Third Edition

JavaScri
s

* Add interactivity and special effects
to Web sites

* Learn the latest JavaScript features
» Work with XHTML Transitional

John Pollock

JavaScript
A Beginner's Guide

Third Edition

About the Author

John Pollock is employed as a Web Administrator during

the day and works on Web sites and other projects during the
evening. He runs two Web sites devoted to Web development
and design—PageResource.com (www.pageresource.com)

is a development tutorial site, and JavaScript City (www
.javascriptcity.com) is a site that offers free JavaScript code

to Web developers. John holds a bachelor of arts in English
from Sam Houston State University and currently lives in New
Waverly, Texas with his wife Heather.

About the Technical Editor

Scott Duffy is an author and consultant based in Toronto,
Canada. He designs and develops Web sites for small and
medium-sized companies.

www.pageresource.com
www.javascriptcity.com
www.javascriptcity.com

JavaScript
A Beginner's Guide

Third Edition

John Pollock

G

New York Chicago San Francisco
Lisbon London Madrid Mexico City
Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

The McGraw-Hill Companies

Copyright © 2010 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States Copyright Act
of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval
system, without the prior written permission of the publisher.

ISBN: 978-0-07-163296-6
MHID: 0-07-163296-4

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-163295-9, MHID: 0-07-163295-6.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trad marked
name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infring ment of the
trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate
training programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of human
or mechanical error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or complete-
ness of any information and is not responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and
retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works
based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior
copsent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your
right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES
AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE
WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR
OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMIT-
ED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and
its licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation
will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy,
error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for
the content of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable
for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work,
even if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause
whatsoever whether such claim or cause arises in contract, tort or otherwise.

To my wife Heather Pollock, Bruce and Joy Anderson, and
Dr. J. D. and Linda Andrews

In memory of James D. and Livian Anderson, John William and Edith Hopkins,
Burley T. and Aline Price, and “Doc” Flores

This page intentional ly left blank

VW 0 N O O b W N =

o —
N = O

Contents at a Glance

Introduction to JavaScriptc.ciiiiiiiiiiiiiiiiiiiii i 1
Placing JavaScriptinan HTML Filecocciiiiiiiiiiiiiiiiiiiii... 15
Using Variables civiiiiiiiiiiiiiiiiiiiierererececesscncssssssasasssases 33
Using FUNCtions ciuiiiiiiiiiniiiiiiiiiiiiniiiceniesasrecnssecancanns 59
JavaScript Operatorscoceieiiiiuiiiieiiecnsiecasissstocssssassosns 87
Conditional Statements and Loops cccoveiiiiiiiiiireiecrcncncncnes 115
Event Handlerscoiuiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieisecenrncencncennns 147
ODJECLS teieieieieneeeneeeesesesesesesesesssososssssscssssssnsssssssssssasas 175
The Document Objectcoiiiiiiiiiiiiiiiicessncasesssasasssessssssses 205
Window ODBjJect .ovuiniiiiiiiiiiiiiiiiiiiiiiiiiiiitatiesatrecnsscancanns 241
JavaScriPt ATTAYS ..iviviiniuiiernniecusrsusrecassosasssssssossssssassssns 273
Math, Number, and Date Objectsccciiiiiiiiinincncncesesasesnsenes 305

Vil

VIl JovaScript: A Beginner's Guide

13 Handling Stringscoiuiiiiiiiiiiiiiiiiiiiieeiiireeiseercensnseasnsnns 341
14 JavaScript and FOrmScciiuieiiniieiiieeiincesiosesrossssscessssssssones 375
15 JavaScript and Framesccceeeeierereiesrerseererereresesesscscssncnes 407
16 An Introduction to Advanced Techniquesc.ccovviiiiiiniincnnnsns 435
A Answers to Self Tests ivvuiiiiiiiiiiiiiiiiiiieiiiiiiieeiiieeiieenennns 467

Contents

ACKNOWLEDGMENTS ..o e Xix
INTRODUCTION e XX1

Introduction to JavaScriptcciiiiiiiiiiiiiiiiiiiii i i e

1
What You Need to Know ... 2
Basic HTML and CSS Knowledge —ooiininiiiiiii e 3
Basic Text Editor and Web Browser Knowledge ...t 3
Which Version? ... e 6
Remember, It’s Not Java ... i e s 7
Similarities to Other Languages —ouviiiiiiiiiii i, 8
Beginning with JavaScript ... 8
Object Based ...t 8
Clent SIde ..o e 8
Scripting Languageo.oui e 9
Putting It AIl Together ... oo 9
Online RESOUICES ..ottt e e e e e 0
Try This 1-1: Use JavaScript to Write Text ...t 0

—_

X

JavaScript: A Beginner's Guide

Placing JavaScriptin an HTML Fileccooiiiiiiiiiiiiiiiiiiinnine.. 15
Using the HTML Script Tags .o .oniiii e e 16
Identifying the Scripting Languagec.ooiiiiiiiiiiiiiii i 16
Calling External SCriptsottt e 17
Using <noscript></noscript> Tags ..oonvniniin e 17
Creating Your First SCriptottt e 19
Writing a “Hello World” Script ..o 19
Creating an HTML Document for the Script coiiiiiiiiiiinn... 20
Inserting the Script into the HTML Document t 20
Try This 2-1: Insert a Script into an HTML Document —c.ooooa... 22
Using External JavaScript Fileso o 23
Creating a JavaScript File ... o 23
Creating the HTML Files ... e 24
Viewing the Pages in Your Browser ... 25
Try This 2-2: Call an External Script from an HTML Document 26
Using JavaScript COMMENES ...ttt ettt e e eieeenes 27
Inserting Comments on One Line it 28
Adding Multiple-Line Comments —c.ouiiiiiiiniiiiiniainenenanns 28
Using Variables ooiieieenenes 33
Understanding Variables ... 34
Why Variables Are Useful ... 35
Variables as Placeholders for Unknown Values —c.ooiiiia.. 35
Variables as TIME-SaVETSiun ittt e 35
Variables as Code Clarifiers —...........oouiiniiiiiii i 36
Defining Variables for Your SCripts —c.oiuiiniiii i 36
Declaring Variables ... 36
Assigning Values to Variables — 36
Naming Variables 38
Understanding Variable TYPes —ooniinii i 40
NUMDET e e 40
5 PP 41
Boolean .. 46
UL e 46
Try This 3-1: Declare Variables —o i 47
Using Variables in SCIPES . .o.en ittt e 48
Making a Call to a Variablet 49
Adding Variables to Text Strings —oouiiniiiiniii e 49
Writing a Page of JavaScript i 51
Creating the Framework 51
Defining the Variables ... i 51
Adding the Commands —oiuiitii e 52
Modifying the Page ... i 53

Try This 3-2: Create an HTML Page with JavaScript ..., 55

Contents xi

4 Using FUnctionsceiiiiiiiiiiiiiiuiiiiuiiecnirecaseesasrecsssecassesas 59
What a Function Is 60
Why Functions Are Useful 60
Structuring FUNCLIONS ... o e 61

Declaring FUnCtions ..ot 61
Defining the Code for Functions —ot 62
Naming FUNCHIONS ... e e 63
Adding Parameters to Functions — i 64
Adding Return Statements to Functions — 66
Calling Functions in YOUT SCIIPES . ..tninttiit e e e 67
Script Tags: Head Section or Body Section oviiiiiiiiiiniiiinen... 68
Calling a Function from Another Function — 70
Calling Functions with Parameters ..., 72
Calling Functions with Return Statements —................cciiiiiiiiiinen... 76
Other Ways to Define Functions — i 76
Try This 4-1: Create an HTML Page with Functionsooo.. 79
Putting It AIl Together ... e 81
Try This 4-2: Write Your Own Functions —coiiiiiiiiiiiiiiniiinenen.n. 83

5 JavaScript Operatorsc.coeeeeiiecesrecaseesssrossssssassosssscsssssns 87
Understanding the Operator TYPeSoonii it 88
Understanding Mathematical Operators —c.oeeiiniiiiiiiniinineneenennnn. 89

The Addition OPerator () .o.ueuntr ittt et et 90
The Subtraction OPerator (—) c.euittin et 92
The Multiplication Operator (¥) c.oeuiintini e 92
The Division Operator (/) ..c..ou ittt e 93
The Modulus Operator (%) «..c.er it 94
The Increment OPerator (++) oottt ittt 94
The Decrement OPerator (— —) «..oueuitt ittt 95
The Unary Negation Operator (—) ...c.oeuiittinti e 96
Understanding Assignment OPeratorS eeereneinetneuneineneaenaenennenn 97
The Assignment OPerator (=) .o..eutttitt ittt 97
The Add-and-Assign Operator (=) .o.veniint it 98
The Subtract-and-Assign Operator (—=) oiuiiniiniin e 99
The Multiply-and-Assign Operator (¥=) ooiiiiiiiniiiiiii e 99
The Divide-and-Assign Operator (/=) ouiiniiiin it 99
The Modulus-and-Assign Operator (%=)c.cuiiuniiniiiiiiianann.. 99
Try This 5-1: Adjust a Variable Value — oo, 100
Understanding Comparison OPErators c..eueneeneineuneunennenaenaenennnnn 101
The Is-Equal-To Operator (==) ouiittitiit e 102
The Is-Not-Equal-To Operator (1=) oouiiiii e 103
The Is-Greater-Than Operator (>) «..o.vvttintin i 103

The Is-Less-Than Operator (<) ...c.euintint it 104

Xii JavaScript: A Beginner's Guide

The Is-Greater-Than-or-Equal-To Operator (>=) ccoeiiiiiiiiiann.. 104

The Is-Less-Than-or-Equal-To Operator (<=) oiiiiiiiiiiiiiinann.. 105

The Strict Is-Equal-To Operator (===) oouiiiiiiiii i 105

The Strict Is-Not-Equal-To Operator (1==) ...t 106
Understanding Logical OPerators —euueuennenein et iaeaiaeeeennen. 107
The AND Operator (&E&) . .ovnei ettt e e 107

The OR Operator ([|) .oooviiiiiii 107

The NOT Operator (1) . .oeneii e e e e 108

The Bitwise OPEeratorsc.ueunet ittt et 108
Special OPEIatOrS ...ttt ettt e et 109
Understanding Order of Operations —c.euitien ittt eennenn 110
Try This 5-2: True or False? ... e 111
6 Conditional Statements and Loops ccivveiiiiiiiiniiiiiieiieeneenn. 115
Defining Conditional Statements —co.uiiuiiitneinniin i 116
What Is a Conditional Statement? —oiiiiiiiiiiiiiiieiaaan. 116

Why Conditional Statements Are Useful ..., 117
Using Conditional Statements oeuiineitnein i 117
Using if/else Statement Blocks 117
Using the switch Statement oo 125
Using the Conditional Operator —c..oviuuiiiiiineiineineineennennn. 126

Try This 6-1: Construct an if/else Blocko i 129
Defining LoOPS .ottt 130
What Is a Loop? .. o 130

Why Loops Are Useful ... e 130
USING L00PS oottt e 131
0 131

Wl 137

do While L. e 139

FOr I 140

for each In 140
Using break and continue —oooiiiiiiiiiii i 141

Try This 6-2: Work with for Loops and while Loops c...cooiiiiiiiin... 143
7 Event Handlers ciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeiiieaneens 147
What Is an Event Handler? 148
Why Event Handlers Are Useful 148
Understanding Event Handler Locations and Uses —coiiiiiininiinnenen... 149
Using an Event Handler in an HTML Element 149
Using an Event Handler in the Script Code ..., 151

Try This 7-1: Create a BUtton —o.iuiiiiii e 153
Learning the Event Handlers —o. o e 154
The Abort Event (onabort) ... i 155

The Blur Event (onblur) ... i 155

Contents
The Change Event (onchange) —oouiiniiiiiniii i 156
The Click Event (onclick) i 157
The Focus Event (onfocus)o 158
The Keydown Event (onkeydown) —oooiiiiiiiiniiiii i 159
The Keypress Event (onkeypress) —o.oeniiniiniiniin i 160
The Keyup Event (OnKeYUP) . .ooitiniit e 160
The Load Event (onload)o 160
The Mousedown Event (onmousedown) —oiiiiiiiiiiiiiaanann.. 161
The Mousemove Event (ONMOUSEMOVE) iuitiniiiiia e iiiaanannns 161
The Mouseover Event (ONMOUSCOVET) ouiuiniet i iiie i ieeaaenanns 162
The Mouseout Event (ONMOUSEOUL) iuiuiniit i 163
The Mouseup Event (ONmMoOUSEUP) .« ovvvitiiniie e 164
The Reset Event (ONreSet) ouinieit i e 164
The Submit Event (onsubmit) i 164
The Unload Event (onunload)co i 164
Try This 7-2: Use Events to Send Out Alerts —ooviiiiiiiiiiiiiin e, 165
Creating Scripts Using Event Handlers —....... ... it 167
The Text BoX MeSSaZE ..ottt ettt 167
The Button Link ... o 169
Other Ways to Register Events ... i 171
The addEventListener() Method — i 172
The attachEvent() Method e 172
ODJECtS teveierereererirerererereseseresesssscscssssssssssssasssssasssssssss 175
Defining ObJects ...ttt 176
What Is an ODbJect? ... 176
Why Objects Are Useful ..o e 177
Creating ObJECES .« ..ttt ettt ettt e e e 177
NaAMINE oottt ettt 177
ODJECt STIUCTUIE ettt ettt et e ettt e e et 178
Adding Methods ... 186
Object Manipulation StatemMents c...eeueinnernneunneneeineinneenneen. 190
Try This 8-1: Create a Computer ObJect viiuiiinniin i 193
Understanding Predefined JavaScript Objects —coiiiniiiiiiiiiiniiaennn.. 194
The Navigator ODJEct oounii e 194
The History ODJECt ..ttt i 199
Try This 8-2: Practice with the Predefined Navigator Objectc..... 201
The Document Objectoiiiiiiieiiiiieiecscscacscssasssssssssssasas 205
Defining the Document Objecto.iiiiin it 206
Using the Document Object Model e 206
Using the Properties of the Document Object ..., 207
The Color Properties c.ouiu ittt 210

The anchors Property (AITay) ononinii e 210

xiii

Xiv

JavaScript: A Beginner's Guide

The cookie Property ..o 210

The dir Property ... 211

The domain Propertyo o 212

The formname Property c.iouiiniiiii 213

The forms Property (Array) — ...c..ooeoniinii e 215

The images Property (AITay) c.oueniinti e 215

The lastModified Property — 217

The layers Property (AITay) ...c..ouonint et 217

The all Property ..o 218

The links Property (AITaY) — .o.ooenin ittt e 219

The referrer Property ..o 219

The title Property ooooi 219

The URL Property ..ottt e e e e 220

The URLUnencoded Property —oouiiniiniiiiii i 220
Using the Methods of the Document Object o, 222
The getElementByIld() Methodo 224

The getElementsByClassName() Method —t 224

The getElementsByTagName() Method oot 225

The open() and close() Methods —o.iiiii i 225

The write() Method 227

The writeln() Method 227
Creation Methodsot 228

Try This 9-1: Add a DOM Node to the Document —ccoiiiiiiiiiiinaan... 233
Creating Dynamic SCIIPES .. eu ittt et e 234
Styles in JavaSCript ..o e 234
Coding a Dynamic SCIIPt .. .ouiet ittt e 235

The innerHTML Property —ooiiniini e 236

Try This 9-2: Trying out Property Changes —c.ooiiiiiiiiiiiiniiiiinann... 238
10 Window Object ..ouuiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieeiieeniereieeeneennnes 241
An Introduction to the Window Object —oiiuiiiiiiiiiiii i 242
Using the Properties of the Window Object ooiiiiiiiiiiiiiiiiiiii. 242
The closed Property ..o 243

The defaultStatus Property —ooiiiiiii i 244

The frames Property (AITay) c.iuiinei et 244

The innerHeight and innerWidth Properties coiiiiiiin.. 244

The length Property ... o 246

The location Property —oouiiniii e 246

The name Property 246

The opener Property ... e 247

The parent Property ..o 248

The self Property 248

The status Property ... 248

The top Property ... 248

11

Contents

Try This 10-1: Use the location and innerWidth Properties — 248
Using the Methods of the Window Object c.ooiiiiiiiiiiiii i, 249
The alert() Method i 249
The confirm() Method i 251
The find() Methodo 253
The home() Method i 253
The print() Method 254
The prompt() Method ... o 255
The open() Method ... 256
The close() Method o i 261
The moveBy() Method ... o 262
The moveTo() Method i 263
The resizeBy() Method ... o 265
The resizeTo() Method 265
The scrollBy() Method ..o 265
The scrollTo() Method ... e 265
The setlnterval() Method i 265
The clearInterval() Method 266
The setTimeout() Method e 267
The clearTimeout() Method i 267
Try This 10-2: Use the setTimeout() and confirm() Methods —......................... 269
JavaScript Arrays ..ooeiiiiiiiiiiiiiiiiiiiiiiiiiii ittt ieeas 273
What IS an Array ? oo e 274
Why Arrays Are Useful ... 275
Defining and AcCeSSING AITAYS .« ..tunttint ittt e et 275
NamMiNg AN AITAY oottt ittt e ettt et e e 275
Defining an AITay oouni it 276
Accessing an Array’s Elements ... 276
Other Ways to Define Arrays —ooueiuiiiniiin i 277
Understanding the Properties and Methods of the Array Object 279
PrOPeIti®s oottt 279
Methods .o e 282
Extended Array Methods 291
Using Arrays With LOOPS oottt e 292
Creating Array Elements — oot 292
Moving Through AITays —couiinii e 293
Try This 11-1: Use Loops With ATTays —couuiiuiiinein i 297
USING ASSOCIAtIVE ATTAYS .ottt ettt ettt et e e et e e 298
Defining ASSOCIAtiVE AITAYS . .evntitn ettt e 299
Accessing ASSOCIALIVE ATTAYS vttt ettt et e 299

Try This 11-2: Use ASSOCIAtIVE AITAYS « ettt ettt et e ee e 301

XV

Xxvi

JavaScript: A Beginner's Guide

12

13

Math, Number, and Date Objectsccciiiiiiiiincencncecesasesasanes 305
Using the Math Object ...t 306
What Is the Math Object? ... e 306
How the Math Object Is Useful 306
PrOPeTtieS e e 306
MethOodS ..o 308
Try This 12-1: Display a Random LinkonaPageoo . 321
Understanding the Number Object ..ottt e 322
PrOPeTtieS e e 322
MethOodS .. 324
Using the Date ODbJeCt ...ttt e 326
PrOpPeTtieS e e 326
MeEthOodS ..o 327
Methods That Get Valuesot 329
Methods That Set Values ...t e 332
Other Methods ... e 333
How About Some Date Scripts? —oininiiii e 334
Try This 12-2: Create a JavaScript Clock ... 338
Handling Strings coviiiieiieruiieeusresusrecssrocasssssssossssssasssses 341
Introduction to the String Object ...ttt 342
The String ObJect ...t 342
The String Literal o 343
What’s the Difference? ... 343
Using the Properties of the String Object oo, 344
The constructor Property c.oouiiniii e 344
The length Property ..o 344
The prototype Property oooniinii 345
Using the Methods of the String Object i 345
Methods That Add HTML Tags —oouiitiiii e 345
The Other Methods ... e 351
Try This 13-1: Use charAt() to Find a First Letter —c.ocoiiiiiiiiiiiiin... 359
Putting Methods Together ...t e 360
Try This 13-2: Use indexOf() to Test an Address —c.ooiiiiiiiiiiiiieenn .. 362
Using Regular EXPressions —o.oniin ittt 363
Creating Regular EXpressions —c.oouiiniiiiniinininiiiiii e, 363
Testing Strings Against Regular Expressions —coociiiiiiiiiiiian. 364
Adding Flags ... 365
Creating Powerful Patternst 366
Grouping EXPressions ouiuiinnint e 369
The replace(), match(), and search() Methods —coooiiiiiiiat 370

More Information ...t 372

14

15

Contents
JavaScript and Formscociiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i 375
AcCesSINg FOTMS oo 376
Using the forms AIray ...t 376
Using Form Names 380
Using an ID ..o 381
Using the Properties and Methods of the Form Objectcooiiiiia... 382
PrOPeTtieS e e 382
MethOodS ..o 392
Ensuring the Accessibility of Forms 392
Using Proper Element and Label Order —ciiiiiiiiiiiiiinon... 393
Using <label></label> Tags ooiiiiiii e 393
Using <fieldset></fieldset> Tags oouiuiiiiiii i 393
Not Assuming Client-Side Scripting —ooiuiiiii i 394
Validation ... 395
onsubmit and the return Statement — i 395
TEChNIQUES oottt ettt e e e e 396
Try This 14-1: Request a NUMDbETr —ooioiiit e 398
Using Forms for Navigation ... 399
Clicking a BUtton ... e 399
Try This 14-2: Build a Select Box Navigation Script =coiiiiiiiiiiiinen... 403
JavaScript and Framescocciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiee 407
An Introduction to Frames o 408
Purpose of Frames ... oo 408
The Code Behind the Frames —o i 409
Frame Optionsttt e e e 411
Accessing Frames ..ot 414
The frames AITaYooni e e 414
Using a Frame Name ... 417
Changing Frames ...t 418
Change a Single Frame i 418
Change Multiple Frames i 419
Try This 15-1: Change Frames e 422
D DY St et 422
Frame Navigation o.ouinii e 423
Using the Select Box with Frames — i i 423
Breaking Out of Frames i 424
Sending Viewers to Frames ... 426
Using Variables Across Frames ... 428

Try This 15-2: Use Variables —o.iiiiii e 432

xvil

xviii JavaScript: A Beginner's Guide

16 An Introduction to Advanced Techniquesc.ccovviiiiiiniiecnnnsns 435
Debug@ing SCripts ...ttt e 436
Types Of Brrors oo e 436
JavaScript and Accessibility ... 442
Separate Content from Presentation —coiiiiiiiiiiiininiiiinen... 442
Enhancing Content —o.iuiii it 444

Try This 16-1: Make This Code Accessible ot 445
USING COOKIES ottt ettt ettt e et e ettt e e e e 446
Setting @ COOKIE ..ottt 446
Reading a CooKie ii i e 449

Try This 16-2: Remember a Name ...ttt 451
Working with Imageso.oniii 452
Preloading ... e 452
ROIIOVEIS o e 454
JavaScript SECUTILY .ottt 460
Security and Signed SCTiptS ..ottt 460

Page ProteCtion ...t e 460

AT A X 462
JavaScript LIDrarieso.ouiuii e e 463
A Answers to Self Tests coiiieeienns 467
Chapter 1: Introduction to JavaScript —o.iiuiiiiiii i 468
Chapter 2: Placing JavaScriptinan HTML File o it 468
Chapter 3: Using Variables —ooiiiii i e 469
Chapter 4: Using FUNCHIONSo e 469
Chapter 5: JavaScript OPerators —c..ouneuetttne it 470
Chapter 6: Conditional Statements and Loops ...t 471
Chapter 7: Event Handlers — oo e 471
Chapter 8: ObJECtS ..ttt ettt e e 472
Chapter 9: The Document Objectttt e 473
Chapter 10: Window ObJect ..ottt e 473
Chapter 11: JavaScCript AITAYS ...ttt ettt 474
Chapter 12: Math, Number, and Date Objects —ooiiiiiiiiiiiiiiiann.. 475
Chapter 13: Handling Strings —oonii it 475
Chapter 14: JavaScript and Forms i 476
Chapter 15: JavaScript and Frames oo 477
Chapter 16: An Introduction to Advanced Techniques —cociiiiiiiiat. 477

Acknowledgments

Iwould like to begin by thanking my wonderful wife, Heather Pollock, for all of her love,
support, and encouragement in all I do. I love you!

I would like to thank my parents, Bruce and Joy Anderson, for their love and guidance,
and for always supporting my endeavors.

I would like to thank Dr. J. D. and Linda Andrews for their love, guidance, and support.

In addition I would like to thank John and Betty Hopkins (grandparents), James D. and Livian
Anderson (grandparents), Clifton and Juanita Idom (grandparents), Richard Pollock (brother) and
family, Misty Castleman (sister) and family, Warren Anderson (brother) and family, Jon Andrews
(brother) and family, Lisa and Julian Owens (aunt/uncle) and family, and every aunt, uncle,
cousin, or other relation in my family. All of you have been a great influence in my life.

I would like to thank all of my editors at McGraw-Hill/Professional for their outstanding
help and support throughout the writing of this book. Thanks to Jane Brownlow, Joya Anthony,
Janet Walden, Smita Rajan, Bill McManus, Claire Splan, Jim Kussow, Jeff Weeks, and to all of
the copy editors who worked on each edition of the book.

Thanks to my technical editor, Scott Dufty, for editing and checking over all of the technical
aspects of the book, and helping me provide clear explanations of the topics that are covered.

I would like to thank my English professors at Sam Houston State University in Huntsville,
Texas for guiding me toward a better understanding of the English language. Thanks to James J.
Dent, Helena Halmari, Douglas Krienke, Julie Hall, Tracy Bilsing, Phillip Parotti, Ralph Pease,
Paul Ruffin, and Jack Kerr. In addition, I thank all of my other professors at the university for
helping me gain knowledge in so many areas.

Xix

JavaScript: A Beginner's Guide

I want to thank my friends for putting up with me and for giving me encouragement when
I have needed it. Thanks to Don Sargent and family, Dwayne Lacy, Marty J. Reeder and family,
Garrett Cradduck and family, and to all of my other friends for your support and guidance.

I would like to thank God for the ability He has given me to help and teach people by my
writing. “In all your ways acknowledge Him, and He shall direct your paths.” (Proverbs 3:6).

Introduction

elcome to JavaScript: A Beginner’s Guide, Third Edition! Years ago, I was surfing the

Web and noticed that people were publishing pages about themselves and calling them
homepages. After viewing a number of these, I decided to create a homepage myself. I had no
idea where to begin but, through trial and error, I figured out how to code HTML and publish my
documents on a Web server. Over time, I saw some interesting effects used on other homepages
(like alert messages that popped up out of nowhere or images that would magically change when
I moved my mouse over them). I was curious and just rad to know what was being done to
create those effects. Were these page creators using HTML tags I did not know about?

Eventually, one site revealed what they were using to create those effects: JavaScript.

I went in search of information on it, and came across a few tutorials and scripts on the Web.
Since I had programmed in other languages (such as a relatively obscure language called Ada),
I was able to catch on to JavaScript fairly quickly by looking at these tutorials and scripts.

I learned enough that I decided to create a Web site that would teach HTML and JavaScript
to beginners. As soon as I began the project, I received questions from visitors that were
way over my head—forcing me to dig deeper and learn more about JavaScript. As a result,

I became completely familiar with this scripting language and what it can do. Not only can
you add fun effects to a Web page, you can create scripts that will perform useful tasks, like
validate form input, add navigational elements to documents, or react to user events.

The goal of this book is to help you to learn the basics of the JavaScript language with as
little hair pulling and monitor smashing as possible. You do not need any prior programming
experience to learn JavaScript from this book. All you need is knowledge of HTML and/or
XHTML, Cascading Style Sheets (CSS), and how to use your favorite text editor and Web
browser (see Chapter 1 for more information).

XXI1

xxii JavaScript: A Beginner's Guide

What This Book Covers

The 16 chapters of this book cover specific topics on the JavaScript language. The first two
chapters cover the most basic aspects of the language: what it is, what you need to know to
begin using JavaScript, and how to place JavaScript into an HTML file. The middle of the
book (Chapters 3—15) covers beginning JavaScript topics from variables all the way to using
JavaScript with frames. The final chapter (Chapter 16) introduces some advanced techniques,
and points you toward resources if you want to learn more about JavaScript once you have
completed the book.

This book includes a number of special features in each chapter to assist you in learning
JavaScript. These features include:

Key Skills & Concepts Each chapter begins with a set of key skills and concepts that
you will understand by the end of the chapter.

Ask the Expert The Ask the Expert Sections present commonly asked questions about
topics covered in the preceding text, with responses from the author.

Try This These sections get you to practice what you have learned using a hands-on
approach. Each Try This will have you code a script through step-by-step directions
on what you need to do to in order to accomplish the goal. You can find solutions to
each project on the McGraw-Hill/Professional Web site at www.mhprofessional.com/
computingdownload.

Notes, Tips, and Cautions Notes, Tips, and Cautions call your attention to noteworthy
statements that you will find helpful as you move through the chapters.

Code Code listings display example source code used in scripts or programs.

Callouts Callouts display helpful hints and notes about the example code, pointing to the
relevant lines in the code.

Self Test Each chapter ends with a Self Test, a series of 15 questions to see if you have
mastered the topics covered in the chapter. The answers to each Self Test can be found in
the back of the book in the appendix.

That is it! You are now familiar with the organization and special features of this book to
start your journey through JavaScript. If you find that you are stuck and need help, feel free to
get online and visit the JavaScript discussion forums on the Web Xpertz Web site at www
.webxpertz.net/forums. The forums will allow you to interact with other JavaScript coders
who may be able to help you with your questions.

Now it is time to learn JavaScript. Get ready, get set, and have fun!

www.mhprofessional.com/computingdownload
www.mhprofessional.com/computingdownload
www.webxpertz.net/forums
www.webxpertz.net/forums

Chapter 1

Introduction to
JavaScript

2 JavaScript: A Beginner's Guide

Key Skills & Concepts

Using Text Editors, WYSIWYG Editors, and Web Browsers
Defining JavaScript

Differences Between JavaScript and Other Languages

Welcome to JavaScript: A Beginner’s Guide, Third Edition! You’re obviously interested in

learning JavaScript, but perhaps you’re not sure what you need to know to use it. This
chapter answers some basic questions about what JavaScript is, discusses its advantages and
limitations, explains how you can use it to create more dynamic and inviting Web pages, and
provides a brief history of the language.

JavaScript is ubiquitous on the World Wide Web. You can use JavaScript both to make
your Web pages more interactive, so that they react to a viewer’s actions, and to give your
Web pages some special effects (visual or otherwise).

JavaScript often gets thrown in with Hypertext Markup Language (HTML) as one of
the recommended languages for beginning Web developers (whether you build Web sites
for business or pleasure). Of course, you can build a Web page by using only HTML, but
JavaScript allows you to add additional features that a static page of HTML can’t provide
without some sort of scripting or programming help.

What You Need to Know

Before you begin learning about JavaScript, you should have (or obtain) a basic knowledge of
the following:

HTML and Cascading Style Sheets (CSS)
Text editors
Web browsers

The different versions of JavaScript

If you have this basic knowledge (the different versions of JavaScript will be discussed
in this chapter), then you’ll do just fine as you work through this book. Knowing another
programming/scripting language or having previous experience with JavaScript isn’t required.
This book is a beginner’s guide to JavaScript.

If you think you don’t have enough experience in one of the aforementioned areas, a closer
look at each one may help you decide what to do.

Chapter 1: Infroduction to JavaScript

Basic HTML and CSS Knowledge

While you don’t need to be an HTML guru, you do need to know where to place certain
elements (like the head and body elements) and how to add your own attributes. This book
will reference scripts in the head section (between the <head> and </head> tags) and the body
section (between the <body> and </body> tags).

Occasionally, you will also need to add an attribute to a tag for a script to function properly.

For example, you may need to name a form element using the id attribute, as shown in the
following code:

<input type="text" id="thename" />

If you know the basics of using tags and attributes, the HTML portion shouldn’t pose any
problems to learning JavaScript.

If you don’t have a basic knowledge of HTML, you can learn it fairly quickly through
a number of media. For example, you can buy a book or look for some helpful information
on the Web. A good book is HTML: A Beginner’s Guide, Fourth Edition by Wendy Willard
(McGraw-Hill Professional, 2009). To find information about HTML on the Web, check out
these sites: www.pageresource.com/html and www.w3schools.com/html/default.asp.

Occasionally, you will need to use CSS to add or change presentation features on a Web
page. We will mainly use CSS for the purposes of dynamically changing CSS properties via
JavaScript in this book. A good place to learn CSS is www.w3schools.com/css/css_intro.asp.

Basic Text Editor and Web Browser Knowledge
Before jumping in and coding with JavaScript, you must be able to use a text editor or HTML
editor, and a Web browser. You’ll use these tools to code your scripts.

Text Editors
A number of text editors and HTML editors support JavaScript. If you know HTML, you’ve
probably already used an HTML editor to create your HTML files, so you might not have to
change.

However, some HTML editors have problems related to adding JavaScript code (such
as changing where the code is placed or altering the code itself when you save the file). You
may need to use a simpler editor or look for an HTML editor that handles the addition of your
own JavaScript code easily (such as Adobe Dreamweaver). Some examples of text editors are
Notepad, TextPad, and Simple Text.

Web Browsers

Again, if you’ve been coding in HTML, you probably won’t need to change your browser.
However, some browsers have trouble with the newer versions of JavaScript. The choice of
Web browser is ultimately up to you, as long as it’s compatible with JavaScript. I recommend
one of the following browsers to test your JavaScript code:

Microsoft Internet Explorer version 6.0 or later
Mozilla Firefox version 1.0 or later

Opera version 6.0 or later

3

www.pageresource.com/html
www.w3schools.com/html/default.asp
www.w3schools.com/css/css_intro.asp

4 JovaScript: A Beginner's Guide

New versions of these browsers continue to be produced. At the time of this writing,
nonbeta versions of Internet Explorer 8, Firefox 3, and Opera 9 are available.

To give you an idea of what some browsers look like, Figure 1-1 shows a Web page when
viewed in Microsoft Internet Explorer, and Figure 1-2 shows the same page when viewed in
Mozilla Firefox.

If you have an older browser and you can’t upgrade, a number of features (mostly discussed
later in the book) may not work in that browser. Even so, the book can still help you learn the
JavaScript language itself, so you don’t need to give up if you have an older browser. The three
browsers mentioned and the versions of JavaScript they support are shown in Table 1-1.

The next section, “Which Version?,” explains what the version numbers mean in more
detail. Once you’ve determined that you meet the basic requirements, you’re ready to begin
learning the language.

