the current window.

 13. The prompt() method is used to prompt the viewer to enter information.

 14. D. yes, no, 1, and 0

 15. B. The setInterval() method is used to repeat a function at a set time interval, while
setTimeout() executes a function only once after a set time delay.

Chapter 11: JavaScript Arrays
 1. An array is a way of storing data of similar types for easy access later in a script.

 2. In JavaScript, an array is basically a user-defined object.

 3. B. index number

 4. A(n) associative array allows access using a string in place of the number.

 5. D. soap

 6. D. var if= new Array[10];

 7. C. cool[4];

 8. A. Creates an empty array named s_list

 9. A. The length property

 10. The prototype property allows you to add properties and methods to an object that
already exists.

 Appendix: Answers to Self Tests 475

 11. The concat() method is used to combine the elements of two or more arrays and return
a new array containing all of the elements.

 12. The join() method is used to combine the elements of an array into a single string, with
each element separated by a specified character.

 13. The pop() method is used to remove the last element from an array.

 14. C. It sorts the contents alphabetically.

 15. D. A string value

Chapter 12: Math, Number, and Date Objects
 1. A. Take the square roots and other such values of strings and return a number

 2. The E property holds the value of Euler’s constant.

 3. The LN10 property holds the value of the natural logarithm of 10.

 4. B. False

 5. C. document.write(Math.PI);

 6. The SQRT2 property holds the value of the square root of 2.

 7. C. absolute

 8. The asin() method returns the arcsine of a number sent to it as a parameter.

 9. The pow() method returns the numeric value of the first parameter raised to the power of
the second parameter.

 10. C. var rand_int= Math.floor(Math.random()*8);

 11. The sqrt() method returns the square root of a number sent to it as a parameter.

 12. D. An instance of the Date object

 13. The getDay() method returns the number of days into the week.

 14. B. False

 15. B. var weekday= rightnow.getDay();

Chapter 13: Handling Strings
 1. The String object provides properties and methods to get information about strings or to

modify strings.

 2. A. Creating an instance of the String object and creating a string literal

 3. You can create a string literal by assigning a string value to a variable.

 476 JavaScript: A Beginner’s Guide

 4. C. JavaScript takes the string literal and turns it into a temporary String object

 5. C. length

 6. The length property returns the length of a string.

 7. B. var the_text= “Look at me!”;

 8. B. charAt()

 9. The big() method adds <big> and </big> tags around a string value.

 10. The concat() method combines two or more strings together and returns the new combined
string value.

 11. D. The indexOf() method returns a numeric value that is the position of a character sent as a
parameter, but only the position of the first occurrence of that character.

 12. The italics() method adds <i> and </i> tags around a string value.

 13. The toString() method returns the string literal value of a String object.

 14. To replace information in a string, you can use regular expressions and the replace() method
of the String object.

 15. The match() method compares a regular expression and a string to see whether they match.

Chapter 14: JavaScript and Forms
 1. Each time you add a set of <form> and </form> tags to an HTML document, a(n) form

object is created.

 2. The forms array allows you to access a form using an index number.

 3. B. document.forms[3]

 4. A. document.forms[2].length

 5. C. document.forms.length

 6. Using form names or ids allows you to name the forms on the page that you want to
access later.

 7. A. document.f1.e1.value

 8. The action property allows you to access the value of the action=“url” attribute in the
opening form tag.

 9. The elements property is an array that allows you to access each element in a specific form.

 10. The options property is an array that contains an element for each option listed in a select
box in a form.

 11. The reset() method allows you to reset a form using your script.

 Appendix: Answers to Self Tests 477

 12. B. true or false

 13. When the viewer clicks the submit button on a form, a submit event occurs and can be
captured with the onsubmit event handler.

 14. The submit() method allows you to submit a form without the viewer clicking the
submit button.

 15. D. The selectedIndex property

Chapter 15: JavaScript and Frames
 1. Frames divide a window into two or more separate areas, each containing different content.

 2. Frames differ from tables because the divisions in a frameset contain separate HTML
documents.

 3. The <frameset></frameset> tags are used to create a frameset.

 4. A single frame is created with the <frame></frame> tags.

 5. The cols attribute divides a frameset into columns.

 6. If you want to have a more complex frameset that includes both rows and columns, you can
nest one frameset within another.

 7. A. The frames array or a frame name

 8. A. True

 9. C. The number of frames in a window

 10. B. The frame should take up any remaining space in the window.

 11. A. top

 12. B. top.right_side.location=“frame3.html”;

 13. Using a target of top tells the browser to use the full window when opening a URL rather
than opening the URL in a frame.

 14. A. True

 15. The rows attribute divides a frameset into rows.

Chapter 16: An Introduction
to Advanced Techniques
 1. C. document.write(“Is there an error?”);

 2. B. window.alert(“Cool!”);

 478 JavaScript: A Beginner’s Guide

 3. Logical errors are often tougher to find because the syntax of the code is correct.

 4. Cross-site scripting might allow someone to obtain information from a user of an
application.

 5. Progressive enhancement provides content for all viewers, but enhances it for those with
JavaScript in modern browsers.