{= Perl Basics: Printing HTML Output - Windows Internet Explorer

g@f - |i http: f v pageresource, comf cgirec/ptut4 htm _1: !ii |\"ah00! Search
i Fle Edt ‘iew Favortes Tools Help
. B - = ibility " : s - »
: Nor‘to.n‘ _fn l\l (S i Msﬁb:fcégblh - | v “alickate | E Resize |] CE5 |] Images |) Colour | [
po— H i ¥
w4 [. Perl Basics: Printing HTML Output]] PR v B - M - [Ehrage - GTooks -
=
\{;-de,ﬂ..esnume Pri ntlng HTML
How to print your HTML an easier way I
Navigation il
Home As you saw in the last section, printing HTML to the browser with Perl required escaping
CGl Home quote marks and using the \n character to break a line if you wanted your code to be more
Perl Tutorial List readable. You can avoid some of these headaches by using a special print command in Perl.
Disclaimer This command allows you to print your HTML as it is written (some special characters still
ST B [rerEs need to be escaped). Notice the code below that would print out a page with a simple link:
See What's New #!/usr/binfperl
See what's new by
date added. print "Content-type: text/html\n\n";
Partners print "<html><head>\n";
Website Desi print "<title>CGI Test</title>\n":
SE{;E”'E =l print "</head>\n";
e : print "<body»Click
Build A Website s
3 : Here</ax»\n";
Web Design Library
Website Content ; d S :
With the need to escape the quotes and add \n characters for source readability, it is a bit
tedious to constantly escape quote marks and write in new line characters. An easier way to
do this is to use a special print command in Perl:
et e TR . el
IFi| & Internet & 100% -

Figure 1-1 A Web page viewed in Microsoft Internet Explorer

Chapter 1:

Infroduction to JavaScript

Microsoft Internet JavaScript Version
Explorer Version | Mozilla Firefox Version | Opera Version Supported

- 3 - 1.8

- 2 - 1.7

_ 15 - 1.6

5.5-8 1 6-9 1.5

y . - 1.3

Table 1-1 JavaScript Versions Supported by the Three Major Browsers

€ Perl Basics: Printing HTML Output - Mozilla Firefox

File

W

See What's Mew
See what's new by
date added.

Website Design
Software

Build A Website
Web Design Library

Edit Wew History

f
@ R c A {5y |.|http:,l’,l’www.pageresource.com,l’cgirec,l’ptut4.htm

Most Visited ’ Getting Starked |51 | Latest Headlines

\ﬁ:a:ﬁesnurce

Navigation

Haorme
CGl Hame
Perl Tutorial List
Disclaimer

What's New?

Partners

ebsite Content

Bookmarks Tools Help

ﬁfr v| |'|G00gle

@ Disabler 2 Cookies~ [€55+] Forms= [M] Images @ Information= () Miscellaneous~ o/ Outline~ mi Resize™ Jb Tools~ Q Wiew Sourcer

Norton i b sz (@) wertity safe v

(Ij Log-ins

Printing HTML

How to print your HTML an easier way

As you saw in the last section, printing HTWL to the browser with Perl required escaping
guaote marks and using the \n character to break a line if you wanted your code to be more

readable. You can avoid some of these headaches by using a special print command in Perl.

This cormmand allows you to print your HTML as it is written (some special characters still
need to be escaped). Motice the code below that would print out a page with a simple link:

#!/usr/bin/perl

print "Content-type: text/htmlinin":

print "<htmlr<heads>n";

print "<title>CGI Test</titlex\n":

print "</headsYn":

print "<hodyrClick
Here</ax\n":

Wyith the need to escape the quotes and add ‘n characters for source readability, it is a bit
tedious to constantly escape quote marks and write in new line characters. An easier way to
do this is to use a special print command in Perl:

A

Done

Figure 1-2 A Web page viewed in Mozilla Firefox

5

6 JavaScript: A Beginner's Guide

Which Version?

At the time of this writing, the browsers recommended earlier in this chapter should support at
least JavaScript 1.5. (The newest version of Firefox supports JavaScript 1.8.)

You may also see or hear about JScript or ECMAScript. JScript is the version of JavaScript
that Microsoft Internet Explorer uses (which has additional features because it is implemented
as a Windows Script engine; it can use server-side languages to perform more complex tasks
like updating databases). For more information on JScript, see http://msdn.microsoft.com/
en-us/library/hbxc2t98.aspx.

ECMAScript is the international standard name and specification for the JavaScript
language, so it’s not a new language but a standard that is set for JavaScript and JScript. For
more on ECMAScript, see www.ecma-international.org/publications/standards/Ecma-262.htm.

Ask the Expert

Q: You mentioned that I could use a text editor or HTML editor of my choice, but I’'m
not quite sure what that means. What is a text editor and where can I find one?

A: A texteditoris a program that you can use to save and edit written text. Text editors range
from simple to complex, and a number of choices are available: Notepad, WordPad, Simple
Text, and Corel WordPerfect X4, to name a few. You can also purchase and download some
from the Web, like NoteTab or TextPad.

An HTML editor is either a more complex text editor or an editor that allows you to
add code by clicking buttons or by other means—often called a What You See Is What You
Get (WYSIWYG) editor. I recommend a plain text editor or an HTML editor that doesn’t
change any code you add to it manually. Some examples of HTML editors are Adobe
Dreamweaver and Softpress Freeway.

Q: What exactly do I need to know about using a text editor?

A: Basically, you only need to know how to type plain text into the editor, save the file with
an .html or .htm extension, and be able to open it again and edit it if necessary. Special
features aren’t needed because HTML files are made up of plain text.

Q: What do I need to know about using a browser?

A: An you absolutely need to know is how to open a local HTML file on your computer (or
on the Web) and how to reload a page. If you don’t know how to open an HTML file from
your own computer, open your browser and go to the File menu. Look for an option that
says something like Open or Open File, and select it. You should be able to browse for the
file you want to open like you would with other programs. The following illustration shows
where the option is in Microsoft Internet Explorer:

www.ecma-international.org/publications/standards/Ecma-262.htm
http://msdn.microsoft.com/en-us/library/hbxc2t98.aspx
http://msdn.microsoft.com/en-us/library/hbxc2t98.aspx

Chapter 1: Infroduction to JavaScript

{Z Perl Basics: Printing HTML Output - Windows Internet Explorer

@ - |§http:,l’j'www.pageresnurce.com,l’og’!ec,l’ph.lt‘l.htm ¥+ X : ahoot Search | L
i WEEW Edit Wiew Favorites Took Help
i MewTab colT b NSM - | @f valisste | BResize |] CSS | & Images | 99 Colowr | [i
1 Mew Window a1 T — i
e e | r— s - »
5 Chri+0 [| ; B B g v [:bPage + {3 Tooks ~
i Jave S o |
oHVD .. Printing HTML
Close Tab Chriiy g
Fage Setup... How to print your HIML an easier way
Prink... Ctrl+P =
Prink Preview... in the |ast section, printing HTML to the browser with Perl required escaping
sl » | and using the \n character to break a line if you wanted your code to be more
Tmport and Export 'u can avoid some of these headaches by using a special print command in Perl.
nd allows you to print your HTML as it is written (some special characters still
Propetties scaped). Notice the code below that would print out a page with a simple link:
‘htnrk CiFffine
Exit n/perl
SEEWIGLS TIEW Uy
date added. print "Content-type: text/htmlin\n":
MPartners print "chrml ><head»\n";
y print "<title>CGI Test</title>\n";
“S’V%bsne DBS\gJ’I print "</ head»\n":
Bo'l:;r?u'\f bsit print "<body>Click
ui ebsite
5 ; Here«\n":
Web Design Library sEeniEmAn
Website Content
With the need to escape the quotes and add ‘n characters for source readability, it is a bit
tedious to constantly escape quote marks and write in new line characters. An easier way to
do this is to use a special print command in Perl:
it eai A b
Opens a document in this window., Fo100% < Iyt

Q: Where do I get those browsers you mentioned?
Here are links for the browsers:

Microsoft Internet Explorer www.microsoft.com/ie
Mozilla Firefox www.mozilla.com/firefox

Opera www.opera.com

Remember, It's Not Java

JavaScript and Java are two different languages. Java is a full programming language that
must be compiled (running a program through software that converts the higher-level code to
machine language) before a program (often called a Java applet) can be executed. Java is more
powerful but also more complex. JavaScript doesn’t need a compiler and is more lenient in a
number of areas, such as syntax.

7

www.microsoft.com/ie
www.mozilla.com/firefox
www.opera.com

8

JavaScript: A Beginner’s Guide

Similarities to Other Languages
JavaScript does have similarities to other programming and scripting languages. If you have
experience with Java, C++, or C, you’ll notice some similarities in the syntax, which may help
you to learn more quickly. Because it’s a scripting language, JavaScript also has similarities to
languages like Perl—it, too, can be run through an interpreter rather than being compiled.

If you have programming or scripting experience in any language, it will make learning
JavaScript easier—but it isn’t required.

Beginning with JavaScript

JavaScript came about as a joint effort between Netscape Communications Corporation and
Sun Microsystems, Inc. The news release of the new language came on December 4, 1995,
back when Netscape Navigator 2.0 was still in its beta version. JavaScript version 1.0 became
available with the new browser. (Before its release as JavaScript, it was called LiveScript.)

JavaScript is an object-based, client-side scripting language that you can use to make Web
pages more dynamic. To make sense of such a definition, let’s look at its important parts one
by one.

Obiject Based

Object based means that JavaScript can use items called objects. However, the objects are not
class based (meaning no distinction is made between a class and an instance); instead, they are
just general objects. You’ll learn how to work with JavaScript objects in Chapter 8. You don’t
need to understand them in any detail until you know a few other features of the language.

Client Side

Client side means that JavaScript runs in the client (software) that the viewer is using, rather than
on the Web server of the site serving the page. In this case, the client would be a Web browser.
To make more sense of this, let’s take a look at how a server-side language works and how a
client-side language works.

Server-Side Languages

A server-side language needs to get information from the Web page or the Web browser, send it
to a program that is run on the host’s server, and then send the information back to the browser.
Therefore, an intermediate step must send and retrieve information from the server before the
results of the program are seen in the browser.

A server-side language often gives the programmer options that a client-side language
doesn’t have, such as saving information on the Web server for later use, or using the new
information to update a Web page and save the updates.

However, a server-side language is likely to be limited in its ability to deal with special
features of the browser window that can be accessed with a client-side language (like the
content in a particular location on a Web page or the contents of a form before it’s submitted
to the server).

Chapter 1: Infroduction to JavaScript

Client-Side Languages

A client-side language is run directly through the client being used by the viewer. In the case
of JavaScript, the client is a Web browser. Therefore, JavaScript is run directly in the Web
browser and doesn’t need to go through the extra step of sending and retrieving information
from the Web server.

With a client-side language, the browser reads and interprets the code, and the results can
be given to the viewer without getting information from the server first. This process can make
certain tasks run more quickly.

A client-side language can also access special features of a browser window that may not
be accessible with a server-side language. However, a client-side language lacks the ability to
save files or updates to files on a Web server like a server-side language can.

NOTE

Using the XMLHtpRequest object allows JavaScript to request data from the server. This
will be covered briefly in Chapter 16.

A client-side language is useful for tasks that deal with parts of the browser or that allow
information to be validated before it is sent to a server-side program or script. For instance,
JavaScript can open a new window with specific dimensions, specific features (such as a
location bar or status bar), and a specific point of placement on the screen.

JavaScript can also be used to check the information entered into a form before the form is
sent to a server-side program to be processed. This information check can prevent strain on the
Web server by preventing submissions with inaccurate or incomplete information. Rather than
running the program on the server until the information is correct, that data can be sent to the
server just once with correct information.

Scripting Language
A scripting language doesn’t require a program to be compiled before it is run. All the
interpretation is done on-the-fly by the client.

With a regular programming language, before you can run a program you have written,
you must compile it using a special compiler to be sure there are no syntax errors. With a
scripting language, the code is interpreted as it is loaded in the client. Thus, you can test the
results of your code more quickly. However, errors won’t be caught before the script is run and
could cause problems with the client if it can’t handle the errors well. In the case of JavaScript,
the error handling is up to the browser being used by the viewer.

Putting It All Together

With all this in mind, you might wonder how JavaScript is run in a browser. You might wonder
where to write your JavaScript code and what tells the browser it is different from anything else
on a Web page. The answers are general for now, but the next chapter provides more details.
JavaScript runs in the browser by being added into an existing HTML document (either
directly or by referring to an external script file). You can add special tags and commands to

10

JavaScript: A Beginner’s Guide

the HTML code that will tell the browser that it needs to run a script. Once the browser sees
these special tags, it interprets the JavaScript commands and will do what you have directed
it to do with your code. Thus, by simply editing an HTML document, you can begin using
JavaScript on your Web pages and see the results.

For example, the following code adds some JavaScript to an HTML file that writes some
text onto the Web page. Notice the addition of <script> and </script> tags. The code within
them is JavaScript.

This tag tells the browser
<htmls> that JavaScript follows

<body>
<script type="text/javascript"> =
document .write ("This writes text to the page"); «—
</script> <«

</body>
<§htm§]f> This line tells the browser that
this is the end of the script

This line writes the text inside
the quote marks on the page

The next chapter looks at how to add JavaScript in an HTML file by using the <script> and
</script> HTML tags. This will be your first step on the road to becoming a JavaScript coder!

Online Resources

To find additional information online to help you with JavaScript, here are some useful resources:

A place to find tutorials with working examples of the results: www.pageresource.com/jscript
An excellent tutorial site that includes cut-and-paste scripts: www.javascriptkit.com

A place where you can address questions about JavaScript to fellow coders: www.webxpertz
.net/forums

Use JavaScript to Write Text

prl 1.html : This project shows you JavaScript in action by loading an HTML document in

et your browser. The script writes a line of text in the browser using JavaScript.

Step by Step

1. Copy and paste the code shown here into your text editor:

<html>

<body>

<script type="text/javascript"s>

document .write ("This text was written with JavaScript!");
</script>

www.pageresource.com/jscript
www.javascriptkit.com
www.webxpertz.net/forums
www.webxpertz.net/forums

Chapter 1: Infroduction to JavaScript 11

</body>
</html>

2. Save the file as pr1_1.html and open it in your Web browser. You should see a single line
of text that was written with JavaScript.

Try This Summary

In this project, you copied and pasted a section of code into a text editor and saved the file.
When you opened the saved file in your Web browser, a line of text was displayed in the
browser. This text was written in the browser window using JavaScript. You will see more
about how this type of script works in Chapter 2.

] Chapter 1 Self Test

1. You must know which of the following to be able to use JavaScript?
A Perl
B C++
C HTML
D SGML

2. Which of the following is something you should have to use JavaScript?
A A Web browser
B A C++ compiler
C A 50GB hard drive
D A CD-RW drive
3. The choice of a Web browser is up to you, as long it’s compatible with
A Flash MX
B VBScript
C JavaScript
D Windows XP

12 JavaScript: A Beginner's Guide

4. JavaScript and Java are the same language.
A True
B False
5. JavaScript is more than Java in a number of areas, such as syntax.
A complex
B powerful
C compiled
D lenient
6. JavaScript has similarities to other programming and scripting languages.
A True
B False
7. Before its release as JavaScript, JavaScript was called
A Java
B JavaCup
C LiveScript
D EasyScript
8. JavaScript is
A object based
B object oriented
C object deficient
D not a language that uses objects
9. A client-side language is run directly through the being used by the viewer.
A server
B client
C monitor

D lawyer

10.

11.

12.

13.

14.

15.

Chapter 1: Infroduction to JavaScript

How can a client-side language help when using forms on a Web page?
A It can save the information on the server.
B It can validate the information before it is sent to the server.
C It can update a file and save the file with the new information.
D Itcan’t help at all.
A language doesn’t require a program to be compiled before it is run.
A programming
B server-side
C scripting
D computer
With a scripting language, the code is interpreted as it is loaded in the client.
A True
B False
In JavaScript, what handles errors in a script?
A The Web server
B A compiler
C A program on the Web server
D The Web browser
How is JavaScript added to a Web page?
A Tt is written into a special editor in the browser.
B It is taken from a compiled program on the server.
C You place the code in a file by itself and open that file.
D Itis added to an HTML document.
What is added to a Web page to insert JavaScript code?
A <script> and </script> HTML tags
B The JavaScript code word
C <javascript> and </javascript> HTML tags

D <java> and </java> HTML tags

13

This page intentional ly left blank

Chapter 2

Placing JavaScript
in an HTML File

15

16

JavaScript: A Beginner’s Guide

Key Skills & Concepts

Using the HTML Script Tags
Creating Your First Script
Using External JavaScript Files

Using JavaScript Comments

N ow that you have been introduced to JavaScript, you’re ready to start coding. Since
JavaScript code is run from HTML documents, you need to know how to tell browsers to
run your scripts. The most common way to set off a script is to use the HTML <script> and
</script> tags in your document. You can place your script tags in either the head or body
section of an HTML document.

This chapter first shows you how to use the script tags to begin and end a segment of
JavaScript code. Then, you will get started creating and running your first scripts. At the end of
the chapter, you will learn how to add JavaScript comments to document your scripts.

Using the HTML Script Tags

Script tags are used to tell the browser where some type of scripting language will begin and
end in an HTML document. In their most basic form, script tags appear just like any other set
of HTML tags:

<script>= Tells the browser where script code begins
JavaScript code here
</script>= Tells the browser where script code ends

As you can see, there is the opening <script> tag, the JavaScript code, and then the closing
</script> tag. When you use just the basic opening and closing tags like this, many browsers
will assume that the scripting language to follow will be JavaScript. However, some browsers
may need to be told which scripting language is being used.

Besides distinguishing where a script begins and ends for the browser, script tags can also
tell the browser which scripting language will be used and define the address for an external
JavaScript file. These additional functions are achieved through the type and src (source)
attributes.

Identifying the Scripting Language

The scripting language between the opening and closing script tags could be JavaScript,
VBScript, or some other language. Even though JavaScript is usually set as the default
scripting language in browsers, there may be some browsers that do not default to JavaScript.

Chapter 2: Placing JavaScript in an HTML File

To be safe, it is a good idea to explicitly identify the language as JavaScript. You do this by
adding the type attribute with the value of “text/javascript” to the opening script tag:

<script type="text/javascript"><———— Tells the browser the scripting
JavaScript code here language will be JavaScript
</script>

The type attribute in the opening script tag is also required in XHTML in order for the Web
page to validate.

In older versions of HTML, the script tag was not case sensitive. However, with XHTML,
the script tag must be in lowercase. JavaScript is case sensitive in all versions, so you will need
to be more careful with it. In this book, I will use XHTML 1.0 Transitional for the HTML code
(all tag and attribute names will be in lowercase). For the JavaScript code, I will use the case
that is needed for it to function correctly.

Calling External Scripts
Script tags are also useful if you wish to call an external JavaScript file in your document.
An external JavaScript file is a text file that contains nothing but JavaScript code, and it is
saved with the js file extension. By calling an external file, you can save the time of coding or
copying a long script into each page in which the script is needed. Instead, you can use a single
line on each page that points to the JavaScript file with all of the code.

You can call external scripts by adding an src (source) attribute to the opening script tag:

<script type="text/javascript" src="yourfile.js"></script>

This example calls a JavaScript file named yourfile.js from any page on which you place
the line. Be sure there are no spaces or code between the opening and closing script tags, as
this may cause the script call to fail.

If the script is extremely long, using the src attribute to add the script to multiple pages can
be much quicker than inserting the entire code on each page. Also, the browser will cache the
external JavaScript file the first time it is loaded, making subsequent Web pages that use the
script render faster. Using an external script is also helpful when dealing with page validation
and when trying to keep script code separated from markup (HTML) code.

USI Ng <NOSsCri pt></noscr| pf> TClgS

One way of providing alternate content for those viewers without JavaScript (or with
JavaScript turned off) is to use the noscript tag. The <noscript></noscript> tags may be placed
anywhere in the HTML document and can contain any content needed for those viewers
browsing without JavaScript (such as viewers using mobile browsers like the ones on a
Blackberry or iPhone). For example:

<script type="text/javascript"s>
document .write ("The color is red.") ;<«—— Displays for those viewers with JavaScript
</script>
<noscript><€———
The color is red.
</noscript>< Ends noscript content

Begins noscript content for those
viewers without JavaScript

17

18

JavaScript: A Beginner’s Guide

Ask the Expert

Do I always need to use script tags to add JavaScript to a page?

It’s possible to use event handlers that allow you to write short bits of script within the
event-handling attribute of an HTML tag. You’ll learn about event handlers in Chapter 7.

What about the language attribute?

With XHTML, the language attribute has been replaced with the type attribute. Using the
language attribute may cause a Web page to fail XHTML validation (in XHTML strict) and
is no longer recommended.

My page won’t validate in XHTML strict (or transitional) when I add a script to it.
How do I get the page to validate?

If the script contains characters used in XHTML such as < (which is used for “less than”
in JavaScript but is seen as the beginning of a new tag in XHTML), then the page won’t
validate with the script directly in the document without adding a CDATA section:

<script type="text/javascript"s
<! [CDATA [< Begins the CDATA section
var x = 5;
var y = 10;
if (x < vy) |
window.alert ("x is less than y");

}

1] > Ends the CDATA section
</scripts>

This will allow the page to validate, but because the <![CDATA[and]]> characters are in
the script, the script will no longer work. To fix this, you need JavaScript comments (/* and
*/) around those characters when they are within the script tags:

<script type="text/javascript's>

/*<! [CDATA[*/ Opening and closing JavaScript comments
var x = 5; are placed around <![CDATA[

var y = 10;
if (x < vy) |
window.alert ("x is less than y");
}
/*]11>%/= Opening and closing JavaScript
</script> comments are placed around]]>

As you can see, this can get quite tedious very quickly! Typically, the better option is
to use an external script file, which eliminates this problem because only the script tags
themselves are needed in the XHTML document.

Chapter 2: Placing JavaScript in an HTML File 19

This example displays the phrase “The color is red.” to the viewer either through
JavaScript or through the text within the <noscript></noscript> tags.

CAUTION

Some older browsers may not handle the noscript tag correctly and won't display the
content in either section. If your users have older browsers, another alternative is to
display the content on the page and then use JavaScript to enhance the content for
those who are able to display it with JavaScript on.

Creating Your First Script

Now that you know how to use the HTML script tags to tell browsers about the JavaScript in
a document, you’re ready to learn how to add the actual JavaScript code between those script
tags. The first coding example often given to teach any language is one that writes some sort
of text to the default output area, commonly known as a basic “Hello World” script. Following
that convention, your first script will write a string of text to a Web page.

Writing a “Hello World” Script

Rather than write “Hello World,” you’ll use another line of text for this script: “Yes! I am
now a JavaScript coder!” This requires only a single line of code, using the document.write()
method, which writes a string of text to the document:

<script type="text/javascript's>
document .write ("Yes! I am now a JavaScript coder!");
</scripts>

Notice the parentheses and the quotation marks around the text. The parentheses are required
because the document.write() method is a JavaScript function, which takes an argument contained
in parentheses. You will learn more about JavaScript functions in Chapter 4.

The quotation marks denote a string of text. A string is a type of variable that is defined in
JavaScript by placing it inside quotation marks. Chapter 3 provides details on strings and other
types of JavaScript variables.

The last thing to notice about your script is the semicolon at the end of the line. The
semicolon signals the end of a JavaScript statement. A statement is a portion of code that does
not need anything added to it to be complete in its syntax (its form and order). A statement can
be used to perform a single task, to perform multiple tasks, or to make calls to other parts of
the script that perform several statements. Most JavaScript statements end with a semicolon, so
it is a good idea to get in the habit of remembering to add one.

NOTE

In later chapters, you will see various lines that do not end in semicolons because

they open or close a block of code. Also, many scripts you encounter may not end
statements with semicolons. JavaScript is lenient about the use of a semicolon in most
cases; however, it is best to use the semicolon to end a statement because it can prevent
possible errors and aid in debugging (removing errors from) the script later.

20

JavaScript: A Beginner’s Guide

So, to write a text string to the page, you use the document.write() method, followed by the
text, surrounded by quotation marks and enclosed in parentheses. End the line (the statement)
with a semicolon. JavaScript will handle the rest of the job.

Creating an HTML Document for the Script

In order to make this example complete and test the script, you need to insert it into an HTML
document. First, create the following HTML document with the basic tags (using any text
editor you prefer):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<title>Untitled Document</titles

</head>

<body>

</body>

</html>

Save the document as testl.html in your text editor. You will call it later with a Web
browser to see the results of the script. Next, you’ll add the script to this HTML document, so
leave the file open.

Inserting the Script into the HTML Document
Now you need to insert the script in the document. Where should it go? You can place a script
between the <head> and </head> tags, or between the <body> and </body> tags. Since this
example writes a text string directly to the page, you want to insert the script between the
<body> and </body> tags, wherever you want the text string to appear. It can come before,
after, or between any HTML code on the page.

To make it clear how the script results appear, you’ll add HTML code to write lines of text
before and after the script. The script tags and the script itself are inserted between those lines.
Add the lines shown next between the <body> and </body> tags:

This is the first line, before the script results.

<script type="text/javascript"s>
document .write ("Yes! I am now a JavaScript coder!");
</script>

This line comes after the script.

Chapter 2: Placing JavaScript in an HTML File

Save the test]l.html document again. You should now be able to open the document in your
Web browser to see the results of the script. Figure 2-1 shows how the text should look in your
browser when you load the Web page.

Congratulations, you have now finished your first script!

NOTE

The example code in this section uses the entire HTML document and all of its tags. In
order to keep things as relevant as possible, from this point on the example code will
use only the HTML tags involved with the scripts rather than the entirety of its tags.
Project code may use entire HTML documents as needed.

) Example - Mozilla Firefox

File Edit Yiew History Bookmarks Tools Help

6 - c }g ¢ur I: |j |File:,l’,l',l'j:,l’book_3rd_ed,ffigures,|’ch2,ffig1.html {_\\f’ v| |'|G00g|e)":)|

(8] Most visited P Getting Started (5] Latest Headines

@ Disabler 2 Cookies~ [C55+] Forms+ (M Images~ @ Infarmation~ 3 Miscellaneaus ./ Qutline~ :2 Resizer (}3’ Tools~ Q Wiew Sourcer 3
Norton el vz (@) uenitysafe v foxx Logins ~
This 15 the first line, before the script results.

Yes! I am now a JavaScrpt coder!
This line comes after the script.

Dione

Figure 2-1 The test.html file in a Web browser

21

22 JavaScript: A Beginner's Guide

Ask the Expert

Q:
A:

Why is there a dot (.) in the document.write() command?

Document is one of JavaScript’s predefined objects, and write() is a predefined method of
the document object. The dot puts the object and the method together to make the function
work. Chapter 8 explains JavaScript objects, and Chapter 9 is devoted to the document
object.

How do I know when to add the script inside the head section and when to add it
inside the body section?

The main situation in which to add a script to the body section of a document is when you
are writing something directly to the page. In many cases, most of the scripting can be
accomplished in the head section, since you can use functions to call the code in the body
section. We will often use external scripts in this book, which will eliminate much of the
dilemma since all the code will be in the external file.

Insert a Script info an HTML Document

This project gives you practice adding a script to your page. You will create an

i HTML document and insert a script that displays a short sentence in the browser

window when the page loads.

Step by Step

1.

Set up an HTML document so that you have a simple file with nothing between the <body>
and </body> tags yet.

. Put the following line of text into the Web page:

I am part of the HTML document!

3. Insert a
 tag after this line (to insert a line break on the page).

. After the
 tag, insert a script that will write the following line on the page:

This came from my script, and is now on the page!

. After the script, add another
 tag.

. Put the following line of text into the Web page after the last
 tag, and make it

emphasized:

I am also part of the HTML document, after the script results!

Chapter 2: Placing JavaScript in an HTML File 23

7. Here is what your HTML document should look like:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://
www.w3.org/TR/xhtml1l/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0org/1999/xhtml" >
<head>
<title>JavaScript Project 2-1</titles>
</head>
<body>
I am part of the HTML document!

<script type="text/javascript"s>
document .write ("This came from my script, and is now on the page!");
</script>

I am also part of the HTML document, after the script results!
</body>
</html>

8. Save the file as pr2_1.html and view the page in your browser to see the results.

Try This Summary

In this project, you created an HTML file. Using the knowledge that you acquired thus far in
this chapter, you inserted within the HTML file a script that writes a specific line of text on the
page. When the HTML page is opened in a Web browser, the result of the script is displayed
between two lines of text.

Using External JavaScript Files

Now suppose that you want to use your “Hello World” script (the one you created earlier in
this chapter) on more than one page, but you do not want to write it out on each page. You
can do this by putting the script in an external script file and calling it with the src attribute
of the script tag. For this method, you need to create a JavaScript text file to hold your script.
You also need one or more HTML files into which you will place the script tags to call your
external script file.

Creating a JavaScript File

For this example, you will create a JavaScript file that contains only one line. For practical
applications, you would use this approach for lengthier scripts—the longer the script is, the
more useful this technique becomes (especially if you are trying to validate your Web pages or
you are separating your script code from your markup).

24

JavaScript: A Beginner’s Guide

Save As ﬁqﬁq
Savein: |) javascripis “ O T
My Recent
Docurments
Desklop
?
My Documents
Mvton‘ouher
(i ichlet | v [save |
My Metwork: Save as e | Al Files w | [anrel J
Encoding: AMSI [|

Figure 2-2 An example of saving a file with a .js extension using quote marks so it will
save with the correct file extension

Open a new file in your text editor and insert only the JavaScript code (the document.
write() statement) itself. The script tags are not needed in the external JavaScript file. The file
should appear like this:

document .write ("Yes! I am now a JavaScript coder!");

Save the file as jsfilel.js in your text editor. To do this, you may need to use the Save As
option on the File menu and place quotation marks around your filename, as shown in Figure 2-2
(using Notepad with Windows).

Once the file has been saved, you can move on to the next step, which is to create the
HTML files in which to use the script.

Creating the HTML Files

You will create two files in which to place your script. The technique should work for any
number of HTML files, though, as long as you add the required script tags to each file.

For the first file, create your base HTML document and insert the script tags into the body
section of the document, using the src attribute to point to the jsfilel.js file, and add some
HTML text to the body of the page to identify it as the first HTML document:

<body>
<script type="text/javascript" src="jsfilel.js"></script>
<p>
This is page 1, and the script works here!
</p>
</body>

Chapter 2: Placing JavaScript in an HTML File

Save this file as jsextl.html in your text editor. Be sure to save it in the same directory as
your jsfilel.js file.
The second HTML document looks the same as the first one, except that the HTML text

says that it’s page 2:

<body>
<script type="text/javascript" src="jsfilel.js"></script>

<p>
This is page 2, and the script also works here!

</p>
</body>

Save this file as jsext2.html in your text editor. Again, be sure to place it in the same
directory as the other files.

Viewing the Pages in Your Browser
Open the jsextl.html file in your Web browser. It should appear as shown in Figure 2-3, with
the JavaScript inserted in the page from the external script file.

©) Example - Mozilla Firefox

File Edit Wiew History Bookmarks Tools Help

6 - c }z, ot l: |j |File:,l’,l’,l’j:,l’book_Srd_ed,l’Figures,l’chZ,fjsext1.html {_\j - | |'|G00gle)'::'|
(8] Mast visited P Getting Started 5 Latest Headlines
© Disable~ 2 Cookiesw [€55+ -] Forms~ 8] Images= @) Information= (73 Miscelaneous= o/ Outline~ ;: Resize™ (9{5 Tools Q Wiew Source™ -

Norton i i i (@) dentiysefe » @43 Logins ~

Tes! I am now a JavaScrpt coder!

Thiz 15 page 1, and the script workes herel

Done

Figure 2-3 The result of calling the script in the jsext1.html file, the first HTML page

25

26

JavaScript: A Beginner’s Guide

) Example - Mozilla Firefox

File Edit Yiew History Bookmarks Tools Help

{_\\f’ v| |'|G00g|e)"::'|

@ - c 0Q, {5t I: ﬁ |File:,l’,l',l'j:,l’book_3rd_ed,I'Figures,l’chZ,l’jsext2.html

@ Most Yisited ’ Getking Started |5 | Latest Headlines
@ Disabler 2 Cookies~ [€55+] Forms~ (M Images~ @ Infarmation~ 3 Miscellaneaus™ ./ Gutline~ ;2 Resize~ Je’ Tools~ Q Wiew Sourcer

Norton il iz (@) uenttysafe ~ foxx Logins ~

Tes! I am now a JavaScnpt coder!

This 15 page 2, and the senpt also worles herel

Done

Figure 2-4 The result of calling the script in the jsext2.html file, the second HTML page

Next, open the jsext2.html file in your Web browser. It should appear as shown in Figure 2-4,
with only the small difference of the text you added to the HTML file to say that this is page 2.

The JavaScript should write the same text to this page as it did to the first HTML page.
Although we used a short script in this example, it should give you an idea of how using

an external file could be a great time-saver when you have a large script.

Call an External Script from an HTML

Document
g This project will allow you to practice creating external JavaScript files and using

pr2_2.html h . s Web
pris2 2.js them to 1nsert a script into a Web page.

Chapter 2: Placing JavaScript in an HTML File

Step by Step

1. Set up a simple HTML document with nothing between the <body> and </body> tags.
2. Place the following line of text between the body tags of the page:

This text is from the HTML document!
3. Place a
 tag after this text. If you need to save this file now, save it as pr2_2.html.
4. Create an external JavaScript file that will write the following line when it is executed:

I love writing JavaScript and using external files!
5. Here is how your JavaScript file should look:

document .write ("I love writing JavaScript, and using external files!");

6. Save the JavaScript file as prjs2_2.js.

7. Go back to the HTML document. Place the script tags after the
 tag in the document
so that the external JavaScript file will write its sentence on the page.

8. The body of your HTML document should look like this:

<body>

This text is from the HTML document!

<script type="text/javascript" src="prjs2 2.js"></script>
</body>

9. Save this file as pr2_2.html and view the results in your browser.

Try This Summary
In this project, you created an HTML page. Using your knowledge of external JavaScript files
from the previous section, you created an external JavaScript file and placed the necessary
code into the HTML file to include the external JavaScript file. When the HTML file is
displayed in a Web browser, a line of plain text is shown, followed by the results of the
external JavaScript file.

Using JavaScript Comments

You may need to make notes in your JavaScript code, such as to describe what a line of code is
supposed to do. It’s also possible that you will want to disable a line of the script for some reason.
For instance, if you are looking for an error in a script, you may want to disable a line in the
script to see if it is the line causing the error. You can accomplish these tasks by using JavaScript
comments. You can insert comments that appear on one line or run for numerous lines.

28

JavaScript: A Beginner’s Guide

Inserting Comments on One Line
If you want to add commentary on a single line in your code, place a pair of forward slashes
before the text of the comment:

// Your comment here

In this format, anything preceding the two slashes on that line is “live” code—code that
will be executed—and anything after the slashes on that line is ignored. For example, suppose
that you wrote this line in your code:

document .write ("This is cool!"); // writes out my opinion

The document.write() method will be run by the browser, so the text “This is cool!” will be
written to the page. However, the comment after the slashes will be ignored by the browser.