 6. A. True

 7. AJAX stands for Asynchronous JavaScript and XML.

 8. JavaScript libraries may make some advanced coding tasks easier by making the code
easier to write.

 9. B. False

 10. A cookie is a small text file that is stored on the end user’s computer.

 11. B. The cookie property of the document object

 12. D. src

 13. B. Rollover effect

 14. C. No, but it can make reading it more difficult or annoying.

 15. Any answer is correct!

479

Index

// (forward slashes), 28
{} (curly brackets), 62–63, 128
+ (addition operator), 47, 49–50, 90–92
&& (AND operator), 107
= (assignment operator), 36, 88, 97
\ (backslash), 42–43, 47
. (dot), 22
“ (quotation marks), 47
escaping characters, 44–46
== (is-equal-to) operator, 102–103
> (is-greater-than) operator103–104
>= (is-greater-than-or-equal-to)

operator104–105
< (is-less-than) operator, 104
<= (is-less-than-or-equal-to) operator, 105
!= (is-not-equal-to) operator, 103
* (multiplication) operator, 92
*= (multiply-and-assign) operator, 99
===(strict is-equal-to) operator,105–106
!== (strict is-not-equal-to) operator, 106
and string variables, 41–42
; (semicolon), 19, 61–62

A
abort event (onabort), 155
accessibility, 442–445
action property, 382–383
add-and-assign operator (+=), 98
addEventListener() method, 172
addition operator (+), 47, 49–50, 90–92
AJAX, 462–463
alert() method, 249–251
alerts

creating, 68–69
finding problem variables, 440–442
using a function for an alert, 69–70

alinkColor property, 210
all property, 218
allowed characters

in functions, 63
in variables, 38–39

anchor() method, 347–348
anchors property, 210, 211
AND operator (&&), 107
anonymous functions, 78

 480 JavaScript: A Beginner’s Guide

appCodeName property, 195–196
appName property, 196
appVersion property, 196–197
arguments, 19
arrays

accessing an array’s elements, 276–277
associative arrays, 298–300
concat() method, 283–284
constructor property, 279–280
creating array elements, 292–293
defined, 274–275
defining, 276, 277–279
extended methods, 291
index and input properties, 280
join() method, 284–285
length property, 280–281
methods, 282–291
moving through arrays, 293–297
naming, 275
pop() method, 285–286
properties, 279–282
prototype property, 281–282
push() method, 286–287
reverse() method, 287, 290
shift() method, 287–288
slice() method, 288–289
sort() method, 290–291
splice() method, 289–290
toString() method, 291
unshift() method, 288
using with loops, 292–297
why arrays are useful, 275

assignment operator (=), 36, 88, 97
associative arrays, 298–299

accessing, 299–300
defining, 299

attachEvent() method, 172–173

B
back() method, 200
backslash (\), 42–43, 47
bgColor property, 210
bitwise operators, 89, 108
block nesting, 120–123
blur() method, 389
blur event (onblur), 155–156

body section, 22, 68–70
Boolean variables, 46
break statements, 141
browsers, 3, 6–7

older browsers and noscript tags, 19
button link, 169–171
buttons, clicking, 399–403

C
Cascading Style Sheets. See CSS
case sensitivity, 17

functions, 63
objects, 178
string variables, 42
variables, 38

CDATA section, 18
ceil() method, 314–315
charAt() method, 351–352
charCodeAt() method, 352
checked property, 384–386
class based, defined, 8
clearInterval() method, 266–267
clearTimeout() method, 267–268
click() method, 389–390
client-side languages, 9
clock, creating a simple clock, 336–338
close() method, 225–227, 261–262
closed property, 243–244
color properties, 210
commands, adding to a page, 52–53
comments, 27

inserting on one line, 28
multiple-line comments, 28–29

comparison operators, 88, 101
is-equal-to operator (==), 102–103
is-greater-than operator (>), 103–104
is-greater-than-or-equal-to

operator (>=), 104–105
is-less-than operator (<), 104
is-less-than-or-equal-to operator (<=), 105
is-not-equal-to operator (!=), 103
strict is-equal-to operator (===), 105–106
strict is-not-equal-to operator (!==), 106

complex comparisons, 123–125
concat() method, 283–284, 353
conditional operator, 126–127, 129

 Index 481

conditional statements
defined, 116–117
if/else statement blocks, 117–125
switch statements, 125–126
why conditional statements are useful, 117, 128

confirm() method, 251–252
constructor functions, 178–184
constructor property, 279–280, 322, 327, 344
content

enhancing, 444–445
separating from presentation, 442–444

continue statements, 141
cookie property, 210–211
cookieEnabled property, 197
cookies, 446

reading, 449–451
setting, 446–449

creation methods, 228–233
cross-site scripting, 461–462
CSS

prior knowledge needed to learn JavaScript, 3
setting styles in JavaScript, 234–235

curly brackets ({}), 62–63, 128

D
Date object, 326

methods, 327–329, 333–334
methods that get values, 329–332
methods that set values, 332–333
properties, 326–327

date scripts, 334–338
debugging scripts, 436–442
decrement operator (– –), 95–96
defaultChecked property, 386
defaultStatus property, 244
defaultValue property, 386–387
dir property, 211–212
divide-and-assign operator (/=), 99
division by zero, 93
division operator (/), 93–94
do while loops, 139–140, 142
document object

all property, 218
anchors property, 210, 211
color properties, 210
cookie property, 210–211

creation methods, 228–233
defined, 206
dir property, 211–212
DOM node methods, 230–233
DOM node properties, 228–230
domain property, 212–213
formname property, 213–215, 222
forms property, 215
getElementById() method, 224
getElementsByClassName() method, 224
getElementsByTagName() method, 225
images property, 215–217
lastModified property, 217, 218
layers property, 217–218
links property, 219
methods, 222–233
open() and close() methods, 225–227
properties, 207–222
referrer property, 219, 221
title property, 219–220
URL property, 220, 221
URLUnencoded property, 220–221
write() method, 227
writeIn() method, 227–228

Document Object Model, 206–207
DOM. See Document Object Model
DOM node methods, 230–233
DOM node properties, 228–230
domain property, 212–213
dot (.), 22
dynamic scripts

coding, 235–236
innerHTML property, 236–237
styles, 234–235

E
ECMAScript, 6
elements property, 383–384
encoding property, 391
errors, 436

alerts, 440–442
error messages, 437–438, 441
logical errors, 439–442
scanning the script for errors, 438–439
syntax errors, 437–439

 482 JavaScript: A Beginner’s Guide

escape() method, 447–448
escaping characters, 44–46
event handlers, 18, 152, 154, 171–172

addEventListener() method, 172
adding the id attribute, 151
attachEvent() method, 172–173
button link, 169–171
creating scripts using, 167–171
defined, 148
text box message, 167–169
using in an HTML element, 149–150
using in script code, 151–153
why event handlers are useful, 148

events, 154–155, 166–167
abort event (onabort), 155
blur event (onblur), 155–156
change event (onchange), 156–157
click event (onclick), 157–158
focus event (onfocus), 158–159
keydown event (onkeydown), 159
keypress event (onkeypress), 160
keyup event (onkeyup), 160
load event (onload), 160–161
mousedown event (onmousedown), 161
mousemove event (onmousemove), 161
mouseout event (onmouseout), 163
mouseover event (onmouseover), 162–163
mouseup event (onmouseup), 164
reset event (onreset), 164
submit event (onsubmit), 164
unload event (onunload), 164–165

exercises. See Try This exercises
external JavaScript files

calling, 17
creating a JavaScript file, 23–24
creating the HTML files, 24–25
viewing the pages in your browser, 25–26

F
fgColor property, 210
fieldset tags, 393–394
find() method, 253
Firefox, 3, 4, 7
flags, 365–366
floor() method, 315

focus() method, 390
fontcolor() method, 348–349
fontsize() method, 349
for each in loops, 140, 296–297
for in loops, 140, 190–191
for loops, 131–137, 142
form object

fieldset tags, 393–394
label tags, 393
methods, 392
not assuming client-side scripting, 394
properties, 377–380, 382–391
using proper element and label order, 393

form property, 387
formname property, 213–215, 222
forms

accessing using an ID, 381–382
accessing using form names, 380–381
accessing using the forms array, 376–380
clicking a button, 399–403
ensuring accessibility, 392–394
form elements with their objects and

methods, 385
validating, 395–397, 398

forms array, 376–380
forms property, 215
forward() method, 200–201
forward slashes (//), 28
frames

accessing using a frame name, 417–418
accessing with the frames array, 414–417
breaking out of, 424–426
changing a single frame, 418–419, 427
changing multiple frames, 419–422, 427
code behind the frames, 409–411
navigation, 423–427
nesting, 413–414, 427
options, 411–414
purpose of, 408–409
rows or columns, 411–413
sending viewers to, 426–427
using the select box with, 423–424
using variables across frames, 428–431

frames property, 244
framework of a JavaScript page, creating, 51
fromCharCode() method, 353
function constructors, 77

 Index 483

function expressions, 77
function operators, 77
functions, 19

allowed characters, 63
anonymous functions, 78
calling, 78
calling a function from another function, 70–71
calling a function that doesn’t exist, 79
calling functions with parameters, 72–76
calling functions with return statements, 76
calling in scripts, 67
case sensitivity, 63
declaring, 61–62, 77
defined, 60–61
defining, 76–78
defining code for, 62–63
example, 81–83
giving meaningful names, 64
naming, 63–64
parameter values, 65
parameters, 61, 64–66
removing, 79
reserved words, 63
return statements, 61, 66–67
using for a JavaScript alert, 69–70
using multiple parameters, 65–66
using value parameters, 74–75
using variables as function parameters, 73–74
when to call, 79