If you place the forward slashes at the beginning of a line, the browser will ignore the entire
line. Suppose that you move the slashes in the previous example to be the first items on the line:

// document.write ("This is cool!"); writes out my opinion

In this format, the entire line is ignored, since it begins with the two slashes that represent

a JavaScript comment. The text will not be written to the page, since the code will not be
executed by the browser. In effect, you are disabling the document.write() statement. You may
wish to do this if the script containing this line has an error and you want to know whether or
not this line is causing the problem.

Adding Multiple-Line Comments

Comments denoted by a pair of forward slashes apply only to the line on which they appear;
their effects are cut off at the end of the line. To add comments that span any number of lines,
you use a different comment format: a forward slash followed by an asterisk at the beginning
of the comment, then the text of the comment, and then an asterisk followed by a forward slash
at the end of the comment. Here’s an example:

/*

My script will write some text into my HTML document!
All of this text is ignored by the browser.

*/

document .write ("You can see me!");

Using this format, you can begin the comment on one line and end it on another line.

Multiple-line comments can be handy when you want to insert lengthier descriptions or
other text, but you need to be careful when you use them. Look at this example to see if you
can find a problem with it:

<script type="text/javascript"s>
/*

This code won'’t work for some reason.

Chapter 2: Placing JavaScript in an HTML File

document .write ("I want someone to see mel!");
</scripts>

Did you notice that the closing JavaScript comment symbols are missing? When you
use multiple-line comments, you need to be careful to close them. Otherwise, you might
accidentally comment out code you need executed! In this example, the comment just keeps
going on with no end in sight. To fix this, you need to close the JavaScript comments before
the document.write() method is used:
<script type="text/javascript"s>
/ *

The JavaScript code is now working! This text is hidden.
*/

document .write ("Now everyone can see me!");

</scripts>

In the preceding examples, you saw how comments can be used to provide some
documentation of what to expect from each script. In Chapter 16, you will learn how using
comments can help you debug your JavaScript code. For now, you should get in the habit of
adding comments to your scripts as short documentation or instructions.

Chapter 2 Self Test

1. What is the purpose of the <script> and </script> tags?
A To tell the browser where a script begins and ends
B To let the browser know the scripting language to be used
C To point to an external JavaScript file
D All of the above

2. Why should you use the type attribute in the opening script tag?
A To let the browser know what type of coder you are

B To be sure the browser does not interpret your JavaScript as another scripting language
and to ensure the Web page validates in XHTML

C To create a typing script

D To make sure the script does not make a grammatical error
3. Is JavaScript code case sensitive?

A Yes

B No

30 JavaScript: A Beginner's Guide

4. The noscript tag provides for those without

5. An external JavaScript file commonly uses a filename extension of
A s
B .html
C jav
D .java

6. Which of the following correctly points to an external JavaScript file named yourfile.js?
A <extscript type="text/javascript” src="yourfile.js”></extscript>
B <script type= “text/javascript” src="yourfile.js”"></script>
C <script language="yourfile.js”></script>
D <script type="text/javascript” link="yourfile.js”></script>

7. In older versions of HTML, the script tag is not case sensitive. However, with XHTML, the
script tag must be in

8. The signals the end of a JavaScript statement.
A colon
B period
C question mark
D semicolon

9. To write a string of text on a Web page, the method is used.
A document.write()
B document.print()
C document,type()
D window.print()

10. When would it be a good idea to use an external JavaScript file?

A When the script is short or going to be used in only one HTML document
B When your Web site viewers have older browsers
C When the script is very long or needs to be placed in more than one HTML document
D External files are not a good idea

11. JavaScript comments can be very useful for the purpose of or
your code.

12.

13.

14.

15.

Chapter 2: Placing JavaScript in an HTML File

Which of the following indicates that a single line of commentary will follow it within
JavaScript code?

A /x
B /-
c/
D <!--

Which of the following indicates that more than one line of commentary will follow it
within JavaScript code?

A /x
B /-
c/
D <!--

Which of the following indicates the end of a multiple-line JavaScript comment?

A\
B >
C
D */

When you use multiple-line JavaScript comments, you need to be careful to
them.

A close
B read
C program

D compile

31

This page intentional ly left blank

Chapter 3

Using Variables

33

34

JavaScript: A Beginner’s Guide

Key Skills & Concepts

Understanding Variables

Why Variables Are Useful
Defining Variables for Your Scripts
Understanding Variable Types

Using Variables in Scripts

N ow that you have learned the basics of adding JavaScript to a Web page, it is time to
get into the inner workings of the language. Since variables are an important part of
JavaScript coding, you will need to know as much as possible about what they are and why
they are useful in your scripts. Once you have an understanding of how variables work and
what they can do, you will be able to move on to other topics that build on the use of the
various types of variables.

In this chapter, you will begin by learning what variables are and why they are useful. You
will then move on to find out about the methods that are used to declare variables and how to
assign a value to a variable. Finally, you will see how to use variables in your scripts.

Understanding Variables

A variable represents or holds a value. The actual value of a variable can be changed at any
time. To understand what a variable is, consider a basic statement that you may recall from
algebra class:

x=2

The letter x is used as the name of the variable. It is assigned a value of 2. To change the value,
you simply give x a new assignment:

x=4

The name of the variable stays the same, but now it represents a different value.
Taking the math class example one step further, you probably had to solve a problem like
this one:

If x=2, then 3+x=?

To get the answer, you put the value of 2 in place of the variable x in the problem, for 3+2=5.
If the value of x changes, so does the answer to the problem. So, if x=7, then the calculation
turns into 3+7, and now the result is 10.

Chapter 3: Using Variables

Variables in JavaScript are much like those used in mathematics. You give a variable a
name, and then assign it values based on your needs. If the value of the variable changes, it
will change something that happens within the script.

Why Variables Are Useful

Using variables offers several benefits:

They can be used in places where the value they represent is unknown when the code
is written.

They can save you time in writing and updating your scripts.

They can make the purpose of your code clearer.

Variables as Placeholders for Unknown Values

Oftentimes, a variable will hold a place in memory for a value that is unknown at the time the
script is written. A variable value might change based on something entered by the viewer or
may be changed by you later in the script code.

For instance, you might have a function that takes in certain values based on user input
(functions will be discussed in Chapter 4). Since the value of user input is unknown at the time
the script is written, a variable can be used to hold the value that will be input by the user. This
is true for any sort of user input, whether it be in the form of a JavaScript prompt/confirm box,
input fields in a form, or other methods of input.

Variables as Time-Savers
Variables speed up script writing because their values can change. When you assign a value to
a variable at the beginning of a script, the rest of the script can simply use the variable in its
place. If you decide to change the value later, you need to change the code in only one place—
where you assigned a value to the variable—rather than in numerous places.

For instance, suppose that back in math class, you were asked to solve this problem:

If x=2, then 3+x-1+2-x=?

You know that you need to substitute the value of 2 for each x that appears, for 3+2—1+2—
2=4. Now if the teacher wants you to do this problem again with a different value for x, the
whole problem does not need to be rewritten. The teacher can just give you the following
instruction:

Solve the above problem for x=4.

The longer and more complex the problem gets, the more useful the variable becomes.
Rather than rewriting the same thing over and over, you can change one variable to offer an
entirely new result.

35

36

JavaScript: A Beginner’s Guide

Variables as Code Clarifiers

Since variables represent something, and you can give them meaningful names, they are often
easier to recognize when you read over (and debug) your scripts. If you just add numbers, you
may forget what they stand for. For example, consider this line of code:

TotalPrice=2.42+4.33;

Here, the numbers could mean almost anything. Instead, you might assign 2.42 as the value of
a variable named CandyPrice and 4.33 as the value of a variable named OilPrice:

TotalPrice=CandyPrice+0ilPrice;

Now, rather than trying to remember the meaning of the numbers, you can see that the script
is adding the price of some candy to the price of some oil. This is also useful in debugging,
because the meaningful variable names make it easier to spot errors.

Defining Variables for Your Scripts

Now that you understand what variables are and why you want to use them, you need to
learn how to make them work in your scripts. You create variables by declaring them. Then
you assign values to them using the JavaScript assignment operator. When you name your
variables, you need to follow the rules for naming variables in JavaScript, as well as consider
the meaningfulness of the name.

Declaring Variables
To declare text as a variable, you use the var keyword, which tells the browser that the text to
follow will be the name of a new variable:

var variablename;
For example, to name your variable coolcar, the declaration looks like this:
var coolcar;

In this example, you have a new variable with the name coolcar. The semicolon ends the
statement. The variable coolcar does not have a value assigned to it yet. As described in the
next section, you can give your new variable a value at the same time that you declare it or you
can assign it a value later in your script.

The code for giving a variable a name is simple, but there are some restrictions on words
that you can use for variables and the cases of the letters. You’ll learn more about JavaScript
naming rules after you see how to assign a value to a variable.

Assigning Values to Variables

To assign a value to a variable, you use the JavaScript assignment operator, which is the equal
to (=) symbol. If you want to declare a variable and assign a value to it on the same line, use
this format:

var variablename=variablevalue;

Chapter 3: Using Variables 37

For example, to name your variable paycheck and give it the numeric value 1200, use
this statement:

var paycheck=1200;

The statement begins with the keyword var, followed by the variable paycheck, just as in
the plain variable declaration described in the previous section. Next comes the assignment
operator (=), which tells the browser to assign the value on the right side of the operator to the
variable on the left side of the operator. To the right of the assignment operator is 1200, which
is the numeric value being assigned to the variable paycheck. The line ends with a semicolon
to mark the end of the statement.

CAUTION

Be careful not to think of the assignment operator (=) as having the meaning “is equal
to.” This operator only assigns a value. The operator for “is equal to” is two equal signs
together (==), as you'll learn in Chapter 5.

To declare and assign another variable, you use the same format, placing the statement on
a new line. For example, to set up a variable named spending to track the amount of money
you are spending from the paycheck variable, use these statements:

var paycheck=1200; Assigns a value of 1200 to the variable paycheck
var spending=1500; Assigns a value of 1500 to the variable spending

Of course, you will also notice that this financial situation is headed for trouble, since the
money being spent in the spending variable is more than what is being brought in with the
paycheck variable. Oddly, it is starting to look like the budget for my Web site!

The examples you’ve seen illustrate the proper and safe way to code variable declarations
and assignments. However, the truth is that JavaScript allows a certain amount of flexibility
when it comes to variables. In many cases, the code will work without using precise coding
syntax. For example, you may see some scripts written without using the var keyword the first
time a variable is used. JavaScript will often declare the variable the first time it is used even if
it is previously undeclared. An example is shown here:

paycheck=1200;

This works since the variable is being assigned a value (JavaScript will simply declare the
variable and assign it the value of 1200). However, if you were trying to declare the variable
without an assignment, the following would not be valid:

paycheck;
This declaration would still require the var keyword to be valid, as in the following code:

var paycheck;

38

JavaScript: A Beginner’s Guide

You may also see a script that leaves off the ending semicolon:

var paycheck=1200

And in some scripts, both features are left out of the variable assignment:

paycheck=1200

All of these shortcuts may seem handy, but it is best to go ahead and define each variable
before using it, use the var keyword, and include the semicolon. Not doing so can cause errors
in some browsers and may give people the impression the code was not written well. Also, any
of these omissions can be really troublesome if you need to debug the script. Giving variables
the correct declarations and assignments will avoid problems, and your code will be easier to
read and understand.

Naming Variables

Before you start naming your own variables, you need to be aware of JavaScript’s naming
rules. The factors you need to consider when choosing names are case sensitivity, invalid
characters, and the names that are reserved by JavaScript. Additionally, you should try to give
your variables names that are both easy to remember and meaningful.

Using Case in Variables
JavaScript variables are case sensitive—paycheck, PAYCHECK, Paycheck, and PaYcHeCk
are four different variables. When you create a variable, you need to be sure to use the same
case when you write that variable’s name later in the script. If you change the capitalization at
all, JavaScript sees it as a new variable or returns an error. Either way, it can cause problems
with your script.

Here are a couple of suggestions for using case in your variable names:

If you are using a variable name that consists of only one word, it is probably easiest to use
lowercase for the entire name. It will be quicker to type, and you will know when you use
it later to type it all in lowercase.

For a variable name with two words, you might decide to capitalize the first letter of each
word. For example, you may name a variable MyCar or My_Car (you will see more on the
underscore character, _, in the next section).

The capitalization of variables is entirely up to you, so you should use whatever style
you are most comfortable with. It is best that you adopt a convention and continue to use it.
For instance, if you name a variable using lowercase characters only, you should do the same
throughout the script to avoid accidentally switching the case when using the variable later. In
this book, I use only lowercase characters for variable names, to keep the code clear.

Using Allowed Characters
An important rule to remember is that a variable name must begin with a letter or an underscore
character (_). The variable name cannot begin with a number or any other character that is not

Chapter 3: Using Variables

a letter (other than the underscore). The other characters in the variable name can be letters,
numbers, or underscores. Blank spaces are not allowed in variable names. So, the following
variable names would be valid:

paycheck
_paycheck
pay2check
pay_check
pay_245

However, the following variable names are not valid:

#paycheck
1paycheck
pay check
pay_check 2
_pay check

The hardest rule to remember may be that you cannot begin the name with a number (it’s
the one I forget most often). While such a name seems reasonable, JavaScript doesn’t allow it.

Avoiding Reserved Words
Another rule to keep in mind when naming your variables is to avoid the use of JavaScript
reserved words. These are special words that are used for a specific purpose in JavaScript. For
instance, you’ve learned that the reserved word var is used to declare a JavaScript variable.
Using it as a variable name can cause numerous problems in your script, since this word is
meant to be used in a different way.

Table 3-1 lists the reserved words in JavaScript. Note that all of these words are in all
lowercase letters. In later chapters, you will learn how these reserved words are used, so they
will become more familiar over time.

Giving Variables Meaningful Names
Although x is an acceptable variable name, it is unlikely that you will be able to remember
what it stands for if you need to debug the program later. Also, if someone else is trying to help
you debug the code, their job will be even harder.

You should try to give your variables names that describe what they represent as clearly as
possible. Suppose that you want to use a variable to hold a number of an example on a page.
Rather than use x, ex, or another short variable, use something more descriptive:

var example number=2;

39

40 JavaScript: A Beginner's Guide

abstract delete goto null throws
as do if package transient
boolean double implements private true
break else import protected try
byte enum in public typeof
case export instanceof return use
catch extends int short var
char false interface static void
class final is super volatile
const finally long switch while
continue float namespace synchronized with
debugger for native this
default function new throw

Table 3-1 JavaScript Reserved Words

The variable example_number will be easy for you to recognize later, and other coders will be
more likely to understand its use quickly.

The more variables you use in a script, the more important it becomes to use meaningful
and memorable names.

Understanding Variable Types

So far, you’ve seen examples of variable values that are numbers. In JavaScript, the variable

values, or types, can include number, string, Boolean, and null.

Unlike stricter programming languages, JavaScript does not force you to declare the type
of variable when you define it. Instead, JavaScript allows virtually any value to be assigned to
any variable. Although this gives you flexibility in coding, you need to be careful because you
can end up with some unexpected results—especially when adding numbers.

Number

Number variables are just that—numbers. JavaScript does not require numbers to be declared
as integers, floating-point (decimal) numbers, or any other number type. Instead, any number
is seen as just another number, whether it is 7, -2, 3.453, or anything else. The number will
remain the same type unless you perform a calculation to change the type. For instance, if
you use an integer in a variable, it won’t suddenly have decimal places unless you perform a
calculation of some sort to change it (dividing unevenly, for instance).

As you’ve seen, you define a number variable by using the keyword var:

var variablename=number;

Chapter 3: Using Variables 41

Here are some examples:

var paycheck=1200;
var phonebill=29.99;
var savings=0;

var sparetime=-24.5;

If you need to use a particularly long number, JavaScript has exponential notation. To
denote the exponent, use a letter e right after the base number and before the exponent. For
example, to create a variable named bignumber and assign it a value of 4.52 x 10°(452,000),
put the letter e in place of everything between the number and the exponent (to represent the
phrase “times 10 to the power of”):

var bignumber=4.52e5;

NOTE

JavaScript may return an answer to a calculation using exponential notation (like many
calculators).

String

String variables are variables that represent a string of text. The string may contain letters,
words, spaces, numbers, symbols, or most anything you like. Strings are defined in a slightly
different way than numbers, using this format:

var variablename="stringtext";

Here are some examples of string variables:

var mycar="Corvette";

var oldcar="Big Brown Station Wagon";

var mycomputer="Pentium 3, 500 MHz, 128MB RAM";

var oldcomputer="386 SX, 40 mHz, 8MB RAM";

var jibberish="what? cool! I am @ home 4 now. (cool, right?)";

As you can see, strings can be short, long, or anything in between. You can place all sorts
of text and other characters inside of string variables. However, the quotation marks, some
special characters, and the case sensitivity of strings need to be considered.

Matching the Quotation Marks

In JavaScript, you define strings by placing them inside quotation marks (quotes, for short),
as you saw in the examples. JavaScript allows you to use either double quotes or single quotes
to define a string value. The catch is that if the string is opened with double quotes, it must be
closed with double quotes:

var mycar="Red Corvette";

42

JavaScript: A Beginner’s Guide

The same goes for single quotes:

var myhouse='small brick house';

Trying to close the string with the wrong type of quotation mark, or leaving out an opening
or closing quotation mark, will cause problems.

Incorrect, string is opened with double quotes and closed
var mycar="Red Corvette';«—— witha single quote

var myhouse= 'small brick house" ;. Incorrect, string is opened with
var mycomputer="Pentium 3, 500 mHz, 128MB RAM; a single quote and closed with
double quotes

Incorrect, string does not have a closing quote

These mistakes will result in an “Unterminated String” error in the Web browser.

Watching the Case

JavaScript strings are case sensitive. This may not seem important now, but it matters when
you need to compare strings for a match. It only takes one character having a different case to
make the strings different:

"My car is fun to drive!"
"my car is fun to drive!"

You’ll learn more about string comparisons in Chapter 5.

Using Special Characters

Special characters enable you to add things to your strings that could not be added otherwise.
For example, suppose that you need a tab character between each word in a string. If you press
the TaB key on the keyboard, JavaScript will probably see it as a bunch of spaces. Instead, use
the special character \t, which places a tab in the string, as in this example:

var mypets="dog\tcat\tbird";

In each spot where the special character \t appears, JavaScript interprets a tab character.

The special characters all begin with a backslash character (\). Thus, if you want a single
backslash character in your string, you need to use the special code for a backslash: \\.
For instance, suppose you wish to write the following sentence on a Web page: “Go to the
directory c:\javascript on your computer.” If you use the string as it is written, your code would
look like this:

<script type="text/javascript"s
document .write ("Go to the directory c:\javascript on your computer.");

</scripts>

The single backslash won’t be printed to the browser

Chapter 3: Using Variables

The problem is that the single backslash would not be printed on the Web page. It would
appear as

Go to the directory c:javascript on your computer

Unless the backslash is followed with the code for a special character, JavaScript prints the
character after the slash as it appears (you will see this in the escape technique discussed in the
next section). To fix this, use the \\ special code to print a single backslash on the page:

<script type="text/javascript">
document .write ("Go to the directory c:\\javascript on your
computer.") ;

</scripts Using the special code for the backslash

character allows it to be printed to the browser

Now you get the sentence you want printed to the browser, like this:

Go to the directory c\:javascript on your computer.

The special characters used in JavaScript are shown in Table 3-2.

Suppose that you want to print a sentence on a Web page with strong emphasis. JavaScript
allows you to print HTML code to the page as part of a string in the document.write() method
(which you used for your first scripts in Chapter 2). To print in bold type, you could just add in
the and tags from HTML, as in this sample code:

<script type="text/javascript"s>
document .write ("JavaScript Rules! This is fun.");
</script>
Note the HTML and tags
within the JavaScript string

Output Character Special Code to Use
Backslash (\) \\
Double quote (") \"
Single quote (') \!
Backspace \b
Form feed \f
Newline \n
Carriage return \r
Tab \t
Vertical Tab \v

Table 3-2 Special JavaScript Characters

43

44

JavaScript: A Beginner’s Guide

Now suppose that you want the code itself to appear on two lines when it is viewed,
like this:

JavaScript Rules!
This is fun.

You might try this by adding the newline special character to the code:

<script type="text/javascript">
document .write ("JavaScript Rules!\n This is fun.");
</script>

The \n special code is only a newline in JavaScript; it will not result in an HTML line
break. The JavaScript newline code does not add a new line to the result of the code shown in
the browser display. So, the end result of the preceding code is a sentence like this one:

JavaScript Rules! This is fun.

If you want to add a line break in the browser display, you need to use the HTML
 tag to
produce it.

Keep in mind that the JavaScript newline affects only the appearance of the source code;
it does not play a factor in the end result. However, it does help later when you want to format
the output of JavaScript alert boxes and various other JavaScript constructions.

Escaping Characters
JavaScript allows you to escape certain characters, so that they will show up correctly and
avoid causing errors. Like special characters, escape sequences use the backslash character (\),
which precedes the character that needs to be escaped.

As noted earlier, JavaScript checks each string for the presence of special characters before
rendering it. This is useful if you want to have a quote within a string. For example, suppose
that you want to print the following sentence on a Web page:

John said, "JavaScript is easy."

What would happen if you just threw it all into a document.write() command?

<script type="text/javascript"s The extra set of quote marks here will cause an error

document .write ("John said, "JavaScript is easy."");<————-|
</script>

If you look near the end of the document.write() line, you will see that the two double
quotes together could cause trouble, but the browser will actually get upset before that point.
When the double quote is used before the word JavaScript, the browser thinks you have closed
the string used in the document.write() command and expects the ending parenthesis and
semicolon. Instead, there is more text, and the browser gets confused.

To avoid problems with quotes, use the backslash character to escape the quotation marks
inside the string. By placing a backslash in front of each of the interior double quote marks,

Chapter 3: Using Variables 45

you force them to be seen as part of the text string, rather than as part of the JavaScript
statement: The backslashes allow the inner quote

. . , marks fo become part of the string
<script type="text/javascript"s>

document .write ("John said, \"JavaScript is easy.\"");
</script>

This fixes the problem with the string, and the sentence will print with the quotation marks.

CAUTION

Also watch for single quotes and apostrophes within strings. Escaping these is required
for strings enclosed within single quotes.

The escape technique also works for HTML code in which you need quotation marks.
For instance, if you want to put a link on a page, you use the anchor tag and place the URL in
quotes. If you escape the quotes in the anchor tag, JavaScript allows you to write the HTML
code to the page within the document.write() method, as in this example:

<script type="text/javascript"s>
document .write ("Text") ;
</scripts>

This does the job, but there is also an easier way to make this work if you do not want to
escape quotation marks all of the time.

To avoid escaping the quotes in the preceding code, you could use single quotes around the
URL address instead, as in this code:

ingl tes withi I t k
cscript type="text/javascriptts Single quotes within double quotes are okay

document .write ("Text") ;
</script>

You can also do this the other way around if you prefer to use single quotes on the outside,
as in this example:

))) Double quotes inside single quotes are also okay
<script type="text/javascript"s>

document .write ('Text") ;
</scripts>

The important point to remember here is to be sure that you do not use the same type of
quotation marks inside the string as you use to enclose the string. If you need to go more than
one level deep with the quotes, you need to start escaping the quotes; this is because if you
switch again, it will terminate the string. For example, look at this code:

document .write ("John said, 'Jeff says, \"Hi!\" to someone.'");
document .write ("John said, 'Jeff says, "Hi!" to someone.'");

The first one would work, since the quotes are escaped to keep the string going. However,
the second line only switches back to double quotes when inside the single quotes within the

46

JavaScript: A Beginner’s Guide

string. Placing the double quotes there without escaping them causes the string to terminate
and gives an error.

As you can see, quotation marks can be a real pain when you need to use a large number
of them within a string. However, remembering to use the backslash to escape the quotes when
necessary will save you quite a few headaches when you are looking for a missing quote. I've
had to look for missing quotes in my code a number of times, and my head was spinning after
a few of those encounters! Later in this chapter, you will see that you can add strings together,
which can simplify the use of quotes for you.

Boolean

A Boolean variable is one with a value of true or false. Here are examples:

var JohnCodes=true;
var JohnIsCool=false;

Notice that the words true and false do not need to be enclosed in quotes. This is because they
are reserved words, which JavaScript recognizes as Boolean values.

Instead of using the words true and false, JavaScript also allows you to use the number 1
for true and the number O for false, as shown here:

var JohnCodes=1; «—————Using the number 1 is the same as using the value of true
var JohnIsCool=0;«————— Using the number O is the same as using the value of false

Boolean variables are useful when you need variables that can only have values of true and
false, such as in event handlers (covered in Chapter 7).

NOTE

When we talk about the concept of a Boolean variable, the first letter of the word
Boolean is capitalized (because it is derived from the name of the mathematician
George Boole). However, the JavaScript reserved word boolean is written in all
lowercase letters when you use the keyword in a script.

Null

Null means that the variable has no value. It is not a space, nor is it a zero; it is simply nothing.
If you need to define a variable with a value of null, use a declaration like this:

var variablename=null;

As with the Boolean variables, you do not need to enclose this value in quotation marks as
you do with string values, because JavaScript recognizes null as a keyword with a predefined
value (nothing).

Null variables are useful when you test for input in scripts, as you’ll learn in later
chapters.

Chapter 3: Using Variables

Ask the Expert

Q: Why do I need to learn about variables? Couldn’t I just put in the number or text I
want to use right where I’m going to use it?

A: You can do that; however, it will make longer scripts much harder to write, read, and
debug. It also makes it much more difficult to update your scripts because, in order to
change that number or text, you would need to change every line where it appears. When
you use variables, you can modify just one line of code to change the value of a variable
every place it is used. As you gain more experience with JavaScript, you will see just how
useful variables are.

Q: Why don’t I need to define the type of number I am using (such as float or integer)
when I declare a numeric variable?

A: JavaScript doesn’t require this, which can be a good or bad feature depending on your
perspective. To JavaScript, any number is just a number and can be used as a number
variable.

Q: Why do I need to put quotation marks around the text in a string?

A: This is done so that JavaScript knows where a string begins and ends. Without it, JavaScript
would be unsure what should be in a string and what should not.

Q: But doesn’t a semicolon end a statement? Why not use that and lose the quote marks?

A: A variable declaration or any command involving strings can become more complex when
the addition operator is used to add two strings and/or variables together. When this happens,
JavaScript needs to know when one string stops and another begins on the same line.

Q: What does the backslash (\) character do, in general?

A: 1f the backslash is followed by a code to create a special character, the special character is
rendered in its place. Otherwise, the first character after a single backslash is seen “as-is”
by JavaScript and treated as part of the string in which it resides.

Declare Variables

This project gives you the opportunity to practice declaring variables with various
values. It also prints a short line of text on the page.

(continued)

48 JavaScript: A Beginner's Guide

Step by Step
1. Create an HTML page, leaving the space between the <body> and </body> tags open.

2. Between the <body> and </body> tags, add the <script> and </script> tags as you learned
in Chapter 2.

. Create a numeric variable named chipscost and give it the value 2.59.

3
4. Create a Boolean variable named istrue and give it the value false.
5. Create a variable named nada and give it the value null.

6

. Create a JavaScript statement to write to the Web page the string value that follows.
Remember to escape quotation marks when necessary:

John said, “This project is fun!”
7. The body section of the HTML document should look like this when you are finished:

<body>
<script type="text/javascript's>
var chipscost=2.59;
var istrue=false;
var nada=null;
document .write ("John said, \"This project is fun!\"");
</scripts>
</body>

8. Save the file as pr3_1.html and view it in your Web browser.

You should see only the text that you output with the document.write() command. The
variable definitions won’t be printed on the browser screen. You can view the page source code
to see how the variable definitions look in the code.

Try This Summary
In this project, you were able to use your skills to declare different types of variables in a
script. This project included a numeric variable, a Boolean variable, and a variable with a
value of null. You were also able to use skills learned in Chapter 2 to write a line of text to the
page with JavaScript.

Using Variables in Scripts
To make a variable useful, you need to do more than just declare it in the script. You need to
use it later in the script in some way, perhaps to print its value or even just to change its value.
To use a variable, you make the call to a variable after it has been declared.

Chapter 3: Using Variables 49

Making a Call to a Variable

The following code shows how to write the value of a variable to a Web page using the
document.write() method:

<script language="JavaScript"s>

var mycar="Corvette";

document .write (mycar) ; «——— Prints the value of the mycar variable to the browser
</scripts>

The script begins by declaring a variable mycar and giving it a value of “Corvette”. Then,
in the document.write() command, you see that just the variable name mycar is enclosed
within the parentheses. The result of this script is simply to write “Corvette” to the browser.

There are no quotation marks around the mycar variable that is being written to the page.
The reason for this is that the mycar variable has already been given a string value, so it does
not need to be within quotes to print its value to the page in the document.write() command.
Already, you can see how using a variable has the advantage of making a short document.write()
command easier to code.

Adding Variables to Text Strings

The preceding code just prints the value of the variable in the browser. If you want that
variable to print along with some other text in a string, the document.write() command
becomes more complex. The text string needs quotes around it if it has not been defined as a
variable, and the variable needs to be on its own. You use the addition operator (+) to add the
value of the variable to the string, as shown in this example:

<script type="text/javascript">

var mycar="Corvette";

document .write ("I like driving my "+mycar) ; 4——
</script>

A variable is added fo the string
that is written fo the browser

This code prints the following sentence in the browser window:

I like driving my Corvette.

Notice the space after the word “my” in the code. This ensures that a space appears before the
variable is added to the string. If you used the line

document .write ("I like driving my"+mycar) ;
the result would be

I like driving myCorvette.

When adding strings, you need to be careful to add the spaces that you want to appear in the
output.

50

JavaScript: A Beginner’s Guide

The addition operator enables you to place a variable before, after, or even into the middle
of a string. To insert a variable into the middle of a string (so that it shows with text on both
sides of it), just use another addition operator to add whatever you need to the right of the
variable, as in this example:

<script type="text/javascript"s The variable is added between two strings

var mycar="Corvette";
document .write ("I like driving my "+mycar+" every day!");
</script>

Now the variable sits inside two text strings, putting a single string together from three
pieces. This code prints the following sentence to the browser:

I like driving my Corvette every day!

When using the variable, you need to make sure that the variable and addition operators
are not inside the quotation marks of a string. If they are, you will not get the results you

intended. For example, look at this code:
The addition operator must also be

<script type="text/javascript"s outside the quote marks to work
var mycar="Corvette";
document .write ("I like driving my +mycar+ every day!");
</scripts>

JavaScript will not recognize the operators and variables here; they are seen only as part of the
text string because they are inside the quotes. Instead of using the variable, JavaScript takes
everything literally and prints this sentence in the browser:

I like driving my +mycar+ every day!

To make this code easier to write, you could place every string involved into a variable, so
that you only need to add the variable values together rather than dealing with the quotes, like
this:

<script type="text/javascript"s>
var firstString= "I like driving my ";
var mycar="Corvette";
var secondstringz " every day! ", Three variables are added
document .write (firstString+mycar+secondString) ;«—— fogether and printed fo the
. browser
</script>

This prints the same sentence but allows you to change its parts later without needing to edit
the document.write() command.

The techniques you’ve learned in this section will become useful as your strings become
more complex, especially when you use HTML code within the strings.

Chapter 3: Using Variables 51

Writing a Page of JavaScript

Now that you know how to use variables and write basic HTML code to the page using
JavaScript, you will create a page that is almost entirely written with JavaScript (everything
inside the <body> and </body> tags), as a way to reinforce the techniques you have learned up
to this point.

Creating the Framework

The first thing you need is a basic framework for the page so that you know where to insert
your script. Since you are writing information onto the page, the script tags will be placed
within the <body> and </body> tags. In this case, an external script file named ch3_code.js
will be used. The body section of your HTML document will look like this:

<body> The script tags are inserted here to call the external JavaScript file
<script type="text/javascript" src="ch3 code.js"></script>
</body>

The code you place in the ch3_code.js file will determine what shows up in the browser

when you have finished.

Defining the Variables
To begin your script file, use some JavaScript code to write an HTML heading. You could
write the code as a string directly into the document.write() command, as shown here:

document .write ("<hl>A Page of JavaScript</hl>");

On the other hand, you could place the string inside a variable and use the variable inside the
document.write() command later in the script:

var headingtext="<hl>A Page of JavaScript</hls>";
Other code may be placed here...
document .write (headingtext) ;

For this example, you will go with the second method, since it uses a variable. You will see
how this can be a handy feature as you get further into the script.

In fact, along with the headingtext variable, you’ll create a bunch of variables to hold
the strings of HTML code to add to the page. The next one will add a short sentence of
introduction to the page. The variable declaration for the introduction will look like this:

var myintro="Hello, welcome to my JavaScript page!";

Next, you’ll add a link to the page. The variable declaration for the link looks like this:

var linktag="Link to a Site";
Next, you’ll put in some red text to add a little color. Here’s the redtext variable definition:

var redtext="I am so colorful today!";

52 JavaScript: A Beginner's Guide

Finally, you’ll add in some variables that give you just the opening and closing strong tags and
paragraph tags:

var begineffect="";
var endeffect= "";
var beginpara="<p>";

var endpara="</p>";

The code for all of the variables in the ch3_code.js file is as follows:

var headingtext="<hl>A Page of JavaScript</hl>";

var myintro="Hello, welcome to my JavaScript page!";

var linktag="Link to a Site";
var redtext="I am so colorful today!";
var begineffect="";

var endeffect= "";

var beginpara="<p>";

var endpara="</p>";

Adding the Commands

Now, following the variable declarations, you can add some document.write() commands to
the ch3_code.js file to write the contents of the variables back to the HTML document:

document .write (headingtext) ;

document .write (begineffect+myintro+endeffect) ;
document .write (beginpara) ;
document .write (linktag) ;
document .write (endpara) ;
document .write (beginpara) ;
document .write (redtext) ;
document .write (endpara) ;

This writes the heading at the top of the page. Adding the begineffect and endeffect
variables to the left and right of the myintro variable writes the introductory text in bold under
the heading. After that is a new paragraph, followed by a link, and then another new paragraph,
followed by the red text message.

Here is the entire code for the ch3_code.js file up to this point:

var headingtext="<hl>A Page of JavaScript</hl>";

var myintro="Hello, welcome to my JavaScript page!";

var linktag="Link to a Site";
var redtext="I am so colorful today!";
var begineffect="";

var endeffect= "";

var beginpara="<p>";

var endpara="</p>";

All of the variables are declared and ossigned values here

Chapter 3: Using Variables 53

document .write (headingtext) ;
document .write (begineffect+myintro+endeffect) ;
document .write (beginpara) ;
document .write (linktag) ; The values of the variables are
(
(
(
(

document .write (endpara) ; printed to the browser here
document .write (beginpara) ;

document .write (redtext) ;
document .write (endpara) ;

Save the ch3_code.js file and then load your HTML document. The end result of this
code in the browser is shown in Figure 3-1. Note the strong introduction text and the use of
paragraphs between sections.