G
getDate() method, 330
getDay() method, 331
getElementById() method, 224
getElementsByClassName() method, 224
getElementsByTagName() method, 225
getFullYear() method, 332
getHours() method, 331
getMilliseconds() method, 331
getMinutes() method, 331
getMonth() method, 331
getSeconds() method, 331
getTime() method, 331
getTimezoneOffset() method, 332

getYear() method, 332
global variables, 72–73

See also variables
go() method, 201

H
head section, 22, 68–70
Hello World script

creating an HTML document for the script, 20
inserting into the HTML document, 20–21
writing the script, 19–20

hiding web page source code, 461
history object, 199–201
home() method, 253
HTML

prior knowledge needed to learn JavaScript, 3
script tags, 16

HTML editors, 6

I
id attribute, 151
IE. See Internet Explorer
if/else statement blocks, 117–125

and curly brackets, 128
image object, properties, 452
images

changing a different image, 456–458
changing multiple images, 458–460
preloading, 452–453
rollover, 454–460

images property, 215–217
increment operator (++), 94–95
index property, 280
indexOf() method, 353–355
innerHeight property, 244–245
innerHTML property, 236–237
innerWidth property, 244–245
input property, 280
Internet Explorer, 3, 4, 7
is-equal-to operator (==), 102–103
is-greater-than operator (>), 103–104
is-greater-than-or-equal-to operator (>=), 104–105

 484 JavaScript: A Beginner’s Guide

is-less-than operator (<), 104
is-less-than-or-equal-to operator (<=), 105
is-not-equal-to operator (!=), 103

J
Java, 7
Java applets, 7
javaEnabled() method, 198–199
JavaScript

how it runs in a browser, 9–10
overview, 8–9
prior knowledge needed to learn, 2–6
similarities to other programming languages, 8
versions supported by major browsers, 5
writing a page of, 51–54

join() method, 284–285
JScript, 6

L
label tags, 393
language attributes, 18
languages. See programming languages;

scripting languages
lastIndexOf() method, 355
lastModified property, 217, 218
layers property, 217–218
length property, 246, 280–281, 344–345,

352, 359, 391
libraries, 463
link() method, 349–351
linkColor property, 210
links property, 219
load event (onload), 160–161
local variables, 73

See also variables
location property, 246
logical errors, 439–442
logical operators, 89, 107

bitwise operators, 108
NOT operator (!), 108
AND operator (&&), 107
OR operator (||), 107–108

loops
break and continue statements, 141
and the count variable, 142
defined, 130
do while loops, 139–140, 142
for each in loops, 140, 296–297
for loops, 131–137, 142
for in loops, 140, 190–191
nested loops, 135–137
using arrays with, 292–297
while loops, 137–139, 142
why loops are useful, 130–131, 142

M
match() method, 356, 371–372
Math object, 306

ceil() method, 314–315
floor() method, 315
max() and min() methods, 312–313
methods, 308–320
pow() method, 313–314
properties, 306–308, 321
random() method, 315–320, 321
round() method, 315
two-parameter methods, 312–314

mathematical operators, 88, 89–90
addition operator (+), 47, 49–50, 90–92
decrement operator (– –), 95–96
division operator (/), 93–94
increment operator (++), 94–95
modulus operator (%), 94
multiplication operator (*), 92
subtraction operator (–), 92
unary negation operator (–), 96

max() method, 312–313
MAX_VALUE property, 323
method property, 391
methods, 186–190, 198–199
Microsoft Internet Explorer.

See Internet Explorer
min() method, 312–313
MIN_VALUE property, 323–324
modulus operator (%), 94

 Index 485

modulus-and-assign operator (%=), 99–100
mousedown event (onmousedown), 161
mousemove event (onmousemove), 161
mouseout event (onmouseout), 163
mouseover event (onmouseover), 162–163
mouseup event (onmouseup), 164
moveBy() method, 262–263
moveTo() method, 263–264
Mozilla Firefox. See Firefox
multiplication operator (*), 92
multiply-and-assign operator (*=), 99

N
name property, 246–247, 387, 391
NaN property, 324
navigating forms, 399–403
navigator object, 194

methods, 198–199
properties, 194–198

NEGATIVE_INFINITY property, 324
nested loops, 135–137
nesting frames, 413–414, 427
nesting if/else statement blocks, 120–123, 129
noscript tags, 17–19
NOT operator (!), 108
null variables, 46
Number object, 322

constructor property, 322
MAX_VALUE property, 323
methods, 324–326
MIN_VALUE property, 323–324
NaN property, 324
NEGATIVE_INFINITY property, 324
POSITIVE_INFINITY property, 324
properties, 322–324
prototype property, 324
toExponential() method, 324–325
toFixed() method, 324–325
toPrecision() method, 324–325
toSource() method, 326
toString() method, 324, 326
valueOf() method, 326

number variables, 40–41, 47
See also variables

O
object based, defined, 8
object manipulation statements

for in loops, 190–191
with statements, 191–192

objects
adding methods, 186–190, 192
constructor functions, 178–184
defined, 176–177
history object, 199–201
instances, 179, 192
naming, 177–178
navigator object, 194–199
object initializers, 184–186, 192
predefined, 194–201
properties, 176
property values, 182–184
self-written objects, 192
structure, 178–186
why objects are useful, 177
See also Date object; document object;

Math object; Number object;
String object; window object

onabort, 155
onblur, 155–156
onchange, 156–157
onclick, 157–158
onkeydown, 159
onkeypress, 160
onkeyup, 160
onLine property, 197
onload, 160–161
onmousedown, 161
onmousemove, 161
onmouseout, 163
onmouseover, 162–163
onmouseup, 164
onreset, 164
onsubmit, 164, 395–396
onunload, 164–165
open() method, 225–227, 256–261
opener property, 247
Opera, 3, 4, 7
operators, 88, 109–110

assignment, 36, 88, 97–100
bitwise, 89, 108

 486 JavaScript: A Beginner’s Guide

operators (continued)
comparison, 88, 101–106
conditional, 126–127, 129
logical, 89, 107–108
mathematical, 88, 89–96
order of precedence, 110–111
special, 89, 109

options property, 387–388
OR operator (||), 107–108
order of precedence, 110–111

P
page protection, 460–462
parameters, 61, 64–66

optional, 75–76
using function parameter values, 65
using multiple parameters, 65–66
using value parameters, 74–75
using variables as function parameters, 73–74

parent property, 248
parentheses, 110
parse() method, 333
passwords, 461
platform property, 197–198
plugins property, 198
pop() method, 285–286
pop-up windows, 268
POSITIVE_INFINITY property, 324
pow() method, 313–314
predefined objects, 194–201
print() method, 254
programming languages

similarities between JavaScript and, 8
See also scripting languages

prompt() method, 255–256
prototype property, 281–282, 324, 327, 345
push() method, 286–287

Q
quotation marks (“), 47

escaping characters, 44–46
and string variables, 41–42

R
random() method, 315–320, 321
random images for the updated look, 318–320
random integers, 316
random numbers for scripts, 316
random quotes for fun, 316–318
referrer property, 219, 221
regular expressions, 363

adding flags, 365–366
codes, 367–368
creating, 363–364
creating powerful patterns, 366–369
grouping, 369–370
resources, 372
testing strings against, 364–365

remote controls, 268
replace() method, 356, 370–371
reserved words, 39, 40, 63

and objects, 178
reset() method, 392
reset event (onreset), 164
resizeBy() method, 265
resizeTo() method, 265
return statements, 61, 66–67, 395–396

calling functions with, 76
reverse() method, 287, 290
rollovers, 454–460
round() method, 315

S
script tags, 16, 18

body section, 68–70
external scripts, 17
fieldset tags, 393–394
head section, 68–70
label tags, 393
noscript tags, 17–19

scripting languages, 9
identifying, 16–17
See also programming languages

scripts
date scripts, 334–338
dynamic scripts, 234–237

 Index 487

Hello World, 19–21
signed scripts, 460

scrollBy() method, 265
scrollTo() method, 265
search() method, 356, 372
security, 460–462
select() method, 390–391
selectedIndex property, 388
self property, 248
Self Tests

answers to, 468–478
Chapter 1, 11–13
Chapter 2, 29–31
Chapter 3, 57–58
Chapter 4, 84–86
Chapter 5, 113–114
Chapter 6, 143–145
Chapter 7, 173–174
Chapter 8, 202–203
Chapter 9, 238–240
Chapter 10, 269–271
Chapter 11, 301–303
Chapter 12, 339–340
Chapter 13, 373–374
Chapter 14, 404–405
Chapter 15, 433–434
Chapter 16, 464–465

self-written objects, 192
semicolon (;), 19, 61–62
server-side languages, 8
setInterval() method, 265–266
setTimeout() method, 267
shift() method, 287–288
signed scripts, 460
slice() method, 288–289, 356, 359
sort() method, 290–291
source code, hiding, 461
special characters, 42–44
special operators, 89, 109
splice() method, 289–290
split() method, 356–357, 359
src property, 452
statements, 19
status property, 248
strict is-equal-to operator (===), 105–106
strict is-not-equal-to operator (!==), 106
string literal, 343

String object, 342
anchor() method, 347–348
charAt() method, 351–352
charCodeAt() method, 352
concat() method, 353
constructor property, 344
fontcolor() method, 348–349
fontsize() method, 349
fromCharCode() method, 353
indexOf() method, 353–355
lastIndexOf() method, 355
length property, 344–345, 352
link() method, 349–351
match() method, 356, 371–372
methods that add HTML tags, 345–351
prototype property, 345
putting the methods together, 360–362
regular expressions, 363–370
replace() method, 356, 370–371
search() method, 356, 372
slice() method, 356
split() method, 356–357
vs. string literal, 343–344
substr() method, 357
substring() method, 357–358
toLowerCase() method, 358
toString() method, 358
toUpperCase() method, 358

string variables, 41–46
See also variables

strings. See text strings
styles, 234–235
submit() method, 392
submit event (onsubmit), 164
substr() method, 357
substring() method, 357–358, 359
subtract-and-assign operator (– =), 99
subtraction operator (–), 92
switch statements, 125–126
syntax errors, 437–439

T
target property, 391
ternary operator, 126–127, 129
text box message, 167–169

 488 JavaScript: A Beginner’s Guide

text editors, 3, 6
text strings, 19
title property, 219–220
toDateString() method, 334
toExponential() method, 324–325
toFixed() method, 324–325
toGMTString() method, 334
tokens, 62–63
toLocaleDateString() method, 334
toLocaleString() method, 334
toLocaleTimeString() method, 334
toLowerCase() method, 358
top property, 248
toSource() method, 326
toString() method, 291, 324, 326, 334, 358
toTimeString() method, 334
toUpperCase() method, 358
Try This exercises

adding a DOM node to the document, 233
adjusting a variable value, 100–101
building a select box navigation script, 403
calling an external script from an