Modifying the Page
Now suppose that you do not like the layout as it appeared on the Web page. Instead, you
want the strongly emphasized introduction to be normally emphasized. If you had written the
document.write() commands with plain strings rather than variables, you would need to search
through the code to find the tags and change them to tags.
However, since you used the variables, all you need to do is change the values of the
appropriate variables at the top of the script file. You only need to change the values of the
variables, and you don’t need to look for the strong tags inside a bunch of code.

©) pxample - Mozilla Firetox
Fle Edt Wew Hstory Bookmarks Tools Help

@ » @ 3 G (L9 [Aestiiibook_rd_edifiguresichaffiot himl 7 | [Id-]ceoge 2|

(8] Must visited P Gelling Slarted 5 Lalesl Headiies

@ Disalle B Coukies- [€55 [Furmes (B Images- @ Ifunation- ; MisLellaneous - o Oulling- ;:Rx::ia:' f Tuuls Q ¥iew Suurie o

Norton ', () tenkity Sofe ~ @0 Logrins ~

A Page of JavaScript
Hello, welcome to my JavaScript page!
Lk to a Site

I am so colorfl today!

Figure 3-1 The result of the JavaScript code in a Web browser

54

JavaScript: A Beginner’s Guide

The code that follows shows the changes that you could make to the script file to get the

new effect. Notice how you only need to change the values of the begineffect and endeffect
variables to change the format of the text on the page:

var
var
var
var
var
var
var
var

headingtext="<hl>A Page of JavaScript</hl>";

myintro="Hello, welcome to my JavaScript page!";

linktag="Link to a Site";
redtext="I am so colorful today!";
begineffect=""; «—— Changed to

endeffect= ""; 4«—————— Changed to

beginpara="<p>";

endpara="</p>";

document .write (headingtext) ;

document .write (begineffect+myintro+endeffect) ;
document .write (beginpara) ;

document .write (linktag) ;

document .write (beginpara) ;
document .write (redtext) ;

(
(
(
document .write (endpara) ;
(
(
(

document .write (endpara) ;

Save the ch3_code.js file and reload your HTML document. Figure 3-2 shows how these

changes affect the display of the page in a Web browser.

[rost visited P cetting started 5| Latest Headines
(@ Disabler B Cockies (1 €55~] Forms» [Images~ @ Information= (79 Miscellaneous® ./ Outline~ | J Resize» 4% Tools {&] View Sourcer |
Norton i o — () tdentty Safe ~ ey Logns ~

) Fxample - Mozilla Firefox

File Edit Wiew History Bookmarks Tonk Help

o + € % G (O] Redifidoook d edfiquresichaia2.biml 77 -] [Glr]eooe A

A Page of JavaScript
Hello, welcome tu my JavalScript page!
Link to a Site

T am so colorful today

Figure 3-2 The page after changing some JavaScript variables

Chapter 3: Using Variables

Create an HTML Page with JavaScript

In this project, you will create an HTML page with JavaScript, similar to the
one you created in this chapter. The variables will be given new values, and the

... differences should be noticeable.

Step by Step

1.
2.

Create an HTML page, leaving the space between the <body> and </body> tags open.

Between the <body> and </body> tags, add the <script> and </script> tags to link to a file
named prjs3_2.js. Save the HTML file as pr3_2.html.

. Open a file to use as your JavaScript file. Save it with the filename prjs3_2.js. Use this file

to add the JavaScript code in steps 4—10.

. Create a variable named myheading and give it this value:

This is My Web Page!

. Create a variable named linktag and give it this value:

Web Site Link!

. Create a variable named sometext and give it this value:

This text can be affected by other statements.

. Create a variable named begineffect and give it the value .

8. Create a variable named endeffect and give it the value .

9. Create a variable named newsection and give it the value
.

. Write the value of each variable back to the HTML document in this order:

myheading
newsection
begineffect
sometext
endeffect
newsection
linktag
newsection
sometext

(continued)

55

56 JavaScript: A Beginner's Guide

When you have finished, save the prjs3_2.js file. It should look like this:

var myheading="<hl>This is My Web Page!</hl>";

var linktag="Web Site
Link!";

var sometext="This text can be affected by other statements.";
var begineffect="";

var endeffect="";

var newsection="
";

document .write (myheading) ;

document .write (begineffect) ;

document .write (sometext) ;

document .write (endeffect) ;

document .write (newsection) ;

document .write (linktag) ;

document .write (newsection) ;

document .write (sometext) ;

11. Open the pr3_2.html page in your Web browser and view the results.

12. Reopen the prjs3_2.js file and make the changes in steps 13—14.

13. Change the value of begineffect to .

14. Change the value of endeffect to .

15. When you have finished, save the prjs3_2.js file. It should look like this:

var myheading="<hl1>This is My Web Page!</hl>";

var linktag="Web Site
Link!";

var sometext="This text can be affected by other statements.";
var begineffect="";

var endeffect="";

var newsection="
";

document .write (myheading) ;

document .write (begineffect) ;

document .write (sometext) ;

document .write (endeffect) ;

document .write (newsection) ;

document .write (linktag) ;

document .write (newsection) ;

document .write (sometext) ;

16. Reload the pr3_2.html page in your Web browser. Notice the differences resulting from the
changes in the variable values in the JavaScript file.

Chapter 3: Using Variables 57

Try This Summary

In this project, you combined your new skills on using variables with earlier skills on writing
to a Web page with JavaScript. You created a Web page with a script that uses variables to
write the HTML code on the page. You then changed the values of two variables and resaved
the script file. The changes to the variables made visible changes to the page.

Chapter 3 Self Test

1. A variable or a value.

2. What are two of the benefits of using variables?

A They can save you time in writing and updating your scripts, and they can make the
purpose of your code clearer.

B They make the purpose of your code clearer, and they make it harder for noncoders to
understand the script.

C They can save you time in writing and updating your scripts, and they make it harder
for noncoders to understand the script.

D They offer no advantages whatsoever.
3. To declare a variable, you use the keyword.
4. What symbol is used as the assignment operator in JavaScript?
A +
B —
C:
D =
5. Which of the following declares a variable named pagenumber and gives it a value of 240?
A var PageNumber=240;
B pagenumber=220;
C var pagenumber=240;
D var integer named Pagenumber=240;
6. Variable names are not case sensitive.
A True
B False

58

JavaScript: A Beginner’s Guide

10.

11.

12.

13.

14.

15.

. A variable name must begin with a(n) or a(n) character.

. You should avoid using JavaScript reserved words as variable names.

A True
B False

. Which of the following variable declarations uses a variable with a valid variable name

in JavaScript?
A var default;

B var my_house;

C var my dog;

D var 2cats;
In JavaScript, the variable values, or , can include numbers, strings, Booleans,
and nulls.
To denote an exponent in JavaScript, you use a letter right after the base

number and before the exponent.
Which of the following string declarations is invalid?
A var mytext="Here is some text!”;
B var mytext="Here is some text!’;
C var mytext= “Here is some text!’;
D var mytext= “Here is \n some text!”;
Which of the following statements would be valid in JavaScript?
A document.write(“John said, “Hi!””);
B document.write(‘John said, “Hi!””);
C document.write(“John said, “Hi!””);
D document.write(“John said, \“Hi!\""”’);

characters enable you to add things to your strings that could not be added
otherwise.

Which of the following successfully prints a variable named myhobby by adding it to a set
of strings?

A document.write(“I like to +myhobby+ every weekend”);
B document.write(“I like to ” +myhobby+ “ every weekend”);
C document.write(“I like to myhobby every weekend”);

D document.write(“I like to ‘myhobby’ every weekend”);

Chapter 4

Using Functions

59

60 JavaScript: A Beginner's Guide

Key Skills & Concepts

What a Function Is
Why Functions Are Useful
Structuring Functions

Calling Functions in Your Scripts

A s a JavaScript coder, you need to know how to use functions in your scripts. Functions can
make your scripts more portable and easier to debug.
This chapter covers the basics of using functions. First, you will find out what a function
is and why functions are useful. Then, you will learn how to define and structure functions.
Finally, you will learn how to call functions in your scripts.

What a Function Is

A function is basically a little script within a larger script. Its purpose is to perform a single
task or a series of tasks. What a function does depends on what code you place inside it. For
instance, a function might write a line of text to the browser or calculate a numeric value and
return that value to the main script.

As you may recall from math class, a function can be used to calculate values on a
coordinate plane. You may have seen calculations like these:

f(x)=x+2
V=X+2

Both are commonly used to calculate the y coordinate from the value of the x coordinate. If
you need the y coordinate when x is equal to 3, you substitute 3 for x to get the y value: 3+2=5.
Using the function, you find that when x=3, y=5.

The function itself is just sitting on the paper (or, in our case, the script) until you need
to use it to perform its task. And you can use the function as many times as you need to, by
calling it from the main script.

Why Functions Are Useful

Functions help organize the various parts of a script into the different tasks that must be
accomplished. By using one function for writing text and another for making a calculation, you
make it easier for yourself and others to see the purpose of each section of the script, and thus
debug it more easily.

Chapter 4: Using Functions

Another reason functions are useful is their reusability. They can be used more than once
within a script to perform their task. Rather than rewriting the entire block of code, you can
simply call the function again.

Consider the simple function y=x+2. If you use it only once, the function doesn’t serve
much purpose. If you need to get several values, however, the function becomes increasingly
useful. Rather than writing out the formula for each calculation, you can just substitute the x
values each time you need to get the y value. So, if you need the y value when x is 3, 4, and 5,
you can use the function three times to get the y values. The function will calculate 5, 6, and
7, respectively. Instead of writing the content of the function three times, it only needs to be
written once to get three answers.

Functions can perform complex tasks and can be quite lengthy. In the examples in this and
later chapters, you’ll see just how useful and time-saving they are in JavaScript.

Structuring Functions

Now that you understand what functions are and why you want to use them, you need to learn
how to structure them in your scripts. A function needs to be declared with its name and its
code. There are also some optional additions you can use to make functions even more useful.
You can import one or more variables into the function, which are called parameters. You can
also return a value to the main script from the function using the refurn statement. You will
start by looking at how the function begins.

Declaring Functions

On the first line of a function, you declare it as a function, name it, and indicate whether it
accepts any parameters. To declare a function, you use the reserved word function, followed by
its name, and then a set of parentheses:

function functionname ()

The reserved word function tells the browser that you are declaring a function and that more
information will follow. The next piece of information is the function’s name. After that, the
set of parentheses indicates whether the function accepts any parameters.

For example, to name your function reallycool and indicate that it does not use any
parameters, the first line looks like this:

function reallycool ()

Because the function does not use any parameters, the parentheses are left empty. As with
variable names, there are some special considerations for naming functions. You’ll learn about
those considerations after the discussion of the function structure.

You may have noticed that this line does not end with a semicolon, as do the other code
lines you’ve seen so far in this book. The semicolon is absent because you use a different
technique to show where the function’s code begins and ends, as described next. However,

61

62

JavaScript: A Beginner’s Guide

each of the separate lines of code within the function does end with a semicolon, as you will
see in the examples in this chapter.

Defining the Code for Functions

Curly brackets ({ }) surround the code inside the function. The opening curly bracket marks
the beginning of the function’s code; then comes the code; and, finally, the closing curly
bracket marks the end of the function, in this format:

Function is defined and given the name reallycool Opening curly bracket to show the

beginning of code within the function
function reallycool () 4—, E | 9

JavaScript code here « JavaScript code to be executed is
} < p|dced here, between the brackets

Closing curly bracket ends the function

The browser will execute all of the code inside the curly brackets when the function is
called (as you will learn later in this chapter). When the browser gets to the closing curly
bracket, it knows the function has ended. The browser will move to the next line of code or
continue whatever it was doing before the function was called.

You have some flexibility in formatting the curly brackets. There are several common
ways to place the curly brackets into a script. The format shown in the preceding example
“lines up” the brackets so that the opening and closing of the function are seen on the left
margin of the code. This method is handy if you use other statements that need curly brackets
(you will see some other statements that use curly brackets in later chapters). By indenting
each set of brackets, you make it easy to see which brackets are nested within the function and
which ones begin and end the function itself.

Another common format is to put the opening bracket on the same line as the function
declaration, rather than on the next line:

Opening bracket is on the first line
with the declaration of the function

function reallycool () { -
JavaScript code here

In this format, the opening brackets of code blocks are seen to the right, and closing brackets
appear on the left. This can be a useful technique if you wish to count how many brackets have
been opened and/or closed within a segment of code.

Of course, if you have a particularly short function, you can even place the entirety of the
function on a single line, like this:

function reallycool () { JavaScript code here }

The curly brackets are flexible in this way because white space, tabs, and line breaks that
appear between tokens in JavaScript are ignored (tokens are such things as variable or function

Chapter 4: Using Functions

names, keywords, or other parts of the code that must remain intact). Thus, the following code
would be valid:

function reallycool () ({
var
a

5; var b = 3; var c = 6; }

Though it may be more difficult to read, JavaScript will still see it as valid code since the
proper syntax is otherwise in place.

The format you choose for the curly brackets will likely depend on your background in
programming and how you like to see the code. All the styles are acceptable to the JavaScript
interpreter, so use the one that you feel most comfortable viewing and editing. In the examples
in this book, I will place the opening bracket on the same line as the function declaration (as
in the second example format from this section) and may occasionally place the entirety of a
function on one line if it is particularly short (as in the third example format in this section).

Naming Functions

As with variables, functions need to be named carefully to avoid problems with your
scripts. The same basic rules that applied to variables apply to the naming of functions:
case sensitivity, using allowed characters, avoiding reserved words, and giving functions
memorable and meaningful names.

NOTE

If you already know the rules for naming variables, you may wish to skip this section,
since the function-naming rules are essentially the same. However, there are some
details about choosing names for functions that you may find useful.

Using Case in Function Names

Function names are case sensitive, just like variable names. This means that reallycool,
REALLYCOOL, and ReallyCool represent different functions. Remember that you need to
call your functions using the same letter cases as you used in their declarations.

Using Allowed Characters and Avoiding Reserved Words
The characters that are allowed for function names are the same as those you can use for
variable names:

The function name must begin with a letter or an underscore character (_).

The function name cannot contain any spaces.

Also as with variable names, you cannot use JavaScript reserved words for function names.
Doing so can cause the function to fail, which can cause real problems within a script. Refer to
the section “Avoiding Reserved Words™ in Chapter 3 for a complete list of JavaScript reserved
words.

63

64

JavaScript: A Beginner’s Guide

Giving Functions Meaningful Names

Your functions will be easier to remember and to debug if you choose names that reflect their
purpose. As you learned in Chapter 3, for a variable, you should use a name that represents its
value, such as example_number to stand for the number of an example on a page. A function
name should tell you something about what the function will do. For example, suppose that
you create a function that writes some text to the page. It could contain the following line of
code:

document .write ("This is a strong statement!</strongs>") ;

You could just name the function fext, but that might not be descriptive enough, because

you could have other functions that also write text to the page. Instead, you might name it
something like print_strong_text, so that you know that the function is used to print a piece of
strongly emphasized text to the browser. The full function is shown here:

This name helps describe the purpose of the function

function print strong text () {
document .write ("This is a strong statement!") ;

}

This line is the code that will be executed when the function is called

As with variables, the more functions you use in a script, the more important it becomes to
use meaningful and memorable names for them.

Adding Parameters to Functions

Parameters are used to allow a function to import one or more values from somewhere outside
the function. Parameters are set on the first line of the function inside the set of parentheses, in
this format:

function functionname (variablel,variableZ2)

Any value brought in as a parameter becomes a variable within the function, using the name
you give it inside the parentheses.

For example, here is how you would define a function reallycool with the parameters
(variables) coolcar and coolplace:

Parameters are added fo the first line within the parentheses

function reallycool (coolcar,coolplace) { - |
JavaScript code here

}

Notice that in JavaScript, you do not use the var keyword when you set the parameters for
a function. JavaScript declares the variables automatically when they are set as parameters to a
function, so the var keyword is not used here. For example, a line like this one is invalid:

function reallycool (var coolcar, var coolplace)

Chapter 4: Using Functions 65

Where do the parameters come from in the first place? They are obtained from outside the
function when you make the function call. You will see how this works later in this chapter.
For now, you just need to know how they are used as parameters to JavaScript functions.

NOTE

In other languages, it is often required that a variable have a declaration when set as
a parameter, but JavaScript will do this for you. However, when you declare variables
anywhere else, you need to use the var keyword.

Using Function Parameter Values

When you assign parameters to a function, you can use them like any other variables. For
example, you could give the coolcar variable value to another variable by using the assignment
operator, as in this example:

function reallycool (coolcar, coolplace)

var mycar=coolcar; « The value of the coolcar variable

) is assigned to the mycar variable

This assigns the value of the coolcar parameter to a variable named mycar.
Instead of assigning its value to another variable, you could just use the coolcar parameter
in the function, as in this example:

function reallycool (coolcar, coolplace)

document .write ("My car is a "+coolcar) ; The value of the coolcar variable is
} used in a document.write() command

If the value of coolcar is Corvette, then the function would print this line to the browser
when it is called:

My car is a Corvette

The coolcar parameter is given a value out of the blue here. In actual use, the value must come
from somewhere in the main script or another function, or else the variable will have no value.

Using Multiple Parameters
You may have noticed that the previous example had two parameters but used only one parameter.
A function can have as few or as many parameters as you wish. When you assign multiple
function parameters, the function doesn’t need to use all of them. It can use one parameter, a few,
or none. How many are used depends on what the function does and how it is called.

The only rule is that if you have more than one parameter, you need to separate each
parameter with a comma, so that the browser knows what to do.

In the previous example, the second parameter was not used. Here is how you could
change the function to use both parameters:

Both parameters are used as variables in this document.write() command

function reallycool (coolcar,coolplace) {
document .write ("My car is a "+coolcar+" and I drive it to "+coolplace) ;

}

66

JavaScript: A Beginner’s Guide

Now, if the value of coolcar is Corvette and the value of coolplace is Las Vegas, the
function would print the following line to the browser when it is called:

My car is a Corvette and I drive it to Las Vegas

You can place as many parameters as your function needs within the parentheses on the
first line of the function. Here is an example with four parameters:

function reallycool (coolcar,coolplace, coolfood, coolbreeze)

Remember to separate each parameter with a comma when you have more than one.

Adding Return Statements to Functions

A return statement is used to be sure that a function returns a specific value to the main script,
to be used in the main script. You place the return statement as the last line of the function
before the closing curly bracket and end it with a semicolon. Most often, the value returned is
the value of a variable, using the following format:

return variablename;

For example, to return the value of a variable cooltext, the return statement looks like this:

return cooltext;

This returns the value of cooltext to the place in the main script where the function was called.
Suppose that you want to write a function that returns the result of adding two strings
together. You could use a return statement, as in this example:

First string fo be added is assigned to a variable Second string to be added

. is assigned fo a variable
function get added text () ({
var textpartl="This is ";

var textpart2="fun!"; «
var added text=textpartl+textpart2; 4— The srrings are added together to combine
return added text; them and assigned to a variable

The variable with the result of the string addition is returned to the script

In this function, the first two variables are assigned string values, and the added_text
variable is given the value of the addition of those two strings. The new value is sent back to
the script where it was called. It returns this string:

This is fun!

This returned value is then used in the main script. In its current form, this function is not very
useful, because the strings were just defined in the function rather than being brought in as
parameters.

Chapter 4: Using Functions 67

In addition to returning a variable value, you can return a simple value or even nothing. All
of the following would be valid return statements:

Returns a string value Returns a numeric value

return "This is cool";
return 42; =
return true;
return null;
return; =

Returns a Boolean value

-t
&%
-t
&%

Returns nofhing Returns a null value

All of these return the control back to the first JavaScript statement after the function call.
Returning nothing does this without sending back a value.

You can also return an expression, such as the addition of numbers or strings (or any other
expression you decide to build). The following would also be valid return statements:

Return "This is "+"cool"; «—————————Returns the result of the addition of two strings
return 21+20+1; Returns the result of the addition of three numbers

These would return the values “This is cool” and 42, respectively.
You will see examples of more useful functions that use parameters and return statements
in the next section.

Calling Functions in Your Scripts

Now that you know how the function itself works, you need to learn how to call a function in
your script. A call to a function in JavaScript is simply the function name along with the set of
parentheses (with or without parameters between the opening and closing parentheses), ending
with a semicolon, like a normal JavaScript statement:

functionname () ;

You can call functions anywhere in your script code. You can even call a function inside
of another function. A good rule to follow is to have the function definition come before the
function call in the script. The easiest way to be sure that your function definition comes
before your function call is to place all of your function definitions as close to the beginning of
the script as possible.

Defining a function before calling it is a suggestion for good coding practice, not a strict
rule. A function can be called anywhere in JavaScript, but the function code must be loaded
by the browser before the function will work. This is why it is suggested that you define your
functions before calling them. If you were to call a function that is defined near the bottom of
a script, there is a chance it would not load in time to be executed. Thus, it is normally best to
define a function before it is called.

68

JavaScript: A Beginner’s Guide

Script Tags: Head Section or Body Section

When adding scripts directly to a Web page rather than using an external file, making sure
that variable and function declarations are in the head section often helps to ensure they are
available when the script calls them in the body section. However, since JavaScript often uses
information from the document that may not have loaded yet, this could become problematic.
On the other hand, having a lot of JavaScript code in the body section can also be troublesome
when you need to edit your HTML code (and if the JavaScript code is in the body section it
needs to be after the element(s) that have the information JavaScript needs to use to ensure
the necessary information is loaded). It is preferable to place all of your code into an external
JavaScript file. Then, you can decide whether you want to place the script tags in the head
section or in the body section.

If a script needs no information from the document, placing the script tags in the head
section works very well. As an example, you will create a script that sends an alert message to
the viewer as soon as the page is opened in the browser. To have a message pop up in a small
message box, you use a JavaScript method called window.alert.

First, you’ll learn how to create a JavaScript alert, and then you’ll see how to build a
function that uses that method and call the function in a script.

Creating a JavaScript Alert

Rather than writing something to the screen with the document.write() method, you can create
a JavaScript alert that pops up in a message box by using the window.alert method. Like the
document.write() method, the window.alert method takes the text string for the alert as a
parameter, using this format:

window.alert ("alert text");

The string of text will be displayed in the alert pop-up box.

For example, suppose that you want to display “This is an alert!” in the pop-up box. You
would write the command in your external JavaScript file (we will use the filename js_alert.js
for this example) like this:

window.alert ("This is an alert!");

Now you know how to make the alert pop up, but how can you get it to appear right as the
page is opened? You can do this by making sure the script is called before the body section
of the Web page is loaded. By placing the script tags inside the <head> and </head> tags of
the document, as shown next, you ensure that it will be executed before the rest of the page is
loaded:
<heads This line calls the external JavaScript file
<title>Functions - Alert!</title>
<script type="text/javascript" src="js alert.js"></script>
</heads>
<body>
HTML code here = The HTML for the page would be here
</body>

Chapter 4: Using Functions

Save the HTML file as js_alert.html and view it in your Web browser. As you can see, this
would certainly be an easy way to show an alert when the page opens. However, because you
are learning about functions, you will take another approach.

Using a Function for a JavaScript Alert
The following code uses a function in your external JavaScript file to pop up an alert box. In
your js_alert.js file, change the code to the following:

Names and begins the function

function show message () {
window.alert ("This is an alert!"),;, «——— ——

show_message () ; «————————— The function is called and executes, causing the alert to pop up

The window.alert() command
is used in the function

This example creates a function named show_message() to do the job of showing the alert.

The alert will be shown only if you call the show_message() function somewhere after it is
defined. In this case, the function is called right after its definition. The result is a small alert
box with the message “This is an alert!”

[JavaScript Application]

I This is an alerk!
[)

NOTE

When an dlert box appears, you may see the page pause until you click the OK button,
or it may continue to load while waiting for you to click OK. This depends on your
browser.

Even though the function is defined first, it doesn’t mean it will be executed first. A
function is not executed until it is called; in other words, JavaScript will not use the function
until it gets to the function call in the script.

Any commands that come before the function call (and that are not part of the function
definition) will be executed before the function. For instance, we could change the code in the
JavaScript file as follows:

The function is defined This alert doesn’t happen
{ - until the function is called

function show message ()
window.alert ("This is an alert!");

A

1
window.alert ("I am first, ha!"); = This alert shows up first

window.alert ("I am second, ha ha!"); = |

show message () ;
This alert is second

This finally calls the function so that the alert inside it can display

69

70

JavaScript: A Beginner’s Guide

This example defines the same function, show_message(), on the first line. The function
is followed by two lone window.alert commands, and then the line that calls the function.
Save the js_alert.js file with this new code and then reload the js_alert.html file in your Web
browser. You should see an interesting result!

The two lone alert commands are the first executable statements JavaScript sees, and they
come first. The call to our function is seen last, so the function is executed last. The result is
three alerts, in this order:

The user gets an alert, saying “T am first, ha!” and needs to click the OK button to get rid
of it.

Then the alert that displays “I am second, ha ha!” appears, and the viewer needs to click
OK again.

Finally, the function is executed, and the viewer sees the alert “This is an alert!”” and needs
to click OK a third time to end the alert frenzy.

Although this example goes overboard with its alerts, it helps you understand how a
function call works.

If you are not worried about how soon the alerts display, the script can be called in the
body section as well. As you gain more experience coding, choosing whether to place script
tags in the head or body section will become easier. When scripts use information from the
body of the HTML document, the script tags typically either are placed in the head section
with a function set up to initialize variables and other functions when the page has loaded (this
uses event handling, which will be discussed in Chapter 7) or are placed in the body section
(often just before the ending </body> tag). I will use the latter method in this book.

Calling a Function from Another Function

Calling a function within another function can be a useful way to organize the sequence in
which your events will occur. Usually, the function is placed inside another function that has a
larger task to finish.

When you place a function call within a function, you should define the function that will
be called before you define the function that calls it, per the earlier suggestion that a function
should be defined before it is called.

Here is an example of two functions, where the second function calls the first one:

This function does the work of displaying the alert

function update alert () { - |
window.alert ("Welcome! This site is updated daily!");

}

function call alert() {-= This function just calls the previous function
update alert () ;

}

call alert(); «

This calls the call_alert() function to get things started

Chapter 4: Using Functions 71

Notice that the update_alert() function is where all the real action happens. Everything
else is a function call. The call_alert() function does nothing more than call the update_alert()
function so that it is executed. Finally, you see the command that starts the entire sequence,
which is the call to the call_alert() function. Since this is the first JavaScript statement outside
a function, it is executed first. When it is executed, it just calls the update_alert() function,
which does the work of displaying the alert.

NOTE

Most browsers would execute the preceding example without a problem even if you
defined the update_alert() function after you called it. However, there is a chance that
some older browsers may not be as lenient and will want the function defined before it
is called. Also, if the function definition is too far down in the code to be loaded in time,
it will not work correctly. Thus, it is normally best to define a function before it is called.

Now suppose that you want to create three functions to perform three tasks. To make
sure that they occur in the correct sequence, you can call them in order from within another
function. Here is an example of this technique with three functions that call alerts for various
purposes:

function update alert () { This foncti

window.alert ("Welcome! This site is updated daily!") ;|— Is unclion popstr
) an alert when calle
function section alert () {))

window.alert ("Please visit the picture section!"); | This funcfion also POY’S
} up an alert when called
function links alert () ({))

window.alert ("Also, check out my links page!"); | This function also pops up
} an alert when called
function get messages() { —

date alert () ; . .

up . 1 0 . This function calls the other three

section_alert 0 functions into action when called

links alert();
get_messages () ; = Calling the get_messages() function starts the process

The code begins by defining the three functions to show each alert. Then it defines the
get_messages() function, which just calls the previous three functions. Of course, the get_
messages() function must be called to actually put this into action. This call happens as the first
statement outside of a function.

Of course, creating a script that pops up message after message is not something you
typically want to do. Although the example demonstrates the correct use of function calls, a
script that does this would likely annoy your viewers! You’ll see examples of practical uses of
functions in later chapters.

72

JavaScript: A Beginner’s Guide

Calling Functions with Parameters

The previous example used three different functions to show three alerts. Although it works, it
would be nice if you did not need to write a new function for each alert. You can avoid doing
this by using parameters. You can create a function to be used multiple times to do the same
thing, but with the new information from the parameters each time.

As mentioned earlier in the chapter, variables are commonly used as parameters. However,
you can also use a value as a parameter. You’ll learn about the different types of variable
parameters first, and then take a look at value parameters.

If you want to send the values of certain variables to the function, you must first declare
the variables and then be sure that they have the values you need before you send them. Here,
the scope of a variable becomes important. The scope of a variable determines where it is and
is not valid. JavaScript has global and local variables.

Using Global Variables

Global variables are the variables that you learned about in Chapter 3. Because they are defined
outside any functions, they can be changed anywhere in the script—inside or outside of functions.
A global variable is declared anywhere outside a function, as in the following code:

var mycar="Honda"; . .
var pgycheck: 1120 Ot'— These are global variables being declared

The variables in this example can be changed anywhere in the script. This means that they
can even be accidentally overwritten or changed by a function.

To understand how global variables can be affected by a function, consider an example
that shows two alerts. You want one alert to tell you how much money you need to get a
certain car, and you want the other one to tell you how much money you currently have and
what type of car you now own. What would happen if you used the following code?

var mycar="Honda";
var paycheck=1200 :'— These are being declared as global variables

function new car()
mycar="Ferrari"; | The foncti . b bl |
paycheck=3500; :’— Oops! The function assigns the variables new values

window.alert ("You need S$"+paycheck+" to get a "+mycar) ;

}

new car () ;
window.alert ("You make S$"+paycheck+" and have a "+mycar) ;

The dlert here is what you expect

The alert here is not what you expect, since the variables were accidentally changed

It may look as if you created new variables inside the function, even though they had the
same name. However, the script would output the following text in the two alerts:

You need $3500 to get a Ferrari
You make $3500 and have a Ferrari

Obviously, this isn’t right.

Chapter 4: Using Functions

This example demonstrates why you need to use the var keyword when declaring
variables. Without the var keyword, you are not creating new variables inside the function
(which would make them local). Instead, you are changing the value of your global
variables—you are issuing a reassignment command rather than a new variable command.
To clear this up, you need to either change one set of variable names or use local variables, as
described in the next section.

Using Local Variables
A local variable can be used only within the function in which it is declared. It does not exist
outside that function, unless you pass it along to another function by using a parameter.

The key to creating a local variable in a function is to be sure that you declare it using the
var keyword. Otherwise, any global variables by that name could be changed, as you saw in
the previous example. To declare a local variable, you must place it inside a function and use
the var keyword, as shown in this code:

function new car() {

var mycar="Ferrari" ;:'_These variables are declared as local variables,

var paycheck="3500"; using the var keyword inside a function

}

The mycar and paycheck variables are now local variables, which can only be seen and
changed by the new_car() function.

Therefore, to correct the script in the previous section, you just need to add the var
keyword to declare the local variables inside the function, like this:

var mycar="Honda";
var paycheck=1200;

function new car() ({ Adding the var kerword ensures that variables
var mycar="Ferrari'; are declared locally and do not change the
var paycheck=3500; global variables by the same name

window.alert ("You need $"+paycheck+" to get a "+mycar) ;

}

new _car();
window.alert ("You make $"+paycheck+" and have a "+mycar) ;

Now the alerts should appear as you intended:

You need $3500 to get a Ferrari
You make $1200 and have a Honda

As you can see, the scope of a variable may be important when you send certain variables
as parameters to a function.

Using Variables As Function Parameters
The following example uses variable parameters. It sends a global variable along to the
function. It then assigns its value to a local variable to avoid any accidental changes.

73

74

JavaScript: A Beginner’s Guide

The function accepts a parameter The parameter value is
assigned to a local variable

function check_ alert (paycheck) {

var pcheck=paycheck; =

window.alert ("You make $"+pcheck); q«—— The local variable is used inside
} the function for the alert
var paycheck=1200; « Th? variable is
check_alert (paycheck) ; assigned a value

The value is passed fo the function as a parameter

The script begins with the check_alert() function, which takes in the parameter paycheck.
The line of code in the function assigns the value of paycheck to a local variable, pcheck. This
way, you can use pcheck within the function to avoid changing the global paycheck variable.
The function is then used to display an alert that uses the value of pcheck. After the function,
in the outside script, the global variable paycheck is assigned a value of 1200. Then the code
calls the check_alert() function and sends it the value of the paycheck variable.

The previous example shows a rather long way to keep from changing a global variable.
Since function parameters are sent as values of variables, you can change the variable name
the function accepts inside the parentheses in the function definition. This creates a local
variable from the parameter that is sent to the function. Here is an example:

The function takes in a parameter

function check _alert (pcheck) {= and gives ita local variable name

window.alert ("You make $"+pcheck) ;
1

var paycheck=1200; The local variable is used for the alert
check alert (paycheck) ;

When this code calls the check_alert() function, it sends that function the value of the
paycheck variable. The value is pulled in from the function itself. Rather than naming the
value “paycheck” here and assigning it to another variable, you simply use another name
within the parentheses: pcheck. The pcheck variable becomes a local variable inside the
check_alert() function. Since the code sends paycheck a value of 1200, pcheck will be 1200,
unless you change it later in the function.

Using Value Parameters
You can also send a value as a parameter directly. Instead of needing to declare a global
variable in order to send a parameter, you can just send a value that will be turned into a local
variable inside the function. This allows you to send a value on the fly and eliminates the need
to have a global variable handy.

The important thing to remember is that if you send a string value, you need to enclose it
in quotes. The following function call sends a string value of “something” to a function named
text_alert():

text alert("something") ;

Chapter 4: Using Functions

For example, the last example in the previous section can be modified to add more information
while using one less line by using value parameters:

function check alert (pcheck,car) {
window.alert ("You make $"+pcheck+" and have a "+car) ;
}

check_alert (1200, "Corvette") ; The function is sent a numeric value and

a string value instead of variable values

In this example, the function call sends two parameters to the function. The first one is a
numeric value and does not need quotes. The second value is a string and needs to be enclosed
in quotes. These values are then sent to the function, where they are read in as the local
variables pcheck and car, respectively. They can now be used in the function to display this
sentence in an alert:

You make $1200 and have a Corvette

Parameters can also be sent using expressions, such as the following:

check alert (500+700, "Cor"+"vette");

JavaScript will evaluate each expression and send the results as parameters to the function. Thus,
the preceding code would have the same end result (adding 500 and 700 gives 1200, and adding
“Cor” and “vette” gives “Corvette”):

You make $1200 and have a Corvette

Parameters Are Optional

Another thing that should be mentioned is that sending parameters to a function is optional.
The function will do its best to do its work without the parameter values that are not sent. You
could call the function check_alert() without any parameters:

function check alert (pcheck,car)
window.alert ("You make $"+pcheck+" and have a "+car) ;

}

check alert();

Your result would be something like the following text:

You make S$undefined and have a undefined

Thus, it is a good idea to set up some code to handle a situation where a parameter is not sent.
This can be done using conditionals. Here is one way to check if the parameters were sent to
check_alert():

function check alert (pcheck,car)
if (pcheck && car)
window.alert ("You make $"+pcheck+" and have a "+car) ;

}

75

76

JavaScript: A Beginner’s Guide

else {
window.alert ("My parameters are missing!") ;

}

check alert();

This essentially tells JavaScript to see if the parameters exist before writing the statement
to the page. If they do exist, the statement is written on the page with the parameter values.
If they do not exist, then the viewer gets an alert that says “My parameters are missing!” The
logical operator && will be discussed in more detail in Chapter 5 and the if/else statement will
be discussed in more detail in Chapter 6.