HTML document, 26–27
changing frames, 422
constructing an if/else block, 129–130
creating a button, 153
creating a computer object, 193–194
creating a JavaScript clock, 338–339
creating an HTML page with functions, 79–80
creating an HTML page with JavaScript, 55–57
declaring variables, 47–48
displaying a random link on a page, 321–322
inserting a script into an HTML

document, 22–23
making this code accessible, 445–446
practicing with the predefined navigator

object, 201–202
remembering a name, 451–452
requesting a number, 398–399
true or false?, 111–112
trying out property changes, 238
using associative arrays, 301
using charAt() to find a first letter, 359–360
using events to send out alerts, 165–166
using indexOf() to test an address, 362–363
using JavaScript to write text, 10–11
using loops with arrays, 297–298

using the location and innerWidth
properties, 248–249

using the setTimeout() and confirm()
methods, 269

using variables, 432
working with for loops and while loops, 143
writing your own functions, 83–84

type attributes, 18
type conversions

in addition calculations, 91–92
in division calculations, 93–94

type property, 389

U
unary negation operator (–), 96
unload event (onunload), 164–165
unshift() method, 288
URL property, 220, 221
URLUnencoded property, 220–221
userAgent property, 198
UTC methods, 332

V
validating forms, 395–397, 398
validating pages, in XHTML, 18
value property, 389
valueOf() method, 326
var keyword, 37–38, 40–41
variables, 34–35, 47

adding to text strings, 49–50
assigning values to, 36–38
avoiding reserved words, 39, 40
Boolean variables, 46
case sensitivity, 38, 42
as code clarifiers, 36
declaring, 36
defining, 51–52
giving meaningful names, 39–40
global variables, 72–73
local variables, 73
making a call to a variable, 49
modifying, 53–54

 Index 489

naming, 38–40
null variables, 46
number variables, 40–41, 47
as placeholders for unknown values, 35
string variables, 41–46
as time-savers, 35
types of, 40–46
using allowed characters, 38–39
using as function parameters, 73–74

versions
ECMAScript, 6
JScript, 6
supported by major browsers, 5

vlinkColor property, 210

W
web browsers, 3, 6–7

older browsers and noscript tags, 19
while loops, 137–139, 142
window object, 242

alert() method, 249–251
clearInterval() method, 266–267
clearTimeout() method, 267–268
close() method, 261–262
closed property, 243–244
confirm() method, 251–252
defaultStatus property, 244
extended attributes, 260–261
find() method, 253
frames property, 244
home() method, 253
innerHeight and innerWidth

properties, 244–245

length property, 246
location property, 246
methods, 249, 250
moveBy() method, 262–263
moveTo() method, 263–264
name property, 246–247
open() method, 256–261
opener property, 247
parent property, 248
pop-up windows, 268
print() method, 254
prompt() method, 255–256
properties, 242–248
resizeBy() method, 265
resizeTo() method, 265
scrollBy() method, 265
scrollTo() method, 265
self property, 248
setInterval() method, 265–266
setTimeout() method, 267
standard attributes, 257–260
status property, 248
top property, 248

with statements, 191–192
write() method, 227
writeIn() method, 227–228

X
XHTML

case sensitivity, 17
type attributes, 18
validating pages, 18

XMLHttpRequest object, 9

	McGraw Hill - JavaScript a Beginners Guide, Third Edition (11-2009) (ATTiCA)
	Acknowledgments
	Introduction
	1 Introduction to JavaScript
	What You Need to Know
	Basic HTML and CSS Knowledge
	Basic Text Editor and Web Browser Knowledge
	Which Version?
	Remember, It’s Not Java
	Similarities to Other Languages

	Beginning with JavaScript
	Object Based
	Client Side
	Scripting Language

	Putting It All Together
	Online Resources
	Try This 1-1: Use JavaScript to Write Text

	2 Placing JavaScript in an HTML File
	Using the HTML Script Tags
	Identifying the Scripting Language
	Calling External Scripts
	Using <noscript></noscript> Tags

	Creating Your First Script
	Writing a “Hello World” Script
	Creating an HTML Document for the Script
	Inserting the Script into the HTML Document

	Try This 2-1: Insert a Script into an HTML Document
	Using External JavaScript Files
	Creating a JavaScript File
	Creating the HTML Files
	Viewing the Pages in Your Browser

	Try This 2-2: Call an External Script from an HTML Document
	Using JavaScript Comments
	Inserting Comments on One Line
	Adding Multiple-Line Comments

	3 Using Variables
	Understanding Variables
	Why Variables Are Useful
	Variables as Placeholders for Unknown Values
	Variables as Time-Savers
	Variables as Code Clarifiers

	Defining Variables for Your Scripts
	Declaring Variables
	Assigning Values to Variables
	Naming Variables

	Understanding Variable Types
	Number
	String
	Boolean
	Null

	Try This 3-1: Declare Variables
	Using Variables in Scripts
	Making a Call to a Variable
	Adding Variables to Text Strings

	Writing a Page of JavaScript
	Creating the Framework
	Defining the Variables
	Adding the Commands
	Modifying the Page

	Try This 3-2: Create an HTML Page with JavaScript

	4 Using Functions
	What a Function Is
	Why Functions Are Useful
	Structuring Functions
	Declaring Functions
	Defining the Code for Functions
	Naming Functions
	Adding Parameters to Functions
	Adding Return Statements to Functions

	Calling Functions in Your Scripts
	Script Tags: Head Section or Body Section
	Calling a Function from Another Function
	Calling Functions with Parameters
	Calling Functions with Return Statements
	Other Ways to Define Functions

	Try This 4-1: Create an HTML Page with Functions
	Putting It All Together
	Try This 4-2: Write Your Own Functions

	5 JavaScript Operators
	Understanding the Operator Types
	Understanding Mathematical Operators
	The Addition Operator (+)
	The Subtraction Operator (–)
	The Multiplication Operator (*)
	The Division Operator (/)
	The Modulus Operator (%)
	The Increment Operator (++)
	The Decrement Operator (– –)
	The Unary Negation Operator (–)

	Understanding Assignment Operators
	The Assignment Operator (=)
	The Add-and-Assign Operator (+=)
	The Subtract-and-Assign Operator (–=)
	The Multiply-and-Assign Operator (*=)
	The Divide-and-Assign Operator (/=)
	The Modulus-and-Assign Operator (%=)

	Try This 5-1: Adjust a Variable Value
	Understanding Comparison Operators
	The Is-Equal-To Operator (==)
	The Is-Not-Equal-To Operator (!=)
	The Is-Greater-Than Operator (>)
	The Is-Less-Than Operator (<)
	The Is-Greater-Than-or-Equal-To Operator (>=)
	The Is-Less-Than-or-Equal-To Operator (<=)
	The Strict Is-Equal-To Operator (===)
	The Strict Is-Not-Equal-To Operator (!==)

	Understanding Logical Operators
	The AND Operator (&&)
	The OR Operator (||)
	The NOT Operator (!)
	The Bitwise Operators

	Special Operators
	Understanding Order of Operations
	Try This 5-2: True or False?

	6 Conditional Statements and Loops
	Defining Conditional Statements
	What Is a Conditional Statement?
	Why Conditional Statements Are Useful

	Using Conditional Statements
	Using if/else Statement Blocks
	Using the switch Statement
	Using the Conditional Operator

	Try This 6-1: Construct an if/else Block
	Defining Loops
	What Is a Loop?
	Why Loops Are Useful

	Using Loops
	for
	while
	do while
	for in
	for each in
	Using break and continue

	Try This 6-2: Work with for Loops and while Loops

	7 Event Handlers
	What Is an Event Handler?
	Why Event Handlers Are Useful
	Understanding Event Handler Locations and Uses
	Using an Event Handler in an HTML Element
	Using an Event Handler in the Script Code

	Try This 7-1: Create a Button
	Learning the Event Handlers
	The Abort Event (onabort)
	The Blur Event (onblur)
	The Change Event (onchange)
	The Click Event (onclick)
	The Focus Event (onfocus)
	The Keydown Event (onkeydown)
	The Keypress Event (onkeypress)
	The Keyup Event (onkeyup)
	The Load Event (onload)
	The Mousedown Event (onmousedown)
	The Mousemove Event (onmousemove)
	The Mouseover Event (onmouseover)
	The Mouseout Event (onmouseout)
	The Mouseup Event (onmouseup)
	The Reset Event (onreset)
	The Submit Event (onsubmit)
	The Unload Event (onunload)

	Try This 7-2: Use Events to Send Out Alerts
	Creating Scripts Using Event Handlers
	The Text Box Message
	The Button Link

	Other Ways to Register Events
	The addEventListener() Method
	The attachEvent() Method

	8 Objects
	Defining Objects
	What Is an Object?
	Why Objects Are Useful

	Creating Objects
	Naming
	Object Structure
	Adding Methods
	Object Manipulation Statements

	Try This 8-1: Create a Computer Object
	Understanding Predefined JavaScript Objects
	The Navigator Object
	The History Object

	Try This 8-2: Practice with the Predefined Navigator Object

	9 The Document Object
	Defining the Document Object
	Using the Document Object Model
	Using the Properties of the Document Object
	The Color Properties
	The anchors Property (Array)
	The cookie Property
	The dir Property
	The domain Property
	The formname Property
	The forms Property (Array)
	The images Property (Array)
	The lastModified Property
	The layers Property (Array)
	The all Property
	The links Property (Array)
	The referrer Property
	The title Property
	The URL Property
	The URLUnencoded Property

	Using the Methods of the Document Object
	The getElementById() Method
	The getElementsByClassName() Method
	The getElementsByTagName() Method
	The open() and close() Methods
	The write() Method
	The writeln() Method
	Creation Methods