Calling Functions with Return Statements

To call a function and use a return statement in the function, you can assign the result of the
function to a variable. In this way, the variable gets the value returned from the function and
can be used later in the script. This is the format for declaring a variable that has the value
returned by a function:

var variablename=functionname () ;

Consider the previous example, which had a function that returned the value of two text
strings added together. You can modify it so that the function result is assigned to a variable, as
follows:

function get added text() {

var textpartl="This is ";

var textpart2="fun!";

var added text=textpartl+textpart2;

return added text; = The result of the added text is returned to the script
}
var alert_text=get_added_ text () ; -«——— The result of the function is assigned to a variable
window.alert (alert text); =

The value of the variable is used as the text for the alert

As you can see, the function returns the value of the added text variable to the script. By
assigning the result of the get_added_text() function to the alert_text variable, you can use the
added text later in the script. The variable is used to send an alert to the user with the result of
the added text. The alert message reads

This is fun!

Now, isn’t this fun? You’ll see some more practical applications of return methods when you
learn about form validation in Chapter 14.

Other Ways to Define Functions

There are several ways to define functions that you may come across while looking at scripts
or may find useful in coding new scripts: the function declaration (already discussed), the
function constructor, and the function expression.

Chapter 4: Using Functions

The Function Declaration
This is the method you have been using up to this point and one that will be used often in this
book. As you will recall, you simply declare the function as follows:

function functionname () {
Code for function here

}

You can also add parameters and/or return statements as mentioned earlier in this chapter.

The Function Constructor
The function constructor creates a function object in the same way you would create a new
instance of an object (this will be discussed in Chapter 8):

var functionname = new Function (arguments, code for function) ;

This will work like other functions, but the main drawback to this method is that it has poorer
performance than the other methods (it is evaluated every time it is used rather than only being
parsed once). More often than not, you will use one of the other two methods for defining
functions.

The Function Expression

The function expression (also called the function operator) uses the same syntax as a function
declaration. The main difference between this and a function declaration is that a function
declaration creates a variable with the same name as the function name that can be used outside
the function, while the function expression can only access the variable by its name within the
function itself. For instance, the following code uses a function declaration and can output an alert
using the function name as a variable (the value of the variable will be all of the function’s code):

function send alert() ({
var my num = 1;

}

window.alert (send alert) ;

On the other hand, the following code would give an error when run:

var get func = function send alert () ({
var my num = 1;

}

window.alert (send alert) ;

As seen in the preceding code, the function expression also uses a function name. However,
the function name cannot be used as a variable outside of the function.

CAUTION

This use of the function expression in Internet Explorer 7 (as of the time of this writing)
did not give an error, but gave the same result as the function declaration. To test for this
difference, Moxzilla Firefox may be used.

77

78

JavaScript: A Beginner’s Guide

Anonymous Functions One effective use of the function expression is to use it without a
function name to create an anonymous function. An anonymous function is one that is created
and called at the same time, and is helpful when you wish to call a function in only one place
in your code (rather than declaring the function elsewhere in the code and reusing it by calling
it more than once). The following is the general format for an anonymous function:

var varname = function(parameters) {
Code for function

}i

This uses the function keyword but does not name the function.

Anonymous functions are quite useful when dealing with JavaScript events. For example,
to react to a user clicking the mouse while on a Web page, you could write a simple function
for a click event on the document and then call it, as in the following code:

function do not click() {
window.alert ("Do not click on my page!");

}

document.onclick = do_not_click;

This declares the function, then calls it afterward (without parentheses) to handle the click
event.

However, you could combine these two steps into one using an anonymous function, as
follows:

document.onclick = function()
window.alert ("Do not click on my page!");

}i

Since the reaction to this event will only be in one place in the JavaScript code, the anonymous
function is a handy way to handle the event without the need to declare the function elsewhere
and then call it. This technique and the type of code used for event handling (such as in the
code listings above) will be discussed in more detail in Chapter 7.

Ask the Expert

A

Q: Whatif 1 put a function into my script but decide not to call it in the script? Will it

matter?

« The function won’t be executed unless it is called. However, having unused functions
makes the code more difficult to maintain and will increase the download time for viewers
(which could make a difference on a slow connection such as dial-up or in situations where
optimization of the download time of the code is desired). Also, if the function contains
syntax errors, it could send the viewer JavaScript errors and keep other things on the Web
page from working correctly.

Chapter 4: Using Functions 79

e

What happens if I decide to remove a function from my script later?

A: This can cause trouble if you do not also remove any calls you made to the function.
The script may cause a JavaScript error; or it may run but give you unexpected results.
Also, before you remove a function, make sure that it does not perform a necessary task
someplace in the script.

Q: So, what happens if I call a function that doesn’t exist?

A: Either you will get a JavaScript error or the browser will do nothing when the function is
called, since it cannot find the function.

Q: What is the best way to determine when to use a function and when to just code what
I want right into the script?

A: For the most part, you want to use a function if the code within the function will be reusable in
some way. For instance, a function that performs a specific calculation might be useful in more
than one spot in the script. Also, if you just like the idea of organizing the code a little more,
a function helps with that. If you decide the code will be used just once in the script, you may
just want to put the code right into the script as it is or use an anonymous function for it.

Create an HTML Page with Functions

pra 1.html | In this project, you create an HTML page with two JavaScript functions. One

H pris4 1.s | function uses parameters sent to it to pop up an alert box with a message. The

~~~~~~~~~~~~~ et other function uses a return statement to send a value back to the script. That
returned value then is used in an alert message to the viewer.

H

Step by Step
1. Create an HTML page, leaving the space between the <body> and </body> tags.

2. Create an external JavaScript file and save it as prjs4_1.js.

3. Add the script tags necessary between the <body> and </body> tags of the HTML
document to include the external JavaScript file. Save the HTML file as pr4_1.html.

4. Open the prjs4_1.js external JavaScript file and do steps 5-10.

(continued)



80

JavaScript: A Beginner’s Guide

5. Create a function named car_cost() that takes two parameters, mycar and paycheck. Create
a window.alert command that will display an alert with the following message:

You have a <mycar variable here> and make S<paycheck variable heres>

6. Create a function named get_added_text() that returns the value of two strings added
together inside the function. The two strings to add are these two separate lines:

This project<space here>
is almost fun!

7. In the main script (after the function definitions), call the car_cost() function, and send it the
values of “Mustang” and 1500 as parameters.

8. In the main script (after the function definitions), assign the result of the get_added_text()
function to a variable named alert_text. Create an alert that pops up with the value of that
variable.

9. When you have finished, your external JavaScript file should look like this:

function car cost (mycar,paycheck) {
window.alert ("You have a "+mycar+" and make $"+paycheck) ;

}

function get added text() {
var textpartl="This project ";
var textpart2="is almost fun!";
var added text=textpartl+textpart2;
return added text;

}

car cost ("Mustang",1500) ;
var alert text=get added text();
window.alert (alert_text);

10. Save the external JavaScript file.

11. Open the pr4_1.html file and view it in your browser to see the result.

When you open the Web page, you should see two alert messages:

You have a Mustang and make $1500
This project is almost fun!

Try This Summary
In this project, you created a script that uses two JavaScript functions. The first function uses
parameters and creates an alert box with a message based on the parameters that are sent to the
function. The second function returns a value to the script after adding two strings together.
The result of the script in the browser is two alert messages based on the information sent to
the first function and the information returned to the script from the second function.



Chapter 4:  Using Functions

Putting It All Together

Now that you have learned the basics of using functions, take a look at the rather long page
that follows. This page has some JavaScript added to the HTML document. Try to follow it
through to see how it works and what it will do.

<body>

<hl>"Welcome to my Function Page," I said.</hl>

<script type="text/javascript's>

function get added text (textpartl,textpart2) {
var added text=textpartl+" "+textpart2;
return added text;

}

function print text () ({
var myfood=get added text ("cheese", "bread") ;
document .write (myfood) ;

}

var alert text=get added text ("soup","crackers");
window.alert (alert text);

print text () ;

</scripts>

<p style="color:red">I'm seeing red!</p>

</body>

First, you see that there are two functions defined. The get_added_text() function is used to
add two pieces of text, put a space between them, and return that value to where it was called.
The print_text() function is used to send some text as parameters to the get_added_text()
function, assign the result to a variable named myfood, and print the result to the page itself.

The first command executed is the one right after all the function definitions. It is this line:

var alert text=get added text ("soup","crackers");

This line is declaring a variable named alert_text and assigning it the value that is returned
from the get_added_text() function when the function receives “soup” and “crackers” as
the parameters. The result will be the two parameter values with a space between them. The
returned string of “soup crackers” is now assigned to the alert_text variable.

The next line executed is the line directly afterward, shown here:

window.alert (alert text);

The alert has the text assigned to the alert_text variable, which is the added string returned from
the get_added_text() function.

Next, there is the call to put the print_text() function into action.

The first thing the print_text() function does is declare a variable named myfood and assign
it the value returned from the get_added_text() function. It is sent the values of “cheese” and

81



82  JavaScript: A Beginner's Guide

“bread” as parameters. So, the value returned is the string “‘cheese bread”, which will be assigned
to the myfood variable. The print_text() function then takes that value and writes it to the screen
using the document.write() method.

Figures 4-1 and 4-2 show the results of this script when run in a browser. Figure 4-1 shows
the alert box that pops up first, and Figure 4-2 shows the page the viewer sees after clicking
OK in the alert box.

This example shows how you can use the different techniques you learned in this chapter
to structure functions, add parameters to function, call functions within other functions, and
use return statements. These can all be used in a single script to perform their assigned tasks
when necessary.

"3 Example - Mozilla Firefox

File Edit ‘Wiew History Bookmarks Tools  Help 4

G - c x oy (|j |File:,l’,l’,l’J:,l’bo0k_3rd_ed,ffigures,|’ch4,ffig1.html ﬁ Y| |Y|Google ,'3|

Mast Yisited ’ Getting Started |5 | Latest Headlines
@ Disable £ Cookiesw [ €55+ £ Forms~ [M] Images™ @ Information= () Miscellaneous™ o/ Outlinew | 3 Resize™ % Tools™ fa Yiew Sourcer 3

Nm v Il @ Identity Safe w Log-ins

"Welcome to my Function Page," I said.

[JavaScript Application]

¥ l‘\. soup crackers

Done [ |

Figure 4-1 The alert box that appears before or while the page loads



Chapter 4:  Using Functions

) Example - Mozilla Firefox

File Edit Yiew History Bookmarks Tools Help

e__: c c,\\, {5t I: |j |File:,I',I’,I'J:,l'b00k_3rd_ed,l’Figures,l’ch4,|’Fig1.html {_\\f’ v| |'|G00g|e )"::'|

@ Most Yisited ’ Getking Started |5 | Latest Headlines
@ Disabler 2 Cookies~ [ £55+ ] Forms~ (M Images~ @ Infarmation~ 3 Miscellaneaus™ o/ Gutline~ ;2 Resize~ v{:‘: Tools~ Q Wiew Sourcer 3

Nor‘ton’ \‘!M.Iml—; l\l Identity Safe v (%) Log-ins ~
"Welcome to my Function Page," I said.

cheese bread

I'm seemng redl

Done

Figure 4-2 The page that appears after the OK button in the alert box is clicked

LYALEEXY \Write Your Own Functions

"""""""""""""""" ¢ In this project, you again create an HTML page with two JavaScript functions,

pr4 2.html . . : .
{pris4 2.js but for this project, you use your own variable and function names and create
............... T sesesene ...E your Own Version Of the SCript_

H

Step by Step
1. Create an HTML file and save it as pr4_2.html.
2. Create an external JavaScript file and save it as prjs4_2.js. Use this file for steps 3-6.

3. Create one function that takes in two strings as parameters. Have it return the value of the
two strings added together, but with a space between them.
(continued)

83



84

JavaScript: A Beginner’s Guide

4. Create a second function that gets the result of the first function and assigns it to a variable.
Write the value of this variable directly into the HTML document. The parameters to send
to the first function are the strings “Hi” and “there!”.

5. In the main script, create a new variable and assign it the result of the first function. This
time, send the function the two strings “Regular” and “text!”.

6. Create an alert that will display the value of this variable in an alert box.

7. In the body section of the HTML page, place the script tags in the document (pointing to the
pris4_2.js file) so that the script will write the result of the second function after a line of
strong text reading “This is some strong text.”

8. When you have finished, save the HTML and JavaScript files and view the HTML page in
your browser to see how it works.

The results should be an alert that says “Hi there!” followed by the page opening when OK
is clicked in the alert box. The page should display a strong line of text reading “This is some
strong text.” On the next line, there should be text reading “Regular text!”

Try This Summary

In this project, you used your knowledge of functions, parameters, and returning values to
create a script. The result of the script is that the HTML page you created pops up an alert box
and writes text to the page based on the results of the two functions that you created.

Chapter 4 Self Test

1. In general, a function is a little within a larger that is used to
perform a single or a series of

2. What are two reasons why a function can be useful?

A They make simple scripts more complex, and they make it harder for noncoders to read
the script.

B They provide a way to organize the various parts of the script into the different tasks
that must be accomplished, and they can be reused.

C They make simple scripts more complex, and they can be reused.

D They provide a way to organize the various parts of the script into the different tasks
that must be accomplished, and they make it harder for noncoders to read the script.

3. On the first line of a function, you it as a function, it, and indicate
whether it accepts any



10.

Chapter 4:  Using Functions 858

. To declare a function, you use the reserved word

A var
B switch
C function

D for

. What surrounds the code inside a function?

A Curly brackets — { }
B Colons —::

C Square brackets — []
D Nothing

. Function names are case sensitive.

A True
B False

. JavaScript reserved words can be used as function names.

A True
B False

. Which of the following would be a valid function name in JavaScript?

A function my function()
B function if()

C function get_text()

D function 24hours()

are used to allow a function to import one or more values from somewhere
outside the function.

Parameters are set on the first line of a function, inside a set of
A curly brackets — {}
B parentheses — ()
C square brackets — []

D nothing



86

JavaScript: A Beginner’s Guide

11.

12.

13.

14.

15.

Multiple parameters are separated by what symbol?
A Period
B Colon
C Semicolon
D Comma
Which of the following is a valid use of the window.alert() method?
A win.alt(“This is text”);
B window.alert(“This is text);
C window.alert(‘This is text”);
D window.alert(“This is text”);

Which of the following correctly calls a function named some_alert() and sends it two
string values as parameters?

A some_alert();

99 <

B some_alert(“some”,“words”);

99 <

C some_alert(“some”,“words);
D SOME _alert(“some”,“words”);

Which of the following correctly assigns the result of a function named get_something() to
a variable named shopping?

A var shopping=get_something();
B var shopping="get_something”;
C var Shopping=get_Something;

D shopping=getsomething;

A variable can be used only within the function in which it is declared.



Chapter 5

JavaScript Operators

87



88  JavaScript: A Beginner's Guide

Key Skills & Concepts

Understanding the Operator Types
Understanding Mathematical Operators
Understanding Assignment Operators
Understanding Comparison Operators
Understanding Logical Operators

Understanding Order of Operations

Operators do much of the work in scripts. In the previous chapters, you have seen examples
of the use of the assignment (=) and addition (+) operators. JavaScript offers many other
types of operators to perform various operations.

This chapter begins by giving you an introduction to the different types of JavaScript
operators. Then, you will learn about each operator and its use in scripts. Finally, you will
learn about the order of precedence for operators, which determines which operations are
performed before others.

Understanding the Operator Types

An operator is a symbol or word in JavaScript that performs some sort of calculation,
comparison, or assignment on one or more values. In some cases, an operator provides a
shortcut to shorten the code so that you have less to type.

Common calculations include finding the sum of two numbers, combining two strings, or
dividing two numbers. Some common comparisons might be to find out if two values are equal
or to see if one value is greater than the other. A shortcut assignment operator might be used to
assign a new value to a variable so that the variable name does need to be typed twice.

JavaScript uses several different types of operators:

Mathematical These operators are most often used to perform mathematical calculations
on two values. The mathematical operators will probably be the most familiar to you. They
use symbols such as +, —, and *.

Assignment These operators are used to assign new values to variables. As you learned
in Chapter 3, one of the assignment operators is the symbol =.

Comparison These operators are used to compare two values, two variables, or perhaps
two longer statements. They use symbols such as > (for “is greater than’’) and < (for “is
less than™).



Chapter 5: JavaScript Operators 89

Logical These operators are used to compare two conditional statements (or to operate
on one statement) to determine if the result is true and to proceed accordingly. They use
symbols such as && (returns true if the statements on both sides of the operator are true)
and || (returns true if a statement on either side of the operator is true).

Bitwise These are logical operators that work at the bit level (ones and zeros). They use
symbols like << (for left-shifting bits) and >> (for right-shifting bits).

Special These are operators that perform other special functions of their own.

In this chapter, you will learn about each of these types of operators. This will be a general
overview of the function of each type of operator, so that you will better know the purpose of
all the operator types when you put them to use later. To begin, you’ll look at the mathematical
operators in JavaScript.

Understanding Mathematical Operators

For a mathematical calculation, you use a mathematical operator. The values that you use
can be any sort of values you like. For instance, you could use two variables, two numbers,
or a variable and a number. A few of these operators are able to perform a task on a single
variable’s value.

As a quick example, you will remember that you used the addition operator (+) to add two
strings together in previous chapters. Here is an example of two string values being combined
with the addition operator:

window.alert ("I begin and "+"this is the end.");

You can also use the addition operator when one of the values is a variable, as in this example:

var part2="this is the end."
window.alert ("I begin and "+part2) ;

The addition operator also works when both values are variables, as in the next example:

var partl="I begin and ";
var part2="this is the end."
window.alert (partl+part2) ;

These examples illustrate how you can use many of the mathematical operators with a
number of values and/or variables. This allows you some flexibility in the way you code your
scripts.

The three operators that work on single values are the increment, decrement, and unary
negation operators. The increment and decrement operators are actually shortcuts to adding
or subtracting 1, so learning how to use them could save you some coding time.

The mathematical operators and their functions are summarized in Table 5-1. The following
sections discuss each operator in more detail.



90

JavaScript

. A Beginner’s Guide

Operator Symbol Function

Addition + Adds two values

Subtraction - Subtracts one value from another

Multiplication * Multiplies two values

Division / Divides one value by another

Modulus % Divides one value by another and returns the remainder
Increment ++ Shortcut to add 1 to a single number

Decrement -— Shortcut to subtract 1 from a single number

Unary negation - Makes a positive negative or a negative positive

Table 5-1 The Mathematical Operators

The Addition Operator (+)

As you have seen, the addition operator can be used to combine two strings. It is also used to
add numbers in mathematical calculations.

Variables

for Addition Results

One use of the addition operator is to add two numbers to get the mathematical result. When
adding numerical values, you often assign the result to a variable and use the variable later to
make use of the result. For example, to calculate the value of 4 plus 7 and show the result, you

could code

it like this:

var thesum=4+7; <«———————Two numbers are added with the addition operator
window.alert (thesum) ; <«————The result of the addition is shown as an alert to the viewer

The result is an alert that says 11.
To make the example a little more complex, you could change one of the numbers to a

variable:

var numl=4; - A number is assigned to a variable

var thesum=numl+7;

window.alert (thesum) ;

“4— A number is added to the variable and

the total is assigned to a new variable

The result is the same as the previous example’s code: an alert that says 11.
Taking the example one step further, you could make both of the numbers variables:

var numl=4;
var num2=7;

var thesum=numl+num?2 ;

window.alert (thesum) ;

-

Two variables are added using
the addition operator



Chapter 5:  JavaScript Operators

This example allows for the most flexibility, since you can change the values of the two
number variables and get a new result without needing to dig deeper into the script to make the
change.

Type Conversions in Addition Calculations

It is important to note how JavaScript performs type conversion when working with the
mathematical operators. When you use the addition and other mathematical operators, you
need to be aware that JavaScript automatically converts different values, like an integer (a
nondecimal numeric value) and a float (a decimal numeric value) to the appropriate type. For
instance, you might have the following code:

var numl=4.73; <«——————— Thisvariable has decimal places
var num2=7; <«———— This variable is an infeger

var thesum=numl+num2; - The two variables are added, and JavaScript
window.alert (thesum) ; will show the answer with the decimal places

When the script is run, you will see an alert with the result.

[JavaScript Application]

JavaScript added the integer and the float together and gave back a float: 11.73. JavaScript
does this often, so you need to make sure that you have the right sort of values when you begin
adding.

For example, if you add a number and a string, the result will come out as though you had
added two strings. Look at this example:

var numl=4; <«————Thisvariableisanumber
var num2="7"; <«——— Oops! This variable is a string, not a number

var thesum=numl+num2; <——————When they are added, fhey are added like strings
window.alert (thesum) ;

This looks as if it would be adding the numbers 4 and 7, since they both appear to be numbers.
The trouble is that the 7 is a string in this case, not a number, because it has quotes around it. This
causes the 4 to be converted to a string, and then the two strings are added (combined). The result
that appears in the alert box may surprise you.

[JavaScript Application]

47
FAN

91



92

JavaScript: A Beginner’s Guide

Rather than the expected answer of 11, you get 47. When the two values are added as
strings, they are strung together rather than added mathematically. With strings, “47+“7”=47.

NOTE

Outside of the addition operator (+), the other mathematical operators only work on
numbers and will not work on string values.

The other mathematical operators also do conversions, much like the addition operator.
You’ll see how this can be important later, when you learn how to take user input in your
scripts.

The Subtraction Operator (-)
The subtraction operator is used to subtract the value on its right side from the value on its left
side, as in mathematics. Here is an example:

var theresult=10-3; Two numbers are subtracted
window.alert (theresult) ; using the subtraction operator

This code simply subtracts 3 (the number on the right of the operator) from 10 (the number on
the left of the operator). The result is an alert that says 7.

As with the addition operator, you can use variables to hold the numbers you are working
with, as in this example:

var numl=10;

var num2=3;

var theresult=numl-num2; <«—— Two variables are subtracted
window.alert (theresult) ; using the subtraction operator

The result is the same as the previous example: an alert that says 7.
The use of variables with mathematical operators also works with the multiplication,
division, and modulus operators, which are described in the next sections.

. 1 . *
The Multiplication Operator (*)

The multiplication operator is used to multiply the value on its right side by the value on its left
side. Again, this is just like mathematical multiplication. The next example shows this operator
in action:

var numl=4;

var num2=5;

var thetotal=numl*num2; <«——————— Two variables are multiplied
window.alert (thetotal) ; using the multiplication operator

Here, you get an alert that says 20, the result of 4 times 5. This operator shouldn’t give you too
many surprises, so move on to the division operator.



Chapter 5:  JavaScript Operators

The Division Operator (/)

The division operator is used to divide the value on its left side by the value on its right side.
For example, the code 4/2 means 4 divided by 2 and gives the result of 2.
For a JavaScript example of this in action, take a look at this code:

var numl=10;

var num2=2;

var theresult=numl/num2; -<«—————— Two numbers are divided
window.alert (theresult) ; uﬁnghedWanopﬂubr

This gives you an alert that says 5, the result of dividing 10 by 2.

Division by Zero

When you use the division operator, you need to be careful that you do not end up dividing by

zero in some way. If you do, the result is going to be either infinity or undefined, depending
on your browser. The code that follows shows an example of this happening (although it is
unlikely to occur exactly in this way):

var numl=10;
var num2=0;
var theresult=numl/num2; <————Ohnol On thisline you are dividing by zero

window.alert (theresult); «—————Thjs alert won't be a number

If you placed this code in a document, you might see an alert box like this:

[JavaScript Application]

! Infinity

To avoid dividing by zero, be careful about what numbers or variables you place on the
right side of the division operator.

Type Conversions in Division Calculations

Another thing to remember with division is that if you have two values that do not divide
evenly, the result is converted into a float, and thus will have decimal places. The code that
follows shows an example:

var numl=3;
var num2=4;
var theresult=numl/num?2;
window.alert (theresult) ;

The result in this case is 0.75, which is what you see in the alert box. Some browsers may not
show the 0 before the decimal, and display just .75 in the alert box instead.

93



94

JavaScript: A Beginner’s Guide

This example shows a simple calculation; but the result can get much longer, depending on
the numbers used. In later chapters, you will learn some techniques for formatting the output,
so that the viewer doesn’t end up seeing something like .75664421004.

The Modulus Operator (%)

The modulus operator is used to divide the number on its left side by the number on its right
side, and then give a result that is the integer remainder of the division. Think back to when
you learned long division and used remainders as part of the answer rather than converting to
decimals or fractions. Dividing 11 by 2 gives 5 with a remainder of 1. The remainder of 1 is
what the modulus operator gives you when you write 11%?2.

The following is an example in JavaScript:

var numl=11;

var num2=2;

var theresult=numl%num2; «—————— Two variables using the modulus
window.alert (theresult) ; opaobrbgeﬂhemmchda

The result is an alert box that shows the value of the remainder, which is 1. If the calculation
had no remainder, the result would be 0.

This is the last of the mathematical operators that work on two values at the same time.
The next operators work on only one value at a time.

The Increment Operator (++)

The increment operator can be used on either side of the value on which it operates. It increases
the value it is operating on by 1, just like adding 1 to the value. The actual result depends on
whether the operator is used before or after the value it works on, called the operand. This
operator is often used with variables, and often within loops (covered in Chapter 6).

The Increment Operator Before the Operand
When the increment operator is placed before the operand, it increases the value of the operand
by 1, and then the rest of the statement is executed. Here is an example:

var numl=2;
var theresult=++numl;

In this case, the variable num1 begins with a value of 2. However, when the code assigns the
value to the variable theresult, it increments the value of num1 before the assignment takes place.
The increment occurs first because the increment operator is in front of the operand. So, the value
of numl is set to 3 (2+1) and is then assigned to the variable theresult, which gets a value of 3.

The Increment Operator After the Operand
If you place the increment operator after the operand, it changes the value of the operand after
the assignment. Consider this example:

var numl=2;
var theresult=numl++;



Chapter 5:  JavaScript Operators

As in the previous example, num1 begins with the value of 2. On the next line, the increment
operator is used after the operand. This means that the code assigns the current value of num1
to the variable theresult, and after that is done, it increments the value of numl. So, only after
this assignment is complete do you have a new value for num1. The variable theresult is given a
value of 2, and then numl1 is changed to 3. If you use numl1 after this, it will have a value of 3.

Another way to see how the increment operator works before and after the operand is to
run the following script in your browser. Notice what the values are in the first alert and what
they are in the second alert.

<script type="text/javascript"s>

numl=2;

result= ++numl;

alert ("numl= "+numl+" result= "+result) ;
numl=2;

result= numl++;

alert ("numl= "+numl+" result= "+result) ;
</script>

In the first alert box, you will see num1= 3 result= 3. Since the ++ operator is used before
the operand here, the value of num1 is increased by 1 and then assigned to the result variable.
In the second alert box, you will see num1= 3 result= 2. This is because the ++ operator is
used after the operand, so the value of numl is increased after it has been assigned to the result
variable. The result variable gets a value of 2, but num1 will be increased to 3.

NOTE

Don't worry if the difference between using the increment operator before and affer the
operand is still not clear to you. When you learn how to use loops in Chapter 6, you
will see how the placement of this operator can be quite important.

The Decrement Operator (— -)
The decrement operator works in the same way as the increment operator, but it subtracts 1
from the operand rather than adding 1 to it. As with the increment operator, its placement before
or after the operand is important.

If you place the decrement operator before the operand, the operand is decremented, and
then the remainder of the statement is executed. Here is an example:

var numl=2;
var theresult=--numl;

Here, the variable numl is given a value of 2. In the next line, the code subtracts 1 from num1
and then assigns the result to the variable theresult. Thus, the variable theresult ends up with a
value of 1 (2-1).

When you place the operator after the operand, as in the next example, the rest of the
statement is executed and the operand is decremented afterward:

var numl=2;
var theresult=numl--;

95



96

JavaScript: A Beginner’s Guide

This time, the variable theresult is assigned a value of 2, and then num1 is decremented to 1.
If you use numl1 after this line, it will have a value of 1.

As with the increment operator, the decrement operator becomes important when you work
with loops, as you will learn in later chapters.

The Unary Negation Operator (-)

Unary negation is the use of the subtraction sign on only a single operand. This operator

creates a negative number or negates the current sign of the number (positive or negative).
Here is an example of assigning a negative value to a number:

var negnum=-3;

This defines a variable with a value of negative 3. Basically, the operator tells the browser that
the 3 is “not positive,” because it negates the default sign of positive by placing the negation
operator ahead of the number.

You can also use the unary negation operator to help show the addition or subtraction of a
negative number, as in this example:

var theresult=4+(-3);

Notice the parentheses around the —3 portion of the statement. As in math, you can use
parentheses to set the order of operations (as you’ll learn later in this chapter) or just to clarify
the order visually. Here, the parentheses aren’t necessary, but they help organize that code so
that you can see that it is adding —3 to 4. You could have written this code as well:

var theresult=4+-3;

This doesn’t look as nice, but it still works.
You may be thinking that an even easier way to write the same thing looks like this:

var theresult=4-3;

You're right, this is the simplest way to write it; but it uses subtraction rather than unary
negation.

To make it appear more clearly, you could use this operator on a variable value, which
simply negates the sign on the number represented by the variable:

var x=4;
var y=3;
var z=-Yy;

This assigns the variable z the unary negated value of y, which is —3.
Now that you’ve learned about the mathematical operators, it’s time to turn to the
assignment operators.



Chapter 5: JavaScript Operators 97

Understanding Assignment Operators

Assignment operators assign a value to a variable. They do not compare two items, nor do they
perform logical tests.

When you learned about variables in Chapter 3, you saw how the basic assignment
operator, the single equal sign (=), is used to give an initial value or a new value to a variable,
as in this example:

var mytime=0;

As you know, this assigns a value of 0 to a variable mytime.

The other assignment operators also give new values to variables, but they do so in
slightly different ways because they perform a simple calculation as well. These operators are
particularly useful within loops, as you’ll learn in later chapters.

Table 5-2 summarizes the assignment operators, which are discussed in more detail in the
following sections.

The Assignment Operator (=)
You have been using the direct assignment operator since Chapter 3. It assigns the value on the
right side of the operator to the variable on the left side, as in this example:

var population=4500;

This assigns the value of 4500 to the variable population.

Operator Symbol | Function
Assignment = Assigns the value on the right side of the operator to a variable
Add and assign += Adds the value on the right side of the operator fo the variable on the

left side, and then assigns the new value to the variable

Subtract and assign | —= Subtracts the value on the right side of the operator from the variable
on the left side, and then assigns the new value to the variable

Multiply and assign | *= Multiplies the value on the right side of the or)erctor by the variable
on the left side, and then assigns the new value to the variable

Divide and assign | /= Divides the variable on the left side of the operator by the value on
the right side, and then assigns the new value to the variable

Modulus and assign | %= Takes the integer remainder of dividing the variable on the left side by
the value on the right side, and assigns the new value to the variable

Table 5-2 The Assignment Operators



98

JavaScript: A Beginner’s Guide

The Add-and-Assign Operator (+=)

The += operator adds the value on the right side of the operator to the variable on the left side
and then assigns to the variable that new value. In essence, it is a shortcut to writing the type of
code shown here:

var mymoney=1000;
mymoney=mymoney+1;

Here, the variable mymoney is created and assigned a value of 1000. The code then changes
the value by assigning it a value of itself plus 1. The value assigned to the mymoney variable is
1001.

Instead of writing the variable name an extra time, you can use the add-and-assign operator
to shorten the code. The following code gives the same result as the previous example, but
saves a little typing:

var mymoney=1000;
mymoney+=1;

Using the add-and-assign operator, this code adds 1 (the value on the right) to mymoney (the
variable on the left), assigning the new value of 1001 to the variable mymoney.

This operator can be used to add any value, not just 1. For example, you could add 5 in the
assignment, as in this example:

var mymoney=1000;
mymoney+=5;

This time, mymoney ends up with a value of 1005.
You can even use a variable rather than a plain number value on the right side, as in this
example:

var mymoney=1000;
var bonus=300;
mymoney+=bonus;

Here, bonus has a value of 300, which is added to the variable mymoney, and then mymoney
is assigned the result of 1300. In this way, the value of the bonus variable can be changed to
affect the result of the assignment.

This assignment operator, like the addition mathematical operator, also works with strings.
Thus, you could add on to the end of a string value using this operator:

var myname="Bob";
myname+="by" ;

This adds the string “by” to the end of the string “Bob”, which yields the string “Bobby”.



Chapter 5:  JavaScript Operators

The Subtract-and-Assign Operator (—=)

The —= operator works like the += operator, except that it subtracts the value on the right side
of the operator from the variable on the left side. This value is then assigned to the variable.
Here is an example of this operator in action:

var mymoney=1000;
var bills=800;
mymoney-=bills;

This example subtracts the value of the bills variable (800) from the mymoney variable and
assigns the result to mymoney. In the end, mymoney has a value of 200. Since this is so similar
to the add-and-assign operator, let’s move on to the next one (which is also very similar).

The Multiply-and-Assign Operator (*=)
The *= operator multiples the value on the right side of the operator by the variable on the left
side. The result is then assigned to the variable. The next example shows this operator at work:

var mymoney=1000;
var multby=2;
mymoney*=multby;

Here, the variable mymoney is multiplied by the value of the multby variable, which is 2. The
result of 2000 is then assigned to the variable mymoney.

The Divide-and-Assign Operator (/=)

The /= operator divides the variable on the left side of the operator by the value on the right
side. The result is then assigned to the variable. Here is an example:

var mymoney=1000;
var cutpayby=2;
mymoney/=cutpayby;

In this example, the variable mymoney is divided by the value of the variable cutpayby, which
is 2. The result of 500 is then assigned to the mymoney variable.

The Modulus-and-Assign Operator (%=)

Like the other assignment variables that also perform math, the %= operator does a calculation
for the variable assignment. It divides the variable on the left side of the operator by the value
on the right side, takes the integer remainder of the division, and assigns the result to the
variable. Here is how you might assign a value to the mymoney variable using the modulus-
and-assign operator:

var mymoney=1000;
var cutpayby=2;
mymoney%=cutpayby;

99



100  JavaScript: A Beginner's Guide

Here, the variable mymoney is divided by the value of the variable cutpayby, which is 2. The
result of that is 500 with no remainder, meaning that the end result of the calculation is 0.
Thus, 0 is the value that gets assigned to the variable mymoney. (If they start cutting pay like
this anyplace, it is probably time to leave!)

Adjust a Variable Value

gpr5_1.html %
prjss_1.js i

H

In this project, you create a page that uses some of the mathematical and
assignment operators and writes the results on an HTML page.

There is more than one solution that can be used for many of these steps, so feel free to use

the method you prefer. You can also try to see which method requires the least typing. Be sure
to write the results of each change to the page by using the document.write() command.

Step by Step

11.

Create an HTML page and save it as pr5_1.html. Place script tags inside the body section to
point to a script named prjs5_1.js.

. Create an external JavaScript file and save it as prjs5_1.js. Use this file for steps 3—10.
. Create a variable named paycheck and give it an initial value of 2000.

. Using only an assignment operator, increase the value of paycheck to 4000.

. Using a mathematical operator, decrease the value of paycheck to 3500.

2
3
4
5
6.
7
8
9
10

Using a mathematical operator, decrease the value of paycheck to 0.

. Using a mathematical operator, increase the value of paycheck to 500.
. Finally, using an assignment operator, decrease the value of paycheck to 420.
. After you perform each action, write the value of the paycheck variable on the page.

. Save the HTML and JavaScript files and view the HTML file in your browser to see the results.

A possible solution for the JavaScript file is shown in the following code, but keep in mind
there are several ways to achieve the same results:

var paycheck=2000;
document .write (paycheck+"<br />");
paycheck+=2000;
document .write (paycheck+"<br />");
paycheck=paycheck-500;
document .write (paycheck+"<br />");
paycheck=paycheck*0;



Chapter 5: JavaScript Operators 101

document .write (paycheck+"<br />");
paycheck=paycheck+500;

document .write (paycheck+"<br />");
paycheck-=80;

document .write (paycheck+"<br />");

Try This Summary

In this project, you were able to use your knowledge of mathematical and assignment operators
to display the results of several calculations on a Web page. This project could have been
completed in numerous ways, depending on your preferences on the use of the various operators.

Understanding Comparison Operators

Comparison operators are often used with conditional statements and loops in order to perform
actions only when a certain condition is met. Since these operators compare two values, they
return a value of either true or false, depending on the values on either side of the operator.
In later chapters, you will learn how to create a block of code to be performed only when the
comparison returns true.

Table 5-3 summarizes the comparison operators, which are discussed in more detail in the
following sections.

Operator Symbol | Function

Is equal to == Returns true if the values on both sides of the operator are
equal fo each other

Is not equal to I= Returns true if the values on both sides of the operator are
not equal to each other

Is greater than > Returns true if the value on the left side of the operator is
greater than the value on the right side

Is less than < Returns true if the value on the left side of the operator is
less than the value on the right side

Is greater than or equal to >= Returns true if the value on the left side of the operator is
greater than or equa| to the value on the right side

Is less than or equal to <= Returns true if the value on the left side of the operator is
less than or equal to the value on the right side

Strict is equal to === Returns true if the values on both sides are equal and of the
same fype

Strict is not equal to I== Returns true if the values on both sides are not equal or not

of the same type

Table 5-3 The Comparison Operators



102  JavaScript: A Beginner's Guide

The Is-Equal-To Operator (==
For the == operator to return true, the values or statements on each side must be equal. They
cannot just be close; they must return as equal. If the values do not return as equal, the ==
operator returns false. Note that a statement such as “4”==4 will return true because JavaScript
will convert the number 4 to the string “4” for you. If you want this statement to return false,
you should use the strict is-equal-to operator (===), discussed later in this chapter.

The following table shows examples of statements that use the is-equal-to operator, their
return values, and the reason why they return true or false.

Comparison Return Value Reason

4==4 True Two equal numbers

(442)==(3+3) True Result on both sides is 6, and 6 is
equal fo 6

“my socks”=="my socks” True Both strings are exactly the same

(“my “+“socks”)==("my"+ “ socks”) True Results of string additions return
equal string values

==5 False 4 and 5 are not equal numbers
(4+3)==(2+2) False Result on left is 7, result on right is

4, and these are not equal

“My socks”=="my socks” False Strings are not exactly alike
(capitalization)

(“my”+ “socks”)==("my ” +“socks”) False Result on left has no space
character; result on right does,
causing the strings to be unequal

NOTE

You will notice the addition of parentheses around some of the statements in the
previous table, as well as in some of the tables that come later. Here, they are used
mainly for readability. You will learn more about parentheses and the order of
operations near the end of this chapter.

As with the other operators, you can use variables with comparison operators. If the values
of the variables are equal, the comparison will return true. Otherwise, it will return false.
Suppose that you have declared the following variables:

var numl=2;
var num2=5;
var num3=5;



Chapter 5:  JavaScript Operators

The following comparison would return true:

num2==num3

The next comparison would return false:

numl==num3

CAUTION

Remember that the is-equal-to operator (==) is for comparison. Be careful not to
accidentally use the assignment operator (=) in its place, because it can cause your
scripts to work incorrectly.

The Is-Not-Equal-To Operator (!=)

The != operator is the opposite of the == operator. Instead of returning true when the values on
each side of the operator are equal, the != operator returns true when the values on each side of
it are not equal. The only way this operator returns a false value is if it finds that the values on
both sides of the operator are equal. The following table shows some examples of statements
that use the != operator, their return values, and the reason they return true or false.

Comparison Return Value Reason

41=3 True 4 and 3 are not equal numbers

“Cool”1="cool” True Strings do not have the same capitalization,
so they are not equal

41=4 False 4 is equal to 4

“cool”1="cool” False Strings are exactly alike, so they are equal

The Is-Greater-Than Operator (>)
When the is-greater-than operator is used, the comparison returns true only if the value on the
left side of the operator is greater than the value on the right side. Like the other operators, the
> operator works with string values as well as numeric ones. But how can one string be greater
than another string?

In the case of strings, a lowercase letter is greater than an uppercase letter, and an
uppercase letter is greater than a number. When comparing strings, JavaScript first checks
the first letter of the string for a difference. If there is no difference, it moves on to the next
character, then the next one, and so on, until it finds a difference or reaches the end of the
string. If the two values on each side of the > operator are equal, it returns false. If the value

103



104 JavaScript: A Beginner's Guide

on the right side is greater, this also returns false. The following table shows some examples of
statements that use the is-greater-than operator.

Comparison | Return Value | Reason

5>2 True 5 is greater than 2

0>-2 True 0 is greater than negative numbers, such as -2

“a">"A" True Lowercase letters in strings are greater than uppercase
letters in strings

A" True Letters in strings are greater than numbers in strings

557 False 5is less than 7, not greater

-1>0 False Negative numbers are less than 0, not greater

“Q>q" False Uppercase letters in strings are less than lowercase
letters in strings

“3" 5 B" False Letters are greater than numbers, not less than numbers

252 False These are equal, so the value on the left is not greater

The Is-Less-Than Operator (<)

The is-less-than operator works in reverse from the is-greater-than operator. Rather than
returning true when the value on the left is greater, the is-less-than operator returns true
when the value on the left side of the operator is less than the value on the right side of the
operator. This comparison operator returns false if the value on the left side of the operator
is greater than or equal to the value on the right side. Again, you can see how this works by
looking at the examples in this table.

Comparison Return Value Reason

2<10 True 2 is less than 10

A< " True Uppercase letters in strings are less than lowercase
letters in strings

10<2 False 10 is greater than 2, not less

“a’<"A" False Lowercase letters in strings are greater than

uppercase letters in strings, not less

10<10 False These are equal, so the value on the left is not less

The Is-Greater-Than-or-Equal-To Operator (>=)

The >= operator is slightly different from the comparison operators you’ve read about so

far. This operator adds an option for the values on both sides to be equal and still have the
comparison return true. So, to return true, the value on the left side of the operator must be
greater than or equal to the value on the right side. An is-greater-than-or-equal-to comparison



Chapter 5: JavaScript Operators 105

will return false only if the value on the left side is less than the value on the right side. The
following table shows some examples of statements that use the is-greater-than-or-equal-to

operator.

Comparison Return Value | Reason

5>=2 True 5 is greater than 2

2>=2 True 2 is equal to 2

“a">="A" True Lowercase letters are greater than uppercase letters

AS="A" True The strings are equal

1>=2 False 1 is less than 2

“A>="a" False Uppercase letters are less than lowercase letters, not
greater or equal to

The Is-Less-Than-or-Equal-To Operator (<=)

Much like the >= operator, the <= operator adds the possibility for the values on each side to
be equal. With the is-less-than-or-equal-to operator, a value of true is returned if the value on
the left side of the operator is less than or equal to the value on the right side of the operator.

The following table shows examples of statements that use the is-less-than-or-equal-to

operator.
Comparison Return Value Reason
2<=5 True 2 is less than 5
2<=2 True 2 is equal to 2
“A’<="a" True Uppercase letters are less than lowercase letters
A <="A" True The strings are equal
5<=2 False 5 is greater than 2, not less than or equal to
“a"<="A" False Lowercase letfters are greater than uppercase letters,
not less than or equal to

The Strict Is-Equal-To Operator (===

This operator was added in JavaScript 1.5, so in order for it to work, your browser needs to
support JavaScript 1.5 (refer to Chapter 1, Table 1-1). For the === operator to return true, the
values or statements on each side must be equal and must be of the same type. This means

that if you use a statement such as 3==="3", the operator will return false because the value
on the left is a number and the value on the right is a string; the values are of different types.
Whereas the is-equal-to (==) operator first attempts to convert the values on each side of the
operator to the same type and then determines if they are equal, the strict is-equal-to operator



106  JavaScript: A Beginner's Guide

automatically returns false if the values are not of the same type. The following table shows

examples of statements that use the === operator.

Comparison Return Value | Reason

4===4 True Two equal numbers

(4+2)===(3+3) True Result on both sides is 6, and both values
are numbers

“my socks”==="my socks” True Both values are strings, and are exactly
the same

(“my "+ “socks”)===("my”+" socks”) | True Results of string additions return equal
string values

4=== False 4 and 5 are not equal numbers

(4+3)==="7" False Result on left is 7, but the 7 on right is @
string, so the values are of different types
and thus are not equal

“My socks”==="my socks” False Strings are not exactly alike
(capitalization)

"2"===(1+3) False The values are of different types, and 3+1
does not equal 2

The Strict Is-Not-Equal-To Operator (1==)

This operator was added in JavaScript 1.5, so in order for it to work, your browser needs to
support JavaScript 1.5 (refer to Chapter 1, Table 1-1). For the !== operator to return true, the
values or statements on each side must not be equal or must not be of the same type. This
means that if you use a statement such as 3!=="3", the operator will return true because the
value on the left is a number and the value on the right is a string; the values are of different
types (and thus not strictly equal). Whereas the is-not-equal-to (!=) operator first attempts to
convert the values on each side of the operator to the same type and then determines if they are
not equal, the strict is-not-equal-to operator (!==) automatically returns true if the values are
not of the same type. The following table shows some examples of statements that use the !==

operator.
Comparison Return Value Reason
41==3 True 4 and 3 are not equal numbers
“A"N==4 True Values on each side are of different types
4l==4 False 4 is equal to 4
“cool”l=="cool” False Strings are exactly dlike, so they are equal

You’ll get some practice using this and the other comparison operators when you learn
about conditional statements and loops in Chapter 6. Next up are the logical operators, which
are also used to check conditions.



Chapter 5:  JavaScript Operators

Operator Symbol Function

AND && Returns true if the statements on both sides of the operator are true
OR [ Returns true if a statement on either side of the operator is true

NOT ! Returns true if the statement fo the right side of the operator is not true

Table 5-4 The Logical Operators

Understanding Logical Operators

The three logical operators allow you to compare two conditional statements to see if one

or both of the statements is true and to proceed accordingly. The logical operators can be

useful if you want to check on more than one condition at a time and use the results. Like the
comparison operators, the logical operators return either true or false, depending on the values

on either side of the operator.

Table 5-4 summarizes the logical operators, which are discussed in the following sections.

The AND Operator (&&)

The logical operator AND returns true if the comparisons on both sides of the && operator
are true. If one or both comparisons on either side of the operator are false, a value of false is

returned. Some statements that use the AND operator are shown in the following table.

Statement Return Value Reason

(1==1)&&(2==2) True Comparisons on both sides are true: 1
is equal to 1, and 2 is equal to 2

(2>1)&&(3<=4) True Comparisons on both sides are true: 2
is greater than 1, and 3 is less than 4

(“"A”<="A")&&("c"1="d") True Comparisons on both sides are true:
“A”" is equal to “A”, and “c” is not
equal to “d”

(1==1)&&(2==3) False Comparison on the right is false

(“a”1="a")&&"b"1="q") False Comparison on the left is false

(2>7)&&(5>=20) False Comparisons on both sides are false

The OR Operator (I |)

The logical operator OR returns true if the comparison on either side of the operator returns
true. So, for this to return true, only one of the statements on one side needs to evaluate to true.

107



108  JavaScript: A Beginner's Guide

To return false, the comparisons on both sides of the operator must return false. The following
table shows some examples of comparisons using the OR operator.

Statement Return Value Reason

(2==2)1 1(3>5) True Comparison on the left is true
(5>17)1 1(41=9) True Comparison on the right is true
(3==3)1 1(7<9) True Both comparisons are true
(4<3)1 [(2==1) False Both comparisons are false
(31=3)1 [ (4>=8) False Both comparisons are false

The NOT Operator (!)

The logical operator NOT can be used on a single comparison to say, “If this is not the case, then
return true.” Basically, it can make an expression that would normally return false return true, or
make an expression that would normally return true return false. The following table shows some
examples of this operator at work.

Comparison | Return Value | Reason

1(3==3) False 3is equal o 3 is true, but the NOT operator makes this
statement false

1(2>5) True 2 is greater than 5 is false; the NOT operator makes the
statement true

Now that you have the regular logical operators down, take a quick look at the bitwise
logical operators.

The Bitwise Operators

Bitwise operators are logical operators that work at the bit level, where there is a bunch of ones
and zeros. You will not be using them in the examples presented in this book, but you may see
them in some scripts on the Web. The following table lists some of the bitwise operators and
their symbols. This list is by no means complete, but it should help you spot a bitwise operator
if you see one.

Operator Symbol
AND &

XOR A

OR |

NOT ~

Left Shift <<
Right Shift >>
Right Shift (Zero-Fill) >>>



Chapter 5:  JavaScript Operators

Operator Symbol Purpose

Conditional 2 Often used as a short if/else type of statement. A condition is placed
before the question mark (2) and a value is placed on each sicfe of
the colon (:).

Comma , Evaluates the statements on both sides of the operator, and returns
the value of the second statement.

Delete delete Used to delete an obiject, a property, or an element in an array.

In in Returns true if a property is in a specified object.

Instanceof instanceof Returns true if an obiject is of a specified object type.

New new Creates an instance of an object.

This this Refers to the current object.

Typeof typeof Returns a string that tells you the type of the value being evaluated.

Void void Allows an expression to be evaluated without returning a value.

Table 5-5 Special Operators

Special Operators

There are a number of special operators in JavaScript that are used to perform specific tasks, or