	Try This 9-1: Add a DOM Node to the Document
	Creating Dynamic Scripts
	Styles in JavaScript
	Coding a Dynamic Script
	The innerHTML Property

	Try This 9-2: Trying out Property Changes

	10 Window Object
	An Introduction to the Window Object
	Using the Properties of the Window Object
	The closed Property
	The defaultStatus Property
	The frames Property (Array)
	The innerHeight and innerWidth Properties
	The length Property
	The location Property
	The name Property
	The opener Property
	The parent Property
	The self Property
	The status Property
	The top Property

	Try This 10-1: Use the location and innerWidth Properties
	Using the Methods of the Window Object
	The alert() Method
	The confirm() Method
	The find() Method
	The home() Method
	The print() Method
	The prompt() Method
	The open() Method
	The close() Method
	The moveBy() Method
	The moveTo() Method
	The resizeBy() Method
	The resizeTo() Method
	The scrollBy() Method
	The scrollTo() Method
	The setInterval() Method
	The clearInterval() Method
	The setTimeout() Method
	The clearTimeout() Method

	Try This 10-2: Use the setTimeout() and confirm() Methods

	11 JavaScript Arrays
	What Is an Array?
	Why Arrays Are Useful
	Defining and Accessing Arrays
	Naming an Array
	Defining an Array
	Accessing an Array’s Elements
	Other Ways to Define Arrays

	Understanding the Properties and Methods of the Array Object
	Properties
	Methods
	Extended Array Methods

	Using Arrays with Loops
	Creating Array Elements
	Moving Through Arrays

	Try This 11-1: Use Loops with Arrays
	Using Associative Arrays
	Defining Associative Arrays
	Accessing Associative Arrays

	Try This 11-2: Use Associative Arrays

	12 Math, Number, and Date Objects
	Using the Math Object
	What Is the Math Object?
	How the Math Object Is Useful
	Properties
	Methods

	Try This 12-1: Display a Random Link on a Page
	Understanding the Number Object
	Properties
	Methods

	Using the Date Object
	Properties
	Methods
	Methods That Get Values
	Methods That Set Values
	Other Methods
	How About Some Date Scripts?

	Try This 12-2: Create a JavaScript Clock

	13 Handling Strings
	Introduction to the String Object
	The String Object
	The String Literal
	What’s the Difference?

	Using the Properties of the String Object
	The constructor Property
	The length Property
	The prototype Property

	Using the Methods of the String Object
	Methods That Add HTML Tags
	The Other Methods

	Try This 13-1: Use charAt() to Find a First Letter
	Putting Methods Together
	Try This 13-2: Use indexOf() to Test an Address
	Using Regular Expressions
	Creating Regular Expressions
	Testing Strings Against Regular Expressions
	Adding Flags
	Creating Powerful Patterns
	Grouping Expressions
	The replace(), match(), and search() Methods
	More Information

	14 JavaScript and Forms
	Accessing Forms
	Using the forms Array
	Using Form Names
	Using an ID

	Using the Properties and Methods of the Form Object
	Properties
	Methods

	Ensuring the Accessibility of Forms
	Using Proper Element and Label Order
	Using label/label Tags
	Using fieldset/fieldset Tags
	Not Assuming Client-Side Scripting

	Validation
	onsubmit and the return Statement
	Techniques

	Try This 14-1: Request a Number
	Using Forms for Navigation
	Clicking a Button

	Try This 14-2: Build a Select Box Navigation Script

	15 JavaScript and Frames
	An Introduction to Frames
	Purpose of Frames
	The Code Behind the Frames
	Frame Options

	Accessing Frames
	The frames Array
	Using a Frame Name

	Changing Frames
	Change a Single Frame
	Change Multiple Frames

	Try This 15-1: Change Frames
	Step by Step

	Frame Navigation
	Using the Select Box with Frames
	Breaking Out of Frames
	Sending Viewers to Frames

	Using Variables Across Frames
	Try This 15-2: Use Variables

	16 An Introduction to Advanced Techniques
	Debugging Scripts
	Types of Errors

	JavaScript and Accessibility
	Separate Content from Presentation
	Enhancing Content

	Try This 16-1: Make This Code Accessible
	Using Cookies
	Setting a Cookie
	Reading a Cookie

	Try This 16-2: Remember a Name
	Working with Images
	Preloading
	Rollovers

	JavaScript Security
	Security and Signed Scripts
	Page Protection

	AJAX
	JavaScript Libraries

	A: Answers to Self Tests
	Chapter 1: Introduction to JavaScript
	Chapter 2: Placing JavaScript in an HTML File
	Chapter 3: Using Variables
	Chapter 4: Using Functions
	Chapter 5: JavaScript Operators
	Chapter 6: Conditional Statements and Loops
	Chapter 7: Event Handlers
	Chapter 8: Objects
	Chapter 9: The Document Object
	Chapter 10: Window Object
	Chapter 11: JavaScript Arrays
	Chapter 12: Math, Number, and Date Objects
	Chapter 13: Handling Strings
	Chapter 14: JavaScript and Forms
	Chapter 15: JavaScript and Frames
	Chapter 16: An Introduction to Advanced Techniques

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