to aid in shortening code. Table 5-5 lists the special operators and their purposes.

Don’t be discouraged if many of the terms used in this table look unfamiliar. Objects,
arrays, and other unfamiliar terms are discussed in later chapters. Many of these operators
will be reintroduced at the appropriate point in the later chapters, where their purpose can be
expressed more clearly.

Ask the Expert

Q: Why are there so many assignment operators? If I can write x=x+1 instead of x+=1,
why do I need to know about the extra assignment operators?

A: They are provided as shortcuts, so that you don’t need to type the variable name a second
time in the same line. They also cut down the overall size of the script a bit, which helps
with the loading time of the Web page. You can use either method; it just depends on how
much you want to trim the script size or avoid extra typing. Also, it is good to know what
these assignment operators do, so that you can recognize their purpose in scripts.

Q: Can I use more than one operator at a time in a statement? What will happen if I do that?

A: Yes, you can use multiple operators in a single statement. The operators will be executed
according to their precedence in the order of operations, which is covered in the next section.

(continued)

109



110 JavaScript: A Beginner's Guide

Q: What is with all of the parentheses? Why are they used in some cases but not in others?
Is there a reason for them?

A: The parentheses used so far have been added for the readability of the statements. In some
cases, it is necessary to use parentheses to get a desired result. This is something else that is
covered in the next section.

Q: Are there any common typos that are made with all of these operators?

A: Often, the assignment operator (=) gets used in place of the comparison operator (==
because the second equal sign is left off by accident. Also, forgetting to use && and typing
just & is another common typo that can cause trouble in a script. The same sort of mistake
can occur with the logical OR (||) and bitwise OR (|) operators.

Understanding Order of Operations

In JavaScript, the operators have a certain order of precedence. In a statement with more than
one operator involved, one may be executed before another, even though it is not in that order
in the statement. For instance, look at this example:

var answer=8+7%*2;

If you remember how this works in mathematics, you will know that the multiplication is
performed first on the 7*2 part of the statement, even though it does not look like that is the
right order when you read from left to right. The reason the multiplication is performed first

is that the multiplication operator has a higher precedence in the order of operations than the
addition operator. So, any multiplication done within a statement will be performed before any
addition, unless you override it somehow.

As with math problems, in JavaScript, the way to override the order of operations is
through the use of parentheses to set off the portion of the statement that should be executed
first. Thus, if you wanted to be sure the addition was performed first in the preceding example,
you would write it as shown here instead:

var answer=(8+7)*2;

If you use more than one set of parentheses or operators of the same precedence on the
same level, then they are read from left to right, as in this example:

var answer=(8+7)-(4*3)+(8-2);

Since the parentheses are all on the same level (not nested), they are read from left to right.
The addition and subtraction operators outside the parentheses have the same precedence, and
thus are also read from left to right.



Chapter 5:  JavaScript Operators

Type of Operator Example of Operators
Parentheses (overrides others) ()

Unary (mathematical, logical, or bitwise) - ++ —— | ~typeof void delete
Multiplication, division, modulus /%

Addition, subtraction + -

Shifts (bitwise)

>>> >> <<

Relational comparison

> >= < <= in instanceof

Equality comparison

AND (bitwise) &

XOR (bitwise) A

OR (bitwise) |

AND (logical) &&

OR (logical) [

Conditional 2:

Assignment = += —= *= [= %= <<= >>= >>>= &= = |=
Comma

’

Table 5-6 Operator Precedence, from Highest to Lowest

The precedence of the JavaScript operators is shown in Table 5-6, ranked from highest
precedence (done first) to lowest precedence (done last).

As you can see in Table 5-6, parentheses override the other operators. Parentheses are
handy when you are unsure of the precedence of various operators or if you want to make

something more readable.

IALEERA True or False®

pr5 2.html
iprjs5_2.js |

This project will allow you to experiment with some of the comparison operators
to see how they work. You will create a script that shows an alert stating whether
or not a statement or comparison will return true. The script will use a conditional

if/else statement, which is explained in detail in the next chapter.

(continued)

111



112 JavaScript: A Beginner's Guide

Step by Step
1. Create an HTML file and save it as pr5_2.html.

2. Create an external JavaScript file and save it as prjs5S_2.js. Use this file for editing in
steps 3—13.

3. Insert the code that follows into your JavaScript file:

var numl=0;

var num2=0;

if (numl==num2) {
window.alert ("True") ;

}

else {
window.alert ("False") ;

}

4. Open the HTML page in your browser. You should instantly see an alert saying “True.”

5. Change the value of the variable num1 to 5. Resave the JavaScript file and refresh your
browser. You should now get an alert saying “False.”

6. In the following line of code, change the == operator to the > operator:

if (numl==num2) {

7. Resave the JavaScript file and refresh your browser. You should get “True” again.
8. Change the value of the variable num?2 to 7.
9. Resave the JavaScript file and refresh your browser. You should now get “False” again.
10. In the following line (which you changed in step 4), change the operator to the < operator:
if (numls>num2) {
11. Resave the JavaScript file and refresh your browser. You should get “True” again.
12. Try to change the value of the num1 variable so that you get an alert that says “False” instead.

13. Try your own tests with the other comparison operators to see what the results will be.

Try This Summary
In this project, you were able to use your knowledge of the comparison operators to create
an alert that displayed “True” or “False” depending on whether the comparison statement
would return true or false. You were also able to try testing your own variations of values and
operators if you desired.



Chapter 5: JavaScript Operators 113

b Chapter 5 Self Test

1. A(n) is a symbol or word in JavaScript that performs some sort of calculation,
comparison, or assignment on one or more values.

2. operators are most often used to perform mathematical calculations on two
values.

3. The operator adds two values.

4. When the increment operator is placed the operand, it increases the value of

the operand by 1, and then the rest of the statement is executed.

5. Which of the following is not a JavaScript operator?

6. What does an assignment operator do?
A Assigns a new value to a variable
B Gives a variable a new name
C Performs a comparison
D Nothing, because assignment operators are useless

7. The add-and-assign (+=) operator adds the value on the side of the operator to
the variable on the side and then assigns to the variable that new value.

8. What does a comparison operator do?
A Performs a mathematical calculation
B Deals with bits and is not important right now
C Compares two values or statements, and returns a value of true or false
D Compares only numbers, not strings

9. Which of the following comparisons will return true?

A 41=3
B 4==3
C 4<3

D 4<=3



114 JavaScript: A Beginner's Guide

10. Which of the following comparisons will return false?
A 41=3
B 3==3
C 4>3
D 4<=3

11. The operators allow you to compare two conditional statements to see if one
or both of the statements are true and to proceed accordingly.

12. Which of the following statements will return true?
A (3==3)&&(5<1)
B !(17>=20)
C (3!=3)||(7<2)
D (1==1)&&(2<0)
13. Which of the following statements will return false?
A 1(3<=1)
B (4>=4)&&(5<=2)
C (“a’=="a")&&(“c”!="d")
D (2<3)||(3<2)
14. operators are logical operators that work at the bit level.

15. In JavaScript, the operators have a certain order of



Chapter 6

Conditional Statements
and Loops

115



116  JavaScript: A Beginner's Guide

Key Skills & Concepts

Defining Conditional Statements
Using Conditional Statements
Defining Loops

Using Loops

N ow that you have seen how the various operators work in JavaScript, this chapter will
instruct you in how to put them to good use. Conditional statements and loops enable you
to make use of the mathematical, comparison, and logical operators because they enable you
to specify in your code that an action should occur only when a condition is met (conditional
statements) or should occur repeatedly (loops).

This chapter begins by introducing you to conditional statements. You will discover
what they are and why they are useful to you in scripts. Then, you will learn about all the
conditional statement blocks and how to use them. After that, you will learn what loops are
and why they are useful to you in scripts. Finally, you will find out about each type of loop and
learn how to use it within your scripts.

Defining Conditional Statements

In order to use conditional statements, you need to know what they are and why they are useful
to you in your scripts.

What Is a Conditional Statement?

A conditional statement is a statement that you can use to execute a bit of code based on a
condition or to do something else if that condition is not met. You can think of a conditional
statement as being a little like cause and effect. Perhaps a good way to parallel it would be to
use something a parent might say, as in the following text:

"If your room is clean, you will get dessert. Otherwise, you will go
to bed early."

The first cause would be a clean room, which would have the effect of getting dessert. The
second cause would be an unclean room, which would have the effect of an early bedtime.

In your scripts, you may want to create a similar statement. Perhaps something more like
the following line:

"If a variable named mymoney is greater than 1000, send an alert that
says my finances are OK. Otherwise, send an alert saying I need more
money!"



Chapter 6:  Conditional Statements and Loops 117

In this case, the first cause would be a variable having a value greater than 1000, which would
have the effect of an alert that says things are OK. The second cause is the variable being 1000
or less. If this happens, you get an alert saying you need more money.

As you can see, if you can create statements like these in your scripts, you will be able to
do quite a bit more than you have with your scripts in the past.

Why Conditional Statements Are Useful

As you saw in the previous section, a conditional statement can be quite useful to you. Rather
than executing every single line of code in the script as is, you could have certain sections of the
script only be executed when a particular condition is met. You could even expand that single
condition into a combination of conditions that need to be met for parts of the code to run.

With conditionals, you can tell JavaScript to do things such as the following:

If a variable named yourname is equal to John, then write a line to the page that says hello
to John. Otherwise, write a line to the page that says hello to Unknown Surfer and have it
be in bold type.

If a variable named mycar is equal to Corvette or Mustang, then send an alert saying “Cool
Car” to the browser. Otherwise, send an alert that says “My car is cooler” to the viewer.

If a variable named yourname is equal to John and a variable named mycar is equal to
Corvette or Mustang, then send an alert that says “John drives a cool car” to the browser.
Otherwise, send an alert that says “Unknown Surfer drives a car of some sort” to the viewer.

I don’t really drive a Corvette or a Mustang, so that leaves me out of the cool crowd here;
however, these examples do show how you can make your scripts more useful by adding a
way to check for certain conditions before an action takes place in the script.

You can make statements (such as the preceding statements) as simple or complex as you
need them; however, the trick is in how to code all these statements so that JavaScript will
interpret them as you intend them to be interpreted. You will learn how to do this shortly, when
you read about the various types of conditional statements you can use in your scripts.

Using Conditional Statements

Now that you know what conditional statements are, it’s time to look at them in more detail
and learn how to code them. You will be looking at the two types of conditional statement
blocks used in JavaScript: the if/else statement blocks and the switch statement blocks. To
begin, you will look at the if/else statement blocks, which are used quite often in JavaScript.

Using if/else Statement Blocks

While using conditional statements, you will see that they are similar to functions in some
ways. Most notable are the curly brackets ({ }) that surround the sections of code that will

be executed given a condition. To give you a better understanding of how this works, I will
explain the basic structure of an if/else statement block: its block structure, block nesting, and
complex comparisons.



118

JavaScript: A Beginner’s Guide

The if/else Statement Block Structure

The first thing you must deal with in an if/else statement is the first line, which tells the
browser to continue or move along. You begin an if/else statement with the JavaScript
keyword if, followed by a comparison in parentheses. The following line shows a sample of
the format of the first line:

if (comparison here)

You replace the comparison here text with an actual comparison. To do this, you need to
remember the comparison operators from the previous chapter. Suppose you want to see if a
variable named boats is equal to 3. The following is how you write the first line of the if/else
block:

if (boats==3)

Remember that a comparison will return a value of true or false. This is where the return value
becomes useful. If the comparison of boats==3 returns true, the browser can go on to the next
line. If it returns false, the browser begins looking for the else keyword, or the first line of
script after the block following the if line is completed.

If the comparison returns true, you need to make a block of statements after the if line
that will be executed. To do this, you use the curly brackets similarly to the way you enclose
commands for a function. The following code shows how to add the brackets to enclose the
code that will execute if the comparison returns true:

if (boats==3) (- The comparison is on the first line
JavaScript Statements Here «————— This is where JavaScript code will be added

}

If the comparison of boats==3 returns true, the code you place within the brackets will be
executed. If it returns false, the code inside the brackets is ignored and the line of code after
the closing curly bracket is executed.

If you wish to use an else block to execute a certain bit of code when the comparison
returns false, you place the else keyword on the next line and then follow it with its own set of
curly brackets, as in the following code:

The if block begins with the if

if (boats==3) {« eyword and the comparison

JavaScript Statements Here
else {- The else block begins with the else keyword
JavaScript Statements Here

}

Now you can see the entire if/else block and how it works to execute one of the two blocks
of code within curly brackets. If the comparison returns true, the block of code following the
if statement is executed. If the comparison returns false, the block of code following the else
keyword is executed.



Chapter 6:  Conditional Statements and Loops 119

You can now create an entire block with code. Suppose you want to send an alert that says
“You have the right number of boats” if the variable boats is equal to 3. If it is not, you want to
send an alert that says “You do not have the right number of boats” instead. The code for this is
shown in the following example:

This alert is executed if the comparison on the first line returns true

if (boats==3) ({
window.alert ("You have the right number of boats");

}

else {
window.alert ("You do not have the right number of boats") ;

} This alert is executed if the comparison on the first line returns false

Now that you have the statements set up, you need to know whether or not the comparison
returns true so that you can determine which block of code is executed. To do so, you need to
declare the boats variable and assign it a value before the comparison takes place. This will
give you the value to determine what happens in the script. See if you can guess which block
of code is executed (first or second) if you use the following code:

var boats=3;
if (boats==3) ({
window.alert ("You have the right number of boats");

}

else {
window.alert ("You do not have the right number of boats") ;

}

If you guessed the first code block would be executed, you got it! Since the variable boats is
equal to 3, the comparison boats==3 returns true. Since it returns true, the first code block is
executed and the code block after the else keyword is ignored. You get the alert that says “You
have the right number of boats” and nothing else.

CAUTION

Be careful when typing the variable assignments (=) and the is-equal-to comparisons
(==), as they can be easily reversed by accident and cause problems with your scripts.

Now take look at how to set up the statement so that you have the opposite result. The
following code will cause the comparison to return false:

Assigning the variable a value of 0 will

var boats=0;4——— .
cause the comparison to return false

if (boats==3)
window.alert ("You have the right number of boats");

}

else {
window.alert ("You do not have the right number of boats") ;

}



120

JavaScript: A Beginner’s Guide

With the value of the variable boats at 0, the comparison boats==3 will return false; thus, the
first code block is ignored and the code block after the else statement is executed instead. This
time you get the alert that says “You do not have the right number of boats,” while the alert in
the first block is ignored.

Now that you know the basic structure of the if/else statement block, you are ready to look
at the technique of nesting one block within another.

Block Nesting

If you nest something, you are basically putting one structure inside another structure of the
same or a similar nature. With the if/else statement blocks, you are able to nest other if/else
statements within the first block after the comparison (the “if block™) or within the second
block after the else keyword (the “else block™).

For example, maybe you would like the browser to execute a statement such as the
following: “If a variable named have_cookbook is equal to yes, and if a variable named
meatloaf_recipe is equal to yes, send an alert that says ‘Recipe found’ to the browser. If have_
cookbook is equal to yes, but meatloaf_recipe is not equal to yes, then alert ‘Have the book
but no recipe’ to the viewer; otherwise, send an alert that says ‘You need a cookbook’ to the
browser.”

This is a somewhat long and complex statement, but you can accomplish what you are
after by nesting an if/else statement within the if block of another if/else statement.

To see how this works, consider the following example, which puts the previous statement
into JavaScript form:

if (have cookbook=="yes") {
if (meatloaf recipe=="yes") {
window.alert ("Recipe found") ;
} | This if/else block is nested
else { within an outside if block
window.alert ("Have the book but no recipe");

}
}

else {
window.alert ("You need a cookbook") ;
1

Oh no, nesting an if block requires curly brackets all over the place! To help you figure out
what is going on with this piece of code, I will break it down into its individual parts.

The first thing you get is the main (first, or outermost) if block. You use it to find out
whether the variable have_cookbook is equal to yes or not. If this comparison returns true, you
move along into the if block; however, the next thing you find is another if block! This is the
nested if block, which means it is inside the outside if block. In the nested block, you check
whether the variable meatloaf_recipe is equal to yes or not. If this returns true, you finally are
able to do something, which is to send the “Recipe found” alert.



Chapter 6:  Conditional Statements and Loops 121

When the nested if block is finished, you see that it has an else block to go with it in
case the comparison meatloaf_recipe=="yes” returned false. If it had returned false, the
browser would then go to this else block and execute the code within it. In the preceding code
example, the comparison on the outside block (have_cookbook=="yes”) returned true, but the
comparison on the nested block (meatloaf recipe=="yes”) returned false. So, the nested else
block is executed, sending the “Have the book but no recipe” alert.

After this nested else block, you see what looks like an extra closing curly bracket;
however, this closing bracket is actually used to close the outside if block that contains all
of this nested code. Looking at how the code is indented will help you see which brackets
are closing which blocks. This is where using indentions or tabs can be helpful in your code,
because—as opposed to the code being all in a straight line up and down—indentions can
make the code easier to read.

Finally, you get to the outside else block. This is the block that is executed only if the first
comparison (have_cookbook=="yes”) returns false. If that comparison returns false, all the
code within that outside if block is ignored (you never get to the nested if/else block) and the
browser moves on to this outside else block. In this case, you get the “You need a cookbook”
alert sent to the viewer.

The following example uses the same if/else code used in the preceding code example,
but this time the variables are defined that will be used by the conditional statements. Both
variables are given a value of yes. See if you can follow the code and name the alert that will
show up on the screen when it is executed.

var have cookbook="yes";
var meatloaf recipe="yes";

if (have cookbook=="yes") {
if (meatloaf recipe=="yes") {
window.alert ("Recipe found") ;

}

else {
window.alert ("Have the book but no recipe");

}
}

else {
window.alert ("You need a cookbook") ;

}

The alert you should have chosen is the “Recipe found” alert. When the first comparison
returns true, you are sent to the nested if block. Since the comparison for the nested if block
also returns true, you execute the code within that block, which sends the “Recipe found” alert
to the browser.

You can nest if/else statements within the outside else block, or you can even nest
statements inside both the outside if block and the outside else block. If you want nested
statements inside both blocks, you could expand your script a bit. The following example code



122

JavaScript: A Beginner’s Guide

expands on the code you already have, but adds an additional nested if/else statement within
the outside else block:

if (have cookbook=="yes") {
if (meatloaf recipe=="vyes") {
window.alert ("Recipe found") ;
} Th.is.if/ else blc?ck is nested
else { — within an outside if block
window.alert ("Have the book but no recipe");

}
}

else {
if (have web access=="yes") {
window.alert ("Find the recipe on the Web");
} | This if/else block is nested
else { within an outside else block
window.alert ("You need a cookbook") ;

1
J

}

Although it hasn’t been declared, you will notice the addition of a new variable: have_
web_access. This is used to determine whether the script should tell the viewer to find the
recipe on the Web or to buy a cookbook. Keep in mind that in a live script, all the variables
need to be declared before being used.

This time, if the first comparison (have_cookbook=="yes”) returns false, you are sent
to the outside else block; however, the outside else block now has a nested if/else statement
within it, so the browser now goes to the inside if block and looks at that comparison (have_
web_access="yes”). If it returns true, the code within the nested if block is executed and you
get the “Find the recipe on the Web” alert. If the comparison returns false, the browser moves
on to the nested else block and executes that code instead. In that case, you would get the “You
need a cookbook” alert.

The last thing you should know about nesting is that you can nest as many blocks as you
want inside of other blocks. Rather than just nesting one if/else statement inside another, you
could have a second nesting inside that statement, a third, or as many as you can track without
going insane. To keep the example from getting out of hand, the following code just nests one
more time within the if block of the previous code:

if (have cookbook=="yes") {
if (meatloaf recipe=="yes") {
if (is_moms meatloaf=="yes") {

window.alert ("Recipe found") ;

}

else {
window.alert ("Recipe found, but not like what mom makes") ;
1

} This if/else block is nested within a nested if block




Chapter 6:  Conditional Statements and Loops

else {
window.alert ("Have the book but no recipe") ;

}
}

else {
if (have web access=="yes") {
window.alert ("Find the recipe on the Web");

}

else {
window.alert ("You need a cookbook") ;

}

Now there is an if/else block within an if block within an if block. As you can see, yet
another variable, is_moms_meatloaf, was added to check for an even more specific recipe. You
could keep going on and on like this, until you cannot take it anymore; however, this should be
enough to allow you to build on it later if you need to do so.

Now that you know a bit about nesting, you need to look at one more detail before
you leave the if/else topic in this section. You need to learn about making more complex
comparisons in your if/else statements.

Complex Comparisons

In addition to making a simple comparison such as x==2 or y<3, you can also build more
complex comparisons using the logical operators discussed in Chapter 5. As you may recall,
that chapter presented some of these comparisons in a form similar to the following example:

(2==2) | | (3<5)

In Chapter 5, the only concern was whether the comparison would return true or false, and
not with how to add it to an if/else statement. Notice the parentheses around each comparison.
They are there mainly for organization; but given the order of operations, you could write the
comparison as

2==2]3<5

The problem here is that this is harder to read, so it would be difficult to determine whether
there is a problem with the code if you need to debug it later.

Recall that the first line of the if/else statement uses parentheses to enclose the comparison.
If you write your complex comparisons without the organizational parentheses, as in the
previous example, you could have the first line look like the line of code shown here:

if (2==2|]3<5)

Although this is easy to type, it’s pretty difficult to read because you are not sure if it should be
read as “if 2 is equal to 2 or 3 and is less than 5 or as “if (2 is equal to 2) or (3 is less than 5).”
If you add the parentheses for organization, it becomes easier to read; but you must be careful

123



124

JavaScript: A Beginner’s Guide

that you nest them correctly. The following example code shows the addition of parentheses
for organization:

if ((2==2) || (3<5))

Which form you use will come down to personal preference. For now, this chapter uses the
method with the extra parentheses for organization. It should make reading the code from the
book easier for you.

Now you can create scripts that allow for more values to be included or allow a specific
range of values that will return true. Suppose you want to show an alert when a variable named
numl is greater than 2 but less than 11, and another alert when numl is not in that range. You
could use the following code:

This complex comparison allows a

i -« ¢
if ((numl>2)&& (numl<1l)) | specific range of values to refurn true

window.alert ("Cool number") ;

}

else {
window.alert ("Not a cool number") ;

}

Your comparison is saying, “If numl is greater than 2 and numl is less than 11.” If that
comparison returns true, then you see the “Cool number” alert. If it returns false, you get the
“Not a cool number” alert instead.

Of course, you can make the comparison line as complex as you want it to be. You can add
and and or logical operators in one long line until you get what you need...or have a nervous
breakdown. The following example adds an extra stipulation to the comparison to see if numl

is equal to 20:
This complex comparison adds an

if ((numl>2)&& (numl<1l) | | (numl==20)) {-«—— additional number that would cause the
window.alert ("Cool number") ; comparison fo return true

}

else {

window.alert ("Not a cool number") ;

}

Now, the comparison allows the numbers greater than 2, the numbers less than 11, and the
number 20 to give the “Cool number” alert. The comparison now reads, “If numl is greater
than 2 and numl is less than 11 or numl1 is equal to 20.” You could keep adding information to
create more numbers that will return true, or even additional number ranges that will return true.

Of course, to see the preceding code in action, you would need to declare the num1
variable and assign it a value. See if you can figure out which alert will show up if the
following code is used:

var numl=1;
if ((numl>2) && (numl<1l) | | (numl==20)) {
window.alert ("Cool number") ;

}



Chapter 6:  Conditional Statements and Loops 125

else {
window.alert ("Not a cool number") ;

}

Yes, you are stuck with the “Not a cool number” alert because the number 1 just doesn’t cut it
here (1 is not within the accepted range of numbers for the condition to return true). Of course,
you can change it to something that fits to get the “Cool number” alert instead.

CAUTION

Complex expressions using && and | | can cause unintended results in your script if not
grouped correctly. For instance, the comparison ((u==v && w==x) | | y==2) is going

to be different than if it were grouped as (u==v && (w==x | | y==z)). The first one will
return true if u is equal to v and w is equal to x, or if y is equal to z. The second one will
return true if u is equal to v and if either w is equal to x or y is equal fo z.

Now that you have the if/else statement down, take a look at another conditional block you
can use to make some things a bit easier.

Using the switch Statement
The switch statement allows you to take a single variable value and execute a different block
of code based on the value of the variable. If you wish to check for a number of different
values, this can be an easier method than the use of a set of nested if/else statements.

The first line of a switch statement would have the following syntax:

switch (varname)

You replace varname with the name of the variable you are testing. You could also replace
it with some other sort of expression, such as the addition of two variables or some similar
calculation, and have it evaluate. For now, you will just use a variable that has been assigned
a value before the switch statement begins. In your later scripts, you may use some more
complex switch statements.

Now, you need to see the general syntax for a full switch statement. The following code is
an example of how a switch statement looks:

var thename="Fred"; The switch statement begins based on
switch (thename) {-<e—————— the value of the thename varicble
case "George" : . A case is given with code to
window.alert ("George is an OK name") ; execute below it if it is true
break;

case "Fred" :«—— Thisis the case that is true and will be executed
window.alert ("Fred is the coolest name!");

window.alert ("Hi there, Fred!"); The break statement tells the browser
break; = to leave the switch code block

default :«e—The defaultis used when none of the cases is true
window.alert ("Interesting name you have there");



126

JavaScript: A Beginner’s Guide

First, this example declares and assigns a variable named thename; it is given a value of
Fred. Next, the switch statement begins, using the variable thename as the basis for comparison.
Then, the block is opened with a curly bracket, followed by the first case statement. Written like
this, it is saying, “If thename is equal to George then execute the commands after the colon at
the end of this line.” If thename were equal to George, you would get an alert.

Next you see the break statement, which tells the browser to exit the code block and move
on to the next line of code after the block. You use the break statement in the switch block to
be sure only one of the case sections is executed; otherwise, you run the risk of having all the
cases executed following the one that returned true, because, by default, the browser would
continue to the next statement rather than exit the block entirely even though it finds one of the
cases to be true. To be sure that the browser exits the block, you add the break statement.

If you get back to the script, you see that thename is not equal to George, so this case is
skipped; however, the next comparison returns true because thename is equal to Fred in the
script. Thus, the set of statements in this case block will be executed. Note that two lines of
JavaScript code appear before the break statement here. This shows that you could have any
number of lines within a case, as long as you remember to end with the break statement.

Finally, you see the keyword default. This is used in the event that none of the case
statements returns true. If this happens, the default section of code will be executed. Notice
that you don’t need the break statement after the default section of code, because it is at the
end of the switch block anyway, so the browser will exit the block afterward, eliminating the
need for the break statement.

Sometimes you want the browser to execute the statement afterward. A common use is to
have multiple case statements before the code to be executed:

case "Fred":

case "Frederick":

case "Freddie":

alert ("Fred is an OK name") ;
break;

This use of the break statement allows you to execute several cases before breaking, rather
than being limited to a single case and then breaking.

Now that you have learned how to use the switch statement, take a look at the conditional
operator (which was introduced in Table 5-5, “Special Operators,” in Chapter 5 and will make
more sense now that you have experience with if/else blocks).

Using the Conditional Operator

The conditional operator (often called the ternary operator) is one that can be used as a short
way to assign a value based on a condition. For instance, you might decide you want to assign
a value to a variable based on the result of a conditional statement. You could do it using the
following code:

var mynum=1;

var mymessage;

if (mynum==1)
mymessage="You win!";



Chapter 6:  Conditional Statements and Loops

}

else {
mymessage="Sorry! Try again!";

}

This works, and gives mymessage a value of “You win!” since mynum is equal to 1. However,
the conditional operator allows you to shorten the amount of code required for this type of test.
It allows you to place a condition before the question mark (?) and place a possible value on
each side of the colon (), like this:

varname = (conditional) ? valuel : value2;

JavaScript evaluates the conditional statement and if the statement returns true, the value on
the left side of the colon (valuel here) is assigned to the variable. If the statement returns false,
the value on the right side of the colon (value2 here) is assigned to the variable.

To apply this to our previous example, we could rewrite the entire piece of code as follows:

var mynum=1;
var mymessage;
mymessage = (mynum==1) ? "You win!" : "Sorry! Try Again!";

This works the same way as the previous if/else block, but allows you to write the code with
a lot less typing (lessening the size of the script).

It should be noted that you can also use another method to shorten the script if using the
conditional operator is not comfortable for you. Since JavaScript is lenient, you can omit the
curly braces anytime you have only one statement to execute in a code block.

For instance, the following code could also be used as a shorter version of the script:

var mynum=1;
var mymessage;
if (mynum==1)
mymessage="You win!";
else
mymessage="Sorry! Try again!";

Also, since JavaScript is not concerned with white space or line breaks between tokens, you
can also further shorten this to have the entire if/else block on one line:

var mynum=1;
var mymessage;
if (mynum==1) mymessage="You win!"; else mymessage="Sorry! Try again!";

For now, you will want to use the method that you feel most comfortable using. As you
gain scripting experience, the conditional operator will be a handy way to shorten your code
and help you optimize the size of your scripts when this type of comparison is needed.

The conditional statements you have used in this chapter will allow you to do much more
with your scripts now that you know how to use them. You will be using these extensively in
later chapters, because they can help you code more complex scripts that perform more tasks
than you could without them.

127



128  JavaScript: A Beginner's Guide

Ask the Expert

Q: Do I need to use curly brackets on every if/else block? I have seen them used in code
on the Web without the brackets. Why?

A: There is a shortcut that allows you to omit the curly brackets if you are only going to
execute a single JavaScript statement in the if block and the else block. If you are going to
execute more than one statement, the curly brackets should be used. For example, look at
the following code:

if (x==2) {
window.alert ("Hi") ;

}

else {
window.alert ("Bye") ;

}

Since only one JavaScript statement is used inside the code blocks, you can use a
shortcut that allows you to omit the brackets:

if (x==2)

window.alert ("Hi") ;
else

window.alert ("Bye") ;

As you can see, it can save you some typing (which is why you see this technique often in
scripts on the Web). Keep in mind, however, that if you decide to add more statements within
one of the blocks, you will need to add the brackets back around the code in that block.

Q: Why I am bothering with conditional statements if all I can do is assign the variable
a value and then test it? If I already know what the value of the variable is, why use a
conditional?

A: 1nlater chapters, you will get to the point where you are getting information from the
viewer. This information can vary depending on the viewer (for example, if the viewer
needs to enter his/her name into a text box or a prompt), thus making the conditional blocks
more useful since you will be able to perform one action for one viewer, and another task
for a different user. With user input, you won’t know the value of the variable beforehand,
and you will need to handle the possibilities using conditional blocks.



e

Chapter 6:  Conditional Statements and Loops

Why is the conditional operator often referred to as the ternary operator?

The conditional operator is the only JavaScript operator that takes three operands. Because
of this, it is often called the ternary operator rather than one of several ternary operators.

If JavaScript makes changes to add new operators in the future, this reference to the
conditional operator may change.

I don’t like the idea of nesting one block inside of another. Can I just forget about it
and never nest anything?

You could do that, but it will severely limit the scripts you code later because you won’t
be able to use one comparison statement within another (which is sometimes necessary in
more complex scripts). Nesting allows you to perform more complex tasks, as you will see
in later scripts. It is best to learn nesting so that you can make use of it when you need to.

Construct an if/else Block

gpr6_1.html
iprjs6_1.3s !

This project will help you learn how to construct an if/else block of your own. You
will be given some variables to test, but you will need to write the if/else block.

Step by Step

1.

O b W N

Create an HTML page and save it as pr6_1.html. Add script tags to point to an external
JavaScript file named prjs6_1.js.

. Create an external JavaScript file and save it as prjs6_1.js. Use this file for steps 3—6.
. Create a variable named thesport and assign it the following string value: Golf
. Create a variable named myfood and assign it the following string value: Pizza

. Based on the thesport variable, create a block of code that will send an alert saying “Cool

Sport!” if the variable is equal to “Football”’; otherwise, it will send an alert that says “That
sport might be cool.”

. Based on the myfood variable, create a block of code that will send an alert saying “My

favorite food!” if the variable is equal to “Pizza”; otherwise, it will send an alert that says
“That food sounds OK I guess.”

. Save the JavaScript file and the HTML file and view the HTML page in your browser.
. You should get an alert saying “That sport might be cool.” When you click OK, you should

then get another alert saying “My favorite food!”

(continued)

129



130

JavaScript: A Beginner’s Guide

Try This Summary

In this project, you used your new skills with if/else conditional statements to create a script
that pops up different alerts based on the value of a variable. You did this with two different
variables: the first conditional returns false and gives the alert in the else statement, while the
second conditional returns true and gives the alert in the if statement.

Defining Loops

To begin using loops, you will want to know what loops are, what they can do, and why they
can be useful to you in your scripts.

What Is a Loop?

A loop is a block of code that allows you to repeat a section of code a certain number of times,
perhaps changing certain variable values each time the code is executed. By doing this, you
are often able to shorten certain tasks into a few lines of code, rather than writing the same line
over and over again within the script and tiring your fingers.

Why Loops Are Useful

Loops are useful because they allow you to repeat lines of code without retyping them or using
cut and paste in your text editor. This not only saves you the time and trouble of repeatedly
typing the same lines of code, but also avoids typing errors in the repeated lines. You are also
able to change one or more variable values each time the browser passes through the loop,
which again saves you the time and trouble of typing a line that is only slightly different than
the previous line.

As a simple example, suppose you wanted to write a sentence onto a Web page ten times
in a row using JavaScript. To do this normally, you might have to write something like the
following:

document .write ("All this typing gets tiring after
document .write ("All this typing gets tiring after
document .write ("All this typing gets tiring after
document .write ("All this typing gets tiring after
document .write ("All this typing gets tiring after
document .write ("All this typing gets tiring after
document .write ("All this typing gets tiring after
document .write ("All this typing gets tiring after
document .write ("All this typing gets tiring after
document .write ("All this typing gets tiring after

while!<br />")
while!<br />")
while!<br />")
while!<br />")
while!<br />");
while!<br />")
while!<br />")
while!<br />")
while!<br />")
while!<br />")

Q0 0 e 9 P9 W

Ouch! Cut and paste can make the task easier, but it would still be a bit tedious, especially
if you decide to write the sentence 50 times instead. With a loop, you could write that
document.write() statement just one time and then adjust the number of times you want it to



Chapter 6:  Conditional Statements and Loops 131

be written. It would be something like the following example. This is not actual code, but you
will see the actual code needed to repeat a statement multiple times when you look at the loop
structures in more detail in the next section, “Using Loops.”

Do this block 10 times {
document .write ("I only had to type this once!<br />");

}

Of course, you will replace the “Do this block 10 times” text with an actual statement that
JavaScript will understand. You will see what statements you can use to form loops in the
following section.

Using Loops
In order to see how loops can really be helpful to you, you need to take a look at the different
loop structures that you can use in JavaScript. The loop structures covered in this section are
the for, while, and do while loops.

FOF

To use a for loop in JavaScript, you need to know how to code the basic structure of the loop
and how to nest a for loop within another for loop. To begin, take a look at the basic structure
of a for loop.

Structure of a for Loop
The structure of a for loop is very similar to that of the conditional blocks. The only major
differences are that a loop serves a different purpose and, as a result, the first line is different.
After that, you use the familiar curly brackets to enclose the contents of the loop.

The first line of a for loop would look similar to the following line:

for (var count=1l;count<ll;count+=1)

The first thing you see is the for keyword. This is followed by a set of parentheses with three
statements inside. These three statements tell the loop how many times it should repeat by
giving it special information.

The first statement (var count=1) creates a variable named count and assigns it an initial
value of 1. This initial value can be any number. This number is used as a starting point for the
number of times the loop will repeat. Using the number 1 will help you see more easily the
number of times the loop will repeat. The preceding code begins the loop with count having
a value of 1. Note that if the count variable had been initialized earlier in the script, the var
keyword would not be needed here.

The next statement (count<11) tells the loop when to stop running. The loop will stop
running based on this conditional statement. The condition here is to stop only when the
variable count is no longer less than 11. This means that if you add 1 to the value of count each
time through the loop, the loop’s last run-through will be when count is equal to 10. When 1 is
added to 10, it becomes 11; and that doesn’t pass the conditional test, so the loop stops running.



132

JavaScript: A Beginner’s Guide

The last statement in the set (count +=1) determines the rate at which the variable is
changed and whether it gets larger or smaller each time. In the preceding code, you add 1 to
the variable each time you go back through the loop. Remember, the first time through, the
variable has been set to 1. Since you add 1 each time, the variable will have a value of 2 the
second time through, 3 the third time through, and so on, until the variable is no longer less
than 11.

To finish the structure, you insert the curly brackets to enclose the code that you wish to
use within the loop. An example of the full structure of a for loop is shown in the following

code:
This line determines how many

for (count=1; count<l1l; count+=1) {<—— times the loop will run
JavaScript Code Here «—————— The JavaScript code for the loop
} will be inside the brackets here

Now, you just need to add a real variable and some JavaScript code to be executed, and
you will have a full for loop put together. To do this, you’ll begin with a script to write a
sentence to the page ten times. Now that you can use a loop, you need to write the sentence
itself only once, rather than ten times in a row. The following example code shows how this
can be done using a for loop:

for (var count=1;count<ll;count+=1) ({

document .write ("I am part of a loop!<br />");,4+—— This line of cgde is looped
} through fen times

The count variable is going to begin counting at 1, since it is assigned an initial value of 1.
You are adding 1 to it each time through the loop. When the count variable has a value that
is no longer less than 11, the loop will stop. In this case, the count will run from 1 to 10, thus
running the loop ten times.

When 1 is added the next time the for statement is hit, the value of the count variable is
11, which is no longer less than 11; thus, the browser will skip over the loop and continue to
the next line of code after the closing curly bracket for the loop. The <br /> tag is used in the
document.write command to be sure that each sentence will have a line break after it and will
not write the next sentence on the same line.

To see this work on a page, you can add the script tags and insert an external JavaScript
file into the body section of an HTML page. Create a JavaScript file named loops01.js, add
the following code, and save the file. Add the necessary script tags to an HTML document and
save it as loopsO1.html.

document .write ("Get ready for some repeated text.<br />");

for (var countj,:l;count<1l;count++) { This |oopwi|| disp|aythefext
document .write ("I am part of a loop!<br />"); — repeatedly in the HTML document

}

document .write ("Now we are back to the plain text.");

Here, a slight change was made to increment the count variable. Rather than typing count+=1,
the increment operator (++) was used. When simply adding one to the variable, the increment



Chapter 6:  Conditional Statements and Loops

operator can be a handy way to shorten the code. However, if you wanted to increment
the variable by 2 or more, the add-and-assign operator would still need to be used (that is,
count+=2).

The page represented by the preceding code has a short line of text that is followed by
your repeating line of text. The page ends with a note, “Now we are back to the plain text.”
Figure 6-1 shows how this will appear in the browser window when viewed. Notice that the
sentence “T am part of a loop!” is repeated ten times.

Now that you can do a basic loop, you are ready to add something to it that will make
the loop even more useful. Within the loop, you can use the value of the count variable (or
whatever variable is used) to do various things.

One thing you can do (this will become more apparent when you get to arrays later) is to
make use of the fact that the variable is changing each time. With the variable going up by 1

©) Exampla - Mozilla Firefox

Cil=  Cdit  View llistory Dookmarks Tooks  Lelp

@ - c }{ {ut l:,j filezf{13:/zz_phpjfiguresfchéfloops01.html f:]’ hd| iv Google _;‘

[45] Most Visted P Getting Started 5. Labest Headines

@ Disable~ 2 Cookies~ [ €55+ -] Forms= (M Images= (@ Information= © Miscellanenus /' Outline~ ::Rm’ze‘ u&:’ Toals~ Q View Sources |
Norton v Protects (@) tdentity Safe v #*% Logins ~

Get ready for some repeated text.
I am part of a loop!

I am part of a loop!

I am part of a loop!

I am part of a loop!

I am part of a loop!

I am part of a loop!

I am part of a loopl

I am part of a loop!

I am part of a loop!

I am part of a loop!

Mow we are back to the plan tezt.

Figure 6-1 The loop displays the line of text ten times

133



134

JavaScript: A Beginner’s Guide

each time through, you could use a loop to number the sentences from 1 to 10 and make the
lines more readable. The following code does this:

document .write ("Get ready for some repeated text.<br />");
for (var count=1;count<ll;count++) {
document .write (count+". I am part of a loop!<br />");

document .write ("Now we are back to the plain text.");

Now the variable is used to add line numbers
each time the code is repeated

In the preceding code, you just added the value of the count variable to your string at the
beginning. The period before the sentence will make the line of text appear with a period after
the number, a space, and your sentence on each line. Figure 6-2 shows how the script would
look in the browser with this addition.

Before you move on to the while loop, you need to learn one more thing about the for
loop. Just as with the if/else blocks, a for loop can be nested within another for loop.

©) Bxampla - Mozilla Firefox

Cil=  Cdit  View llistory Dookmarks Tools  Llelp

3 - c K {at l:,j filezf{13:/zz_phpjfiguresfchéfloops01.html f:]’ hd| iv Soogle ;‘

[J5] Most Visted P Getting Started 5. Labest Headines

© Disable~ 2 Cookies~ [ €55+ -] Forms~ (M Images= @ Information= © Miscellanenus /' Outline~ ;:Resim' f Toals~ E Wiew Source~ |
Norton v Protect (@) Mdentity Safe v #*% Logins ~

Get ready for some repeated text.
1. T am part of aloop!

2. I am part of a loop!

3. I am part of a loop!

4 T am part of aloop!

5.1 am part of a loop!

6. 1 am part of a loop!

7.1 am part of aloop!

8. I am part of a loop!

9.1 am part of a loop!

10. T am part of a loop!

Mow we are back to the plan tezt.

Figure 6-2 Now the repeated lines are numbered from 1 to 10



Chapter 6:  Conditional Statements and Loops 135

Block Nesting

Yes, you now have to deal with nested loops. As with if/else blocks, you can nest as many
levels deep as you can handle. For now, you will just nest one loop within another. The
following example shows a for loop within a for loop:

for (var count=1;count<1l;count++) {
document .write (count+". I am part of a loop!<br />");
for (var nestcount=1;nestcount<3;nestcount+=1) {
document .write ("I keep interrupting in pairs!<br />");
}

}

This nested loop interrupts
the outside loop

CAUTION

Be careful when you nest loops to be sure that each nested loop has its own counter on
its first line, such as for(count=1;count<11;count+=1). A counter will need to be unique
to its own loop in most cases. Also, many errors may occur if the curly brackets are not
included or paired correctly.

Now you get a loop that interrupts your outer loop text with text of its own. Each time you
go through the outer loop, you write out the “T am part of a loop!” line. Then, you encounter
another loop that writes out “I keep interrupting in pairs!” to the screen.

The inner loop is set up to repeat twice; so each time you have one sentence from the
outside loop, it is immediately followed by two sentences from the inside loop. In order to see
this more clearly, consider the following example, which updates the code you used earlier in
the loops01.js file:

document .write ("Get ready for some repeated text.<br />");
for (var count=1;count<ll;count++) {
document .write (count+". I am part of a loop!<br />");
for (var nestcount=1;nestcount<3;nestcount++) {
document .write ("I keep interrupting in pairs!<br />");
}
}
document .write ("Now we are back to the plain text.");

Figure 6-3 illustrates how this nested loop affects the appearance of the page in the
browser. You can now see how nested loops are useful to add even more information along the
way if you need to do so.

To further complicate matters, you can also nest different types of blocks inside one
another. For example, you can put an if/else statement block inside a loop, or a loop inside
the if block or the else block of an if/else statement. The following example creates an if/else
block within a for loop:

for (var count=1;count<1l;count++) {
if (count==5) ({
document .write ("The loop is halfway done!<br />");



136

JavaScript: A Beginner’s Guide

}

else {
document .write ("I am part of a loop!<br />");

}
}

In this case, the browser will check whether or not the count variable has a value of 5. If it
does, the browser will print a different message to the screen than the browser would otherwise.
You can best see the effects of this by adjusting your JavaScript file to have the following code:

document .write ("Get ready for some repeated text.<br />");
for (var count=1;count<ll;count++) {
if (count==5) ({
document .write ("The loop is halfway done!<br />");
}
else {
document .write ("I am part of a loop!<br />");
}
}

document .write ("Now we are back to the plain text.");

£} Exampla - Mozilla Firafox

Cile  Cdit  Yiew lligtory Dockmarks Tooks  Lelp

G—v c (‘K {ut l: |j file:f{13:/zz_phpjfiguresichéfloops0 1. hml "C'[‘ - i' Soogle ,"-"
(2] most visted 4 Getng Started 5 Latest Headines

© Disable~ 2 Cookies= [ €55+ -] Forms= [ Images~ @) Information~ ) Miscellaneous™ ' Outline~ ;:Resize‘ “;i:” Tools™ Q Wiew Source~ f
Norton v e @) tdentity safe v s Logins

(et ready tor some repeated text.

1. L am part ot aloop!

1 keep mterruptng in pars!

1 keep mterrupting i pawrs!

2. Lam part of aloop!

1 keep mterrupting n pawrs!

1 keep mterrupting i pars!

3. 1L am part of aloop!

1 keep mterrupting n pars!

1 keep mterrupting mn pawrs!

4. 1 am part of aloop!

1 keep mterrupting i pawrs! =
1 keep mterrupting in pawrs!

5. L am part of aloop!

1 keep mterruptng n pars!

1 keep mterrupting in pawrs!

6. L am part of aloop!

1 keep mterrupting mn pawrs!

1 keep mterrupting mn pars!

/. Lam part of aloop! v
Done H

|

Figure 6-3 The nested loop inserts text within the outside loop’s text



Chapter 6:  Conditional Statements and Loops

£} Bxampla - Mozilla Firafox |:|[E“E
Cil=  Cdit  View llistory Dookmarks Tools  Lelp ;

o
@]
\\

6 = @ X o [ Az phpffiquresichefionpsat.btml

(2] most visted 4 Gettng Started 5 Latest Headines

Norton

(et ready tor some repeated text.
1 am part of'a loop!

1 am part of'a loop!

1 am patt of'a loop!

1 am part of a loop!

"The loop 15 halfiway done!

1 am part of'a loop!

1 am part of a loop!

1 am part of'a loop!

1 am part ot a loop!

1 am part of'a loop!

Mow we are back to the plam text.

@ Identity Safe v #%% Log-ns v

@ Disabler B Cookies~ [ €55+ 0] Forms~ M Imagest @) Information~ ©) Miscellaneous™ ./ Outline~ ":RESiZE‘ ‘,43 Tools~ Q Wiew Sourcer -

Figure 6-4 The nested if/else block causes the fifth line to be different from the other lines

Figure 6-4 shows the result of this code when run in the browser. Notice how the fifth line

is different based on the conditional statement within the loop.

As you can see, you can do quite a bit with nesting. Using the same techniques you just
learned, you can nest all the other statement blocks covered in this book; therefore, I won’t be

as detailed about the nesting techniques with the rest of the statements that are covered.
Now that you have seen how to use a for loop, take a look at how you can loop a little
differently using a while loop.

while
A while loop just looks at a short comparison and repeats until the comparison is no longer
true. To begin, take a look at the general syntax for the first line of a while loop:

while (count<11l)

The while statement does not create a variable the way a for statement can. When using a

while loop, you must remember to declare the variable you wish to use and assign it a value

before you insert it into the while loop.

137



138

JavaScript: A Beginner’s Guide

Although the less-than comparison is probably the most common, you can use any
other type of comparison you wish. This includes the complex comparisons with the logical
operators. So, you could have a first line like the following example:

while ((counts>4)&&(count<l1l))

This time, the loop runs only while the variable is greater than 4 and less than 11. For the loop
to run at all, the initial value of the variable would need to be within that range; otherwise, the
loop would be skipped entirely.

The following code shows the general structure of a full while loop so that you can see
how it looks:

var count=1; «———— Avariable is assigned a value to count the loop

while (count<6) {<«—————"The while statement begins with a comparison
JavaScript Code Here

count++; «—— The count variable is adjusted so that
} you do not have an endless loop

First, notice that the value of 1 is assigned to the variable count before the loop begins.
This is important to do so that the loop will run the way you expect it to run. This loop is set
up to repeat five times, given the initial value of the variable and the increase in the value of
the variable by 1 each time through (count++).

In a while loop, you must also remember to change the value of the variable you use so
that you do not get stuck in a permanent loop. If the previous sample loop had not included the
count++ code, the loop would have repeated indefinitely, and you do not want that to happen.
So, the main things you must remember with a while loop are to give the variable an initial
value before the loop and to adjust the value of the variable within the loop itself.

For an example of the while loop in action, you can recode your sentence-repeat script to
work with a while loop:

document .write ("Get ready for some repeated text.<br />");

var count=1;

while (count<11)
document .write (count+". I am part of a loop!<br />");<————|
count++;

}

document .write ("Now we are back to the plain text.");

This line is written on the page fen times, just as with the for loop

The preceding code will produce the same result as your for loop did, just with a different
look, as shown in Figure 6-5. In many cases, you can choose to use a for loop or a while loop
based on personal preference, since they can perform many of the same tasks.

As far as nesting with while loops, it works the same as with the for loops. You can insert
another while loop, a for loop, or an if/else block within a while loop. You can also insert a
while loop within the other statement blocks if you wish.



Chapter 6:  Conditional Statements and Loops

£} Exampla - Mozilla Firafox

Cil=  Cdit  View llistory Dookmarks Tools  Lielp
6 - c _}{ {at l::] file:f{13:/zz_phpjfiguresjchéfloops0 1. hml ‘{:’[‘ - i' Soogle ,"-."

[52] most visted 4 Getng Started 5 Latest Headines

@ Disabler B Cookies~ [ €55+ 5] Forms~ (M Imagest @) Information~ © Miscellaneous~ ./ Outliner ;:Re;ize- ‘;P Tools~ Q Wiew Sourcer -
Norton v, i @) tdentity safe v s Logins ~

(et ready tor some repeated text.
1 am part of aloop!

1 am part of aloop!

1 am part of aloop!

1 am part of aloop!

1 am part of aloop!

1 am part of aloop!

1 am part of aloop!

1 am part of aloop!

Y. 1l am part of aloop!

10. 1 am part of a loop!

Mow we are back to the plam tezt.

e i i o e

Figure 6-5 A line of text is repeated ten times using a while loop

Now that you know how while loops work, take a look at a loop that has a special feature
added to it.

do while
The do while loop is special because the code within the loop is performed at least once, even
if the comparison used would return false the first time. A comparison that returns false in
other loops on the first attempt would cause them never to be executed. In the case of a do
while loop, the loop is executed once, and then the comparison is used each time afterward to
determine whether or not it should repeat.

The following is an example of a do while loop that will run five times:

var count=1;
do {- The do keyword begins the do while loop

-4

document .write ("Hi!") ;

count++; The while statement runs the comparison
} while (count<6); «—————— each time after the first run-through

139



140

JavaScript: A Beginner’s Guide

Notice the keyword do and the opening curly bracket are the only things on the first line of the
block in the preceding code. Then, when the block is complete, you see the while statement
and comparison. The do keyword is how you ensure the code block is executed at least once.
After that, the browser checks to see that the comparison returns true before repeating.
In this case, the loop repeats five times since the variable count starts at 1 and is increased by
1 each time through. When the value of count reaches 6, the loop is skipped and no longer
executed.
To see an example of a do while loop that gets executed at least once even though the
initial comparison would return false, look at the following example code:

var count=11;

do { - .
document .write ("Hi!") ; « This is only written to the page once,
count i+ : since the comparison will return false
’

} while (count<10);

Since the count variable has an initial value of 11, the loop in the preceding code will
only run the first time through. When the comparison is checked (count will be 12 by this
time, since 1 is added to it in the execution of the loop), it returns false and the loop is no
longer run.

A do while loop is most useful when you have some code that you need to have executed
at least once but need repeated only if certain conditions are met; otherwise, one of the other
two loops would be sufficient for the task.

for in

The for in loop allows you to loop over all the names of the properties of an object and execute
statements for each property using a variable to hold the name of the property. The general
format for a for in loop is shown here:

for (varname in objectname) {
JavaScript Code Here

}

Since you have not looked at JavaScript objects, this won’t be useful to you yet. The for in
loop will be covered in more detail in Chapter 8.

for each in

The for each in loop is very similar to the for in loop, but rather than looping through the name
of each property it allows you to loop through the value of each of the properties. It is only
supported in JavaScript 1.6 and higher. Again, this will be covered in more detail when objects
are introduced in Chapter 8.



Chapter 6:  Conditional Statements and Loops 141

Using break and continue

The break and continue statements allow you to stop what a loop is currently doing, but work
in different ways. As you will recall from the use of a break statement within a switch block
earlier in the chapter, the break statement stops the loop at that point and completely exits the
loop, moving on to the next JavaScript statement after the loop. For instance, break could be
used in this manner:

for (count=1;count<ll;count++) {
if (count==5) {
document .write ("The loop is halfway done, and I am done with
itl<br />");
break; - This will end the loop when count is equal to 5,
) ! rather than allowing the loop to complete
else {
document .write ("I am part of a loop!<br />");

}
}

This loop will go through normally until count is equal to 5. When this happens, a
special message is written to the page and the break statement is used to end the loop
entirely. Thus, rather than going through the loop ten times, the loop will only be executed
five times.

If you decided that you did not want to completely leave the loop when that condition
occurs, you could modify the loop to use the continue statement. The continue statement will
stop the loop from executing any statements after it during the current trip through the loop.
However, it will go back to the beginning of the loop and pick up where it left off, rather than
exiting the loop entirely. For example, you could use the following code:

for (count=1;count<ll;count++) {
if (count==5) {
continue;

document .write (count+". I am part of a loop!<br />");

}

This time, nothing is written to the page when count is equal to 5. Instead, the loop is told
to go back to the beginning and continue from there. The result is that the “I am part of a
loop!” message will be written to the page only nine times (since nothing happens when
count is equal to 5). The loop is allowed to continue where it left off, rather than being left
completely.

The break and continue statements will prove helpful to you when special situations
come up that require you to stop the loop entirely or to stop the loop and restart it at the
beginning.



142

JavaScript: A Beginner’s Guide

Ask the Expert

Q:
A:

e

Are loops useful for anything other than writing a line of text to the page repeatedly?

Yes, you will see their usefulness more as you progress through the chapters. You will see
that they can be useful when dealing with arrays and for repeating various actions that, in
turn, create certain effects on the page.

Is it really okay to use inside the loop the variable I have counting the loop? Couldn’t
that lead to problems?

It is okay to use that variable within the loop, as long as you do not somehow assign it
a new value when using it. If you are worried that you might do this, assign its value
to another variable and use that one in the code instead. For example, take a look at the
following code:

for (count=1;count<ll;count++) {
var thenum=count;
document .write (thenum+". I am part of a loop!<br />");

}

Here, you assign the value of the count variable to a variable named thenum. You then use
the thenum variable in the code instead of the count variable.

Note, however, that it is okay to assign a new value to a count variable if that is what
you intend to do. The preceding idea is only a method you can use if you do not intend to
change the count variable and want to be sure you don’t accidentally do so.

Should I use a for loop or a while loop when I want to use a loop? Which one is better?

Use the type of loop you personally prefer. Often, the type of loop used depends upon the
situation at hand. One type of loop might seem to make more sense than the other type
under different circumstances.

A for loop is more common, though, simply because the risk of an infinite loop exists
with a while loop—which is one of the worst things that can happen in JavaScript. A while
loop is more useful when you don’t know in advance how many times you need to loop.

Will the do while loop ever be useful to me?

Although the do while loop does have its usefulness, it is unlikely that you will use it often
unless you use scripts that need to have a loop run at least once before it is checked. You
will not encounter any such scripts in this book. However, the knowledge you gained about
the do while loop in this chapter will help you if you should encounter a script that uses it
on the Web or elsewhere.



Chapter 6:  Conditional Statements and Loops 143

Work with for Loops and while Loops

In this project, you work with for loops and while loops to see how they can
perform similar tasks.

prj 56_2 js

Step by Step
1. Create an HTML page and save it as pr6_2.html. Add the script tags to point to a script
named prjs6_2.js.
2. Create an external JavaScript file and save it as prjs6_2.js. Use it to complete steps 3-5.

3. Using a for loop, create some code that will write the following sentence to the page 15
times (be sure to number each line from 1 to 15):

This is getting way too repetitive.

4. Save the JavaScript file and view the HTML page in the browser. You should see the
sentence 15 times, numbered from 1 to 15.

5. Edit the code so that it will do the same thing as in step 3, but use a while loop instead.

6. Save the JavaScript file again and view the HTML page in the browser. It should appear the
same as before.

Try This Summary

In this project, you used your new skills to build two different HTML pages using two
different types of loops. The first page used a for loop, and the second page used a while loop.
Since both loops perform the same task, the page appeared the same both times when viewed
in a browser.

Chapter 6 Self Test

1. A conditional statement is a statement that you can use to execute a bit of code based on a
, or do something else if that is not met.

2. You can think of a conditional statement as being a little like and

3. Rather than executing every single line of code within the script, a conditional statement
allows certain sections of the script to be executed only when a particular condition is met.

A True
B False



144

JavaScript: A Beginner’s Guide

10.

11.

. Which of the following would be valid as the first line of an if/else statement?

A if (x=2)
B if (y<7)
C else

D if (x==2 &&)

. What do you use to enclose the blocks of code in conditionals and loops?

A Parentheses
B Square brackets
C Curly brackets

D Less-than and greater-than characters

. The statement allows you to take a single variable value and execute

a different line of code based on the value of the variable.

A is a block of code that allows you to repeat a section of code a certain

number of times.

. Aloop is useful because it forces you to type lines of code repeatedly.

A True
B False

. Which of these would be valid as the first line of a for loop?

A for (x=1;x<6;x+=1)
B for (x==1;x<6;x+=1)
C for (x=1;x=6;x+=1)
D for (x+=1;x<6;x=1)

A loop looks at a comparison and repeats until the comparison is no
longer true.

Which of these would not be valid as the first line of a while loop?
A while (x<=7)
B while (x=7)
C while (x<7)
D while (x!=7)



Chapter 6:  Conditional Statements and Loops

12. A do while loop is special because the code within the loop is performed at least once, even
if the comparison used would return false the first time.

A True
B False
13. The first line of a do while block contains the keyword do and a comparison.
A True
B False
14. The last line of a do while block contains only a curly bracket.
A True
B False
15. How many times can you nest a code block within another?
A None
B Once
C Three times, but no more
D

As many times as you like (though enough nesting could run the browser out of
memory)

145



This page intentional ly left blank



Chapter 7

Event Handlers

147



148

JavaScript: A Beginner’s Guide

Key Skills & Concepts

Understanding Event Handler Locations and Uses
Learning the Event Handlers
Creating Scripts Using Event Handlers

Other Ways to Register Events

When creating scripts, you will often find that there are user “events” (such as a user moving
a mouse over a certain element or clicking a particular element) to which you want your
script to react. The way you do this is through the use of event handlers.

To learn how the event handlers work, you need to learn what they are and why they are
useful to you. You will then learn where event handlers are placed in a document and how to
use them. Finally, you will see the various events in JavaScript and the event handlers that take
care of each event. To get started, this chapter presents a general overview of event handlers.

What Is an Event Handler?

An event handler is a predefined JavaScript property of an object (in most cases an element in
the document) that is used to handle an event on a Web page.

You may ask the question “What is an event?” An event is something that happens when
the viewer of the page performs some sort of action, such as clicking a mouse button, clicking
a button on the page, changing the contents of a form element, or moving the mouse over a
link on the page. Events can also occur simply by the page loading or other similar actions.

When events occur, you are able to use JavaScript event handlers to identify them and
then perform a specific task or set of tasks. JavaScript enables you to react to an action by the
viewer and to make scripts that are interactive, and more useful to you and to the viewer.

Why Event Handlers Are Useful

Event handlers are useful because they enable you to gain access to the events that may occur
on the page. For instance, if you wanted to send an alert to the viewer when he or she moves
the mouse over a link, you could use the event handler to invoke the JavaScript alert you have
coded to react to the event. You are now making things happen based on the actions of the
viewer, which enables you to make more-interactive Web pages.

Creating this interactivity is where many people find that JavaScript starts to become a
little more fun to code and to use. With event handlers, you can create some surprises for the
viewer or make some scripts that will simply add more functionality to the page. JavaScript
can make a number of things happen on a Web page that will make the page more interesting
than a static HTML document.



Chapter 7:  Event Handlers

Understanding Event Handler Locations and Uses

To see how event handlers work, you need to know where you can place them in a document
and how to use them to add JavaScript code for an event.

Event handlers can be used in a number of locations. They can be used directly within
HTML elements by adding special attributes to those elements. They can also be used within
the <script> and </script> tags or in an external JavaScript file.

To understand better where event handlers are located, you need to learn how to add event
handlers to your script.

Using an Event Handler in an HTML Element

To use an event handler directly in an HTML element, you need to know the keyword for the
event handler and where to place the event handler within the HTML code. To give you an
example, I will introduce the onclick event handler, which is used to make something happen
when the viewer clicks a specific area of the document.

One element that can be clicked is a form button. So, suppose you want to alert the viewer
to something when the user clicks a form button. You would write something similar to the
following code:

<input type="button" value="Click Me!" onclick="JavaScript code here" />

To use an event handler, you add it as an additional attribute to an HTML tag. The only
difference between an event handler “attribute” and an HTML attribute is that you can add
JavaScript code inside an event handler attribute rather than just an attribute value. In the
previous code, you would replace the JavaScript code here text with some actual JavaScript code.

So, to make an alert pop up when the user clicks the button, you can add the necessary
JavaScript code right inside your onclick attribute, as shown in the following example:

The opening form tag is used

<body>

<form>

<input type="button" value="Click Me!" onclick="window.alert ('Hi!"');" />
</form>

</body> Notice how the onclick event handler

works much like an HTML attribute
The closing form tag ends the form

When the viewer clicks this plain button, an alert will pop up with a greeting. Notice
that the rules on the quote marks apply here. Using the onclick event handler as an attribute
requires you to use double quotes around all of your JavaScript code, so when you need quote
marks for the alert, you use single quotes in order to avoid possible errors.

Also notice that the alert command ends with a semicolon. This enables you to add
additional JavaScript code after the alert, which enables you to perform multiple actions on
the click event rather than just a single JavaScript statement.

149



150

JavaScript: A Beginner’s Guide

You could code in two alerts if you wanted to do so. All you have to do is remember to
include the semicolons to separate the alert commands. This will be a little different because
all of the code will be on one line rather than separate lines, as you normally see:

<body> Notice how the semicolons separate

<form> the JavaScript statements

<input type="button" wvalue="Click Me!" <__J
onclick="window.alert ('Hi!"') ;window.alert ('Bye!"');" />

</form>

</body>

This example is able to perform two JavaScript statements on the same event by using
semicolons to separate them. When using event handlers, you can execute multiple commands
this way. It is important, however, to keep everything between the event handler keyword (in
this case, onclick) and the ending set of quotes (in this case, after the last semicolon in the
code) on one line in your text editor; otherwise, a line break in the code could cause it not to
run properly or to give a JavaScript error.

If the code you want to use becomes really long, you may wish to put the code in a function
instead. The event handler can be used for any JavaScript code, so you can use it to call a
function you have defined elsewhere. For example, you could place your two alerts within
a function inside an external JavaScript file, and call the function from an event handler in the
HTML code. First, code the external JavaScript file (here it will be saved as js_event_01.js)
as follows:

function hi_and bye () {
window.alert ('Hi!");
window.alert ('Bye!"');

}

Next, add the script tags and the event handler to your HTML code:

Notice how the function is called using the event handler

<body>

<form> -
<input type="button" wvalue="Click Me!" onclick="hi_and_bye();" />
</form>

<script type="text/javascript" src="js_event_01l.js"></script>

</body>

Notice how the function is called using the event handler just like a normal function call
within a script. This enables you not only to shorten the code within the event handler, but also
to reuse the function on another button click or event later in the page instead of writing the
two alerts out again. The use of a function can help you quite a bit, especially when the code
you want to use becomes extremely long.



Chapter 7 Event Handlers 151

Using an Event Handler in the Script Code

You can also use an event handler within the script code (whether using the script tags in
the HTML document or using an external JavaScript file). One way to do this is to give the
element an id attribute and then use the JavaScript method document.getElementByld() to
access the element. Once that is done, you can tie an event to the element.

Add the id Attribute

To use the previous script in this way, you will first add an id attribute to the HTML tag for the
input button, as shown here:

<body>

<form>

<input type="button" value="Click Me!" id="say_hi" />

</form>

<script type="text/javascript" src="js_event_01l.js"></script>
</body>

Notice that the button input element was given an id of say_hi. You will use this to access the
button and tie it to an event in your script.

Access the Element

The document.getElementByld() method allows you to access any element in the HTML
document that has an id attribute using the value of its id attribute. In order to access the button
input element you have been using with an id of say_hi, you could use the following code:

document.getElementById("say_hi");

This simply tells the browser you want to access the element with the id of say_hi in the HTML
document. This method could be used directly in the script to access the element, but oftentimes
you will want to assign this expression to a variable to save typing if you use it repeatedly. Thus,
you could use the following code:

var hi_button = document.getElementById("say_hi");

Now, grab the rest of the code from the JavaScript file (js_event_01.js) and add the new line of
script to it, as shown here:

fun(.:tlon hl_andTbye '( B The button input element is
window.alert ('Hi!'); The function and accessed via its id (say_hi) and
window.alert ('Bye!"'); its statements assigned to a variable (hi_button)

}
var hi_button = document.getElementById("say_hi");
hi_button.onclick = hi_and_bye;

The onclick event handler is used to dssigg the function
(hi_and_bye) to the onclick event for the button input element

There is now also an additional line of code. The last line of code takes the variable
used for the input button element and gives it the onclick event handler by adding it after



152  JavaScript: A Beginner's Guide

the variable name and a dot (.). The function hi_and_bye (which displays the two alerts) is
assigned to handle the click event on the input button. Thus, when the button is clicked, the
viewer will see the two alerts!

NOTE

Some of these statements (such as the use of dots (.) in the code and the document.
getElementByld() method) will be explained in more detail in Chapter 8 and Chapter 9.

To help make more sense of this, the last two lines could also be written in the following
manner:

document .getElementById("say_hi") .onclick = hi_and_bye;

Both achieve the same result, but the first method is helpful when you need to deal with the
same element more than once in the code (perhaps to add other events such as onmouseover,
onmouseout, or others).

You will also notice that when the function is assigned to handle the event, the parentheses are
not used after the function name. This is because you want to assign the execution of the function
to the event rather than the result of the function (which is what you did when you used the return
statement to assign the result of a function to variables in previous chapters—this particular
function would not return anything). Rather than just assigning a value, you want the function to
be executed, so the whole function is assigned to the event by using just the function name.

Ask the Expert

Q: 1s there a JavaScript event for everything a viewer could do on a Web page?

A: No, but many of the actions a viewer may take are covered by one of the events in JavaScript.
It would be difficult to cover every possibility.

Q: You mean I can just write some JavaScript by using an event handler like an HTML
attribute?

A: Yes, but keep in mind that giving an element an id attribute and responding to the event in
the JavaScript code will help keep your HTML code cleaner.

Q: If I add the event as an HTML attribute, how do I decide when to use a function and
when to just add the code directly into the event handler?

A: 1t your JavaScript code is short and you won’t be repeating it multiple times with other tags
and/or events, then you’ll probably want to add the code straight into the event handler as an
attribute. If your code is really long or you will be repeating it numerous times, you’ll probably
want to use a function instead to make things easier to read and to make the code reusable.



Chapter 7 Event Handlers 153

This method of handling events allows you to place all of your JavaScript code outside
of your HTML elements, which keeps your HTML code cleaner and (especially if an external
JavaScript file is used) more likely to validate. Later in this chapter, you will see that newer
methods with particular differences are also available to handle events (but may not work
cross-browser). For now, you will use the method described in this section when reacting to
events within the script code.

LYALERAE Create a Button

{pr7 1.html i In this project, you create a button that will send the viewer three alerts when it is
prj;7 1.3s clicked. This project will help you to master calling a function to handle an event in
STt the JavaSCript Code_

Step by Step

1. Create an HTML page and save it as pr7_1.html. Add the necessary script tags to point to
an external JavaScript file named prjs7_1.js.

2. Create an external JavaScript file and save it as prjs7_1.js. Use this for step 3 and step 5.

3. Write a function named send_alerts() that will send three alerts to the viewer. The following
are the three alerts:

Alert 1: Hi there, and welcome to my page!
Alert 2: Please sign the guest book before you leave!
Alert 3: Are these alerts annoying you yet? Ha, Ha!

4. In the HTML document, create a button with an id of get_alerts. Add a value="Click Me”
attribute to the button tag so that it has text.

5. In the JavaScript file, write the code so that the send_alerts function will execute when a
click event occurs on the input button element.

6. Save the HTML and JavaScript files, and load the HTML page in your browser. You should
have a button that says “Click Me” on it. Click the button, and you should get the three
alerts—one after another.

Try This Summary
In this project, you used your new skills with the onclick event handler to create a script that
reacts to the viewer. When the viewer clicks a button, the script uses that event to send three
alerts to the viewer.



JavaScript: A Beginner’s Guide

Learning the Event Handlers
Now that you know what event handlers are and how to use them, you need to see which event
handlers are used for various events on a page. Begin by looking at Table 7-1, which lists the
most common events, their event handlers, and samples of what actions might trigger each event.

Event Event Handler Event Trigger

Abort onabort An image is stopped from loading before loading has completed

Blur onblur Viewer removes focus from an element

Change onchange Viewer changes the contents of a form element

Click onclick Viewer clicks an element

ContextMenu oncontextmenu Viewer opens the context menu

Copy oncopy Viewer uses the copy command on part of a page

Cut oncut Viewer uses the cut command on part of a page

Dblclick ondblclick Viewer double-clicks the mouse

Error onerror Viewer’s browser gets a JavaScript error or an image that
does not exist

Focus onfocus Viewer gives focus to an element

Keydown onkeydown Viewer presses down a key on the keyboard

Keypress onkeypress Viewer presses a key on the keyboard, and releases or holds
the key down

Keyup onkeyup Viewer releases a key on the keyboard

Load onload Web page finishes loading

Mousedown onmousedown Viewer presses the mouse button

Mousemove onmousemove Viewer moves the mouse (moves the cursor)

Mouseout onmouseout Viewer moves the mouse away from an element

Mouseover onmouseover Viewer moves the mouse over an element

Mouseup onmouseup Viewer releases the mouse button

Paste onpaste Viewer uses the paste command on part of the page

Reset onreset Viewer resets a form on the page

Resize onresize A window is resized

Scroll onscroll Viewer scrolls an area which is scrollable

Select onselect User makes a selection

Submit onsubmit Viewer submits a form on the page

Unload onunload Viewer leaves the current page

Table 7-1

The Events and Event Handlers



Chapter 7 Event Handlers 155

NOTE

Some of these events, such as the copy event, will only work with certain browsers
(which may need to be running in their latest versions). There are also events that
work only in Internet Explorer (see http://msdn.microsoft.com/en-us/library/
ms533051(VS.85).aspx) or that are not necessarily cross-browser as of yet

(see www.w3.0rg/TR/DOM:-Level-3-Events/events. html#Events-EventTypes-complete).

Now that you have a general idea about event handlers, you will take a look at some of the
most often used ones in detail to see how they work.

The Abort Event (onabort)

The abort event occurs when a viewer stops (aborts) the loading of an image. The event
handler used for this is onabort. For example, if you wanted to display a message when the
viewer stopped an image from loading, you could use the following code:

<img src="myimage.jpg" alt="my picture"
onabort="window.alert ('Why don\'t you want to see my picture?');" />

This will ask the viewer why your picture wasn’t loaded. It probably would not convince the user
to load the image anyway, but it lets the user know that you intended for that image to be loaded.

The Blur Event (onblur)

The blur event is the opposite of the focus event, and it occurs when the viewer takes the focus
away from a form element or a window. To take the focus off something, the viewer usually
gives focus to something else. For instance, the viewer could move from one form element to
another, or from one window to another.

The onblur event handler is used to handle this event, and it can be used in such places as
a form element’s tag or in the opening body tag (for windows). The onblur event handler also
has a related method called blur(), which will be covered in Chapter 10 and Chapter 14.

NOTE

The blur event is triggered only when the viewer gives focus to another area, which is
the only way the browser will know the viewer released the focus from the first area. For
example, when the viewer presses the ENTer key in an input field, the focus goes from the
input field to the document window.

To see the blur event in action, you can also use a text box. The following example uses
two text boxes: clicking the first text box gives it focus, and clicking the second text box
invokes the blur event in the first text box.

<form> The onblur event in a text box
Give this box focus:<br /> J
<input type="text" onblur="window.alert ('Hey! Come back!');" /><br />
then give this box focus to blur the first one:<br />

<input type="text" /> =« C|ickinﬁ this text box after giving the focus to the first
</form> one will trigger the blur event on the first text box


www.w3.org/TR/DOM-Level-3-Events/events.html#Events-EventTypes-complete
http://msdn.microsoft.com/en-us/library/ms533051(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms533051(VS.85).aspx

156

JavaScript: A Beginner’s Guide

3 Example - Mozilla Firefox
File Edit Yiew History Bookmarks Tooks Help

o c= @ X gar [0 [Wesgiesgzz_phofriguresich7tigt el vz -] [[Q=]cooe a
U Most Visited @ Getting Starked (3| Latest Headines
&) Disable~ S Cookos= |1 €55+ £ Forms= B Imoges= (8 Intormation= (3 Miscellanoous= o/ Outing= [ J Resize= 4 Toals= £ Viow Source= ' Options= v 2 8

Give this boux focus:

then give thiz box focus to blur the first one:

[JavaScript Application]

I Hey! Coime Liack!

L]

Dene M | | B |(Pimeatasensarion| ~

Figure 7-1 This alert pops up when the viewer takes the focus off a text box

When viewers click the second text box, they get the alert from the first one telling them to
come back.

Figure 7-1 shows the result of the preceding code when run in the browser. Notice that the
focus is in the second text box when the alert pops up. By clicking the second text box, the
viewer invoked the blur event in the first text box.

The Change Event (onchange)
The change event occurs when a viewer changes something within a form element. For
instance, the viewer might change the text in a text box or make a selection from a select box.
You handle this event with the onchange event handler.

You can see how this works by setting up a select box. You can give the viewer some
choices within the select box. If the user changes the default option by choosing a new one,
you send an alert to ask why it was changed, as shown in the following example:

<form>

Are you cool?<br />

<select onchange="window.alert ('Why did you change that?');">

<option selected="selected">Yes</option>

<option>No</option> Making a new selection from the list will
<option>Undecided</option> invoke the onchange event handler here
</select>

</form>



Chapter 7:  Event Handlers

If the viewer tries to change the default answer of Yes, an alert pops up and gives the viewer a
message. If the select box is left alone or the viewer chooses the default option, nothing will
happen.

The Click Event (onclick)

The click event occurs when a viewer clicks on an element in a Web page. Often, these are
form elements and links. In modern browsers, the click event also works for more general
areas, such as within a table cell or within a set of <div> and </div> tags. This chapter
concentrates on the form elements and links, as they are commonly used.

The easiest way to see the click event in action is to use a form button. When the button
is clicked, you want an event to occur. To make this happen, you can place the onclick event
handler inside the button input tag, as shown in the following example:

<body>
<form>
<input type="button" value="Do not Click Here" Eheocrlnd!ckevznr
onclick="window.alert('I told you not to click me!');"> andler Is use
on a button
</form>
</body>

This will send the viewer an alert once the button has been clicked. Figure 7-2 shows the result
of this code when the viewer clicks the button.

3} Examphe - Muzilla Firefox
Fle Edt Mew Hgtory Bookmarks Tock Help

o o € X tar (1| euifiesizz_shpifguresichyffiguz.benl v -] [[Clz] cocg= 2]
151 Most Visited 8 Gotting Starbed 3] Latest Headines
© Lisabler [ Cookiess (3 Cos E7] rorme+ M) imagss+ (@ Informations () Mecallanecuss /' Outine® § I Hesizew 47 Tools [5) view Sourcer [ Uptions® v & 8

I'-\ 1 told you not ko chak ma!

Dene M | | B |(Pimeatasemarar| ~

Figure 7-2  This alert pops up when the viewer clicks the button

157



158

JavaScript: A Beginner’s Guide

To use this event handler to do the same thing with a link, you might be tempted to do
something similar to the following:

Oh no! This will give you problems because the browser will try to follow the link

<body>

<a href="http://none" onclick="window.alert('Hey! You clicked me!');">
Don't Click Me</a>

</body>

The problem with this code is that the alert will work, but the browser will try to continue the
original action of the link tag and attempt to go to http://none. This would probably cause a
“Server not found” error in the browser.

One way you can avoid a “Server not found” error is to link to an actual page (which is
good for accessibility); however, it may take a viewer with JavaScript on away from the current
page. To keep the link from being followed (if JavaScript is on), you need to add an extra
statement to the JavaScript in the click event. You need to tell the browser not to continue after
you have shown the viewer your alert. To do this, you will add a return statement.

Recall from Chapter 4 on functions that you used a return statement to return a needed
value to a script. Here, you are going to do essentially the same thing. You are going to return
the Boolean value of false, which tells the browser that the event has been handled and no
further action is required for the event. This will keep the browser from following the link after
the alert has been shown. The following code shows how to add in the return statement:

<body>
<a href="http://none"
onclick="window.alert('Hey! You clicked me!'); return false;">
Don't Click Me</a>
</body> The return false statement keeps the

browser from trying to follow the link

With this code in place, the click event will be taken care of by the onclick event handler,
and the browser will not need to worry about attempting to follow the link in the hypertext
reference (href) attribute.

NOTE

You can also code JavaScript for a link by using the javascript: command—for example,
<a href="javascript:window.alert{'Hi’);">Click</a>—Dbut this method is not recommended
for accessibility reasons (if JavaScript is off the link doesn’t go anywhere).

The Focus Event (onfocus)

The focus event occurs when the viewer gives focus to an element on a Web page. A viewer
gives focus to something by clicking somewhere within the item, by using the keyboard to move
to the item (often via the TaB key), or via a script. For instance, a viewer who clicks a text input
box (before entering anything) gives that text box the focus. Also, clicking an inactive window
and making it the active window gives the window the focus.



Chapter 7:  Event Handlers

The event handler used with this event is onfocus, and it can be used in places such as a
form element or in the opening body tag on a Web page (for focus on a window). The onfocus
event handler also has a related method called focus(), which is covered in Chapter 10 and
Chapter 14.

To see the focus event in action, you can create a text input box, which is one of the form
elements that will enable you to give the element focus. The following example shows how to
do this, as well as how to code a reminder alert to pop up when the viewer gives focus to the

text box:

<form> The onfocus event in a text box
Enter Your Name:

<input type="text" onfocus="window.alert('Don\'t forget to capitalize!');" />
</form>

This code will give the viewer an alert before he or she can begin typing. The alert serves as
a reminder to capitalize the name. Figure 7-3 shows the result of the preceding code in the
browser when the viewer gives focus to the text box.

Later chapters will examine better uses for the focus event, but this gives you an idea of
how it works.

The Keydown Event (onkeydown)

The keydown event occurs when the viewer presses down a key on the keyboard. To handle
this event, you use onkeydown. You can place this event handler in almost any HTML tag on
a Web page.

¥ Examphe - Muzilla Fireflux
Ble Edt View Hgory Bockmarks Took Help

o ox @ 3 tar () [ euiEstse shpihiquresichaitigns.temi v7 | [[Cl] Gooze 3l
11 Most Visited P Gotting Starbed 3] Latest Headines

& visabler [ Coakest (] Cube ] tormsr M) imagss+ () Information= (0 Mescallansouss ' Qutine® | & Resizer 7 Tooler ) view Sourcer . Uptians® v O 8
Enter Your Mame:

[JavaScript Application]

_L‘. Don't Forget to capitalze!

Dore M | | ) |(Pmentessmnania| ~

Figure 7-3  This alert pops up when the text box receives focus from the viewer

159



160

JavaScript: A Beginner’s Guide

The Keypress Event (onkeypress)

The keypress event occurs when a viewer presses down a key on the keyboard and the
corresponding character is typed. This occurs between the kedown and the keyup events. To
take care of this event, you use the onkeypress event handler, which can be placed in almost
any HTML tag on a Web page.

The Keyup Event (onkeyup)

The keyup event occurs when the viewer lets go of a key on the keyboard, releasing the key.
The event handler for this is onkeyup, and it can be placed in almost any HTML tag on

a Web page.

NOTE

For more information on the keydown, keypress, and keyup events, go to
www.quirksmode.org/js/keys.html. This will give you a better idea of how the events
work in different browsers and the type of coding you will need to use to work with
keystrokes cross-browser. Since these are supported somewhat inconsistently from
browser to browser, they will not be covered in detail in this book at this time.

The Load Event (onload)

The load event occurs when a Web page finishes loading. To handle this event, you use the
onload event handler.

Keep in mind the load event occurs at a slightly different time than the alert scripts you
placed in your pages in earlier chapters. Those started your tasks before the remainder of the
page began loading. With the load event, however, your tasks will be executed as soon as the
page finishes the loading process.

If you want an alert to be shown when the page has finished loading, you could use the
following code:

Notice that the onload event handler is added in the body tag

<body onload="window.alert ('I\'m done loading now!"') ;"> 4—,
Text for the body of the page...
</body>

When the page has finished loading, viewers will get an alert that tells them it is finished.
It will be hard to distinguish the timing of the load event from the preceding code from the
timing of the instant alerts in earlier scripts because the page will load very quickly, since it is
all text. Figure 7-4 shows how the preceding code example would appear in the browser.

If you want to use the onload event handler in the script code rather than in the body tag,
you could write this code into an external JavaScript file (save it as load_alert.js):

window.onload = function() {
window.alert ('I\'m done loading now!"') ;

Y


www.quirksmode.org/js/keys.html

Chapter 7 Event Handlers 161

J Example - Mozilla Firefox =1E3
File Edt Yiew Hstory Bockmarks Tooks  Help 5
e o= € X dar (1) [HeidiEsfzz phomiguresich7tigot.heml % - [IG] coose yo
I8 Most visited P Gotting Started 5| Latest Headines
& Disable= & Coolics= |_J €55+ (] Forms= B Imoges= () Intormation= (1 Miscellaneous= o/ Outine= | § Resizes 4% Tools= £ View Source= - Options= v 5 86
Teut for the body of the page. ..

| Javaseript Application]
core wwwwwns] M | B [t -~

Figure 7-4 This is displayed in the browser window after the page has finished loading

This will capture the load event for the current window (the window object will be explained
in more detail in Chapter 10). Notice the use of the anonymous function here to combine the
steps of creating a function and assigning it to the event (for further information on functions,
refer to Chapter 4). You can now point the Web page to the JavaScript file without the need to
alter the body tag in the HTML code, as shown here:

<body>
<script type="text/javascript" src="load_alert.js"></script>

Text for the body of the page...
</body>

In order to see the difference in timing between an alert executed immediately and one
executed in the onload event handler, you may want to add some images to the body of the
page and then put the page and images on the Web. This way, the page will take some time
to load, and you will see that the alert pops up when the page has finished loading instead of
showing up instantly.

The Mousedown Event (onmousedown)

The mousedown event occurs when a viewer presses the mouse button down but before the
click is complete (doesn’t need to be released). To handle this event, you use the onmousedown
event handler, which can be placed within almost any HTML tag on a Web page.

The Mousemove Event (onmousemove)
The mousemove event occurs when the viewer moves the mouse cursor. The event handler for
this is onmousemove, and it can be placed within almost any HTML tag on a Web page.



162

JavaScript: A Beginner’s Guide

The Mouseover Event (onmouseover)

The mouseover event occurs when a viewer moves the mouse cursor over an element on the
page such as a text link, linked image, or linked portion of an image map. The mouseover
event will also work in numerous other areas such as table cells and <div> and </div> tags.
The mouseover event is handled with the onmouseover event handler.

The quickest way to use an onmouseover event handler is to set up a text link. When you
add the onmouseover event handler to the link, you have the option to perform JavaScript
commands when the viewer passes the cursor over the link. Thus, if you want an alert to pop
up when the viewer moves the mouse over a link, you could code something like the following:

The onmouseover event handler in a link tag

<a href="http://www.pageresource.com"
onmouseover="window.alert ('I told you not to try to click me!"');">

Don't Try Clicking Me!</a>

This time the visitor doesn’t even get to click the link before being greeted with an alert. Keep
in mind that a script like this could annoy your visitors if it is overused. Figure 7-5 shows the
result of this script in a browser. The alert pops up as soon as the mouse cursor moves over
the link.

Since there is no need to click the link for something to happen, the browser won’t try to
follow the link afterward. In fact, with this script in place, it is quite difficult to click the link at
all because the alert keeps popping up when you move your mouse over to click it!

7 Example - Mozilla Firefox
Bl Edit Miew Higtory Bockmarks  Tooks  Help

o o= € X tar (1) |tesiifEsgza_phofiguresichitigs. henl 2 -] Gl Geoge a
181 Most Visited B Gotting Starbed (5| Latest Headines
@ Disable= ) Coakics= (] €55~ [ Forms= (] Images= (@ Information= () Miscollancous= o/ Outine=  § Resize= * Tools= £) Viow Source= ' Options= v 2 8

Don't Try Clickins Me|

[JavaScript Application]

J\_ 1 told you not ko try to dick mel

hittpe: ffuasve. pageresource._com M | |n |M| ¥

Figure 7-5 This alert pops up when the mouse cursor moves over the link



Chapter 7:  Event Handlers

The mouseover event will become much more useful to you in later chapters when you
learn more things about what you can do with the various parts of a page.

The Mouseout Event (onmouseout)

The mouseout event occurs when a viewer moves the mouse cursor away from an area on the
page such as a link, linked image, or linked area of an image map. As with the mouseover
event, most browsers will support the mouseout event in numerous areas. You take care of a
mouseout event by using the onmouseout event handler.

Again, you can see the mouseout event most easily by setting up a link and adding the
onmouseout event handler to the link. This time, you can make an alert pop up once the user
moves the mouse away from the link after passing over it (assuming it has not been clicked).
To do this, you could use the following code:

The onmouseout event handler in a link tag

<a href="http://www.pageresource.com"
onmouseout="window.alert ('What, you didn\'t like my 1link?');">

Click Me'!</a>

This time the alert pops up when the viewer moves the mouse off the link and asks the viewer
a question. Notice also the escaped quote mark (\") used in the word didn’t, which keeps you
from getting a string error. Figure 7-6 shows this script in action.

The mouseout event will become more useful for you as you progress, especially when
used in tandem with the mouseover event.

J Examphe - Muzilla Firefux
Fle Edit Yiew Hgtory Bookmarks Took Help

o om € 3 dar (U0 | esifresiz_pheifguresichiifigs.benl v +| [IGl]cooge A
] Most Visited 8 Gotting Starked (3] Latest Headines
S visabler [ Cokest ] Cube B rormsr M) imagss+ () Information~ (0 Mescallansouss ' Qutine® | & Resizer 7 Tooler ) view Sourcer | Optians® v 8 6

Click Mel

[JavaScript Application]

Done M | | B |(Pimenmessmnanr| ~

Figure 7-6 This alert pops up when the mouse is moved off the link

163



164

JavaScript: A Beginner’s Guide

The Mouseup Event (onmouseup)

The mouseup event occurs when the viewer releases the mouse button after pressing it down.
The onmouseup event handler is used for this event, and it can be placed within almost any
HTML tag on a Web page.

The Reset Event (onreset)

The reset event occurs when a viewer uses a form reset button to reset the form fields in a
form. To take care of this event, you use the onreset event handler, which can be added to the
opening form tag in a form. The onreset event handler also has a related method called reset(),
which is covered in Chapter 14.

The Submit Event (onsubmit)

The submit event only occurs when the viewer submits a form on a Web page. This event uses
the onsubmit event handler, which can be called from an opening form tag in a document. The
onsubmit event handler also has a related method called submit(), which will be covered in
Chapter 14.

To see the submit event at work, you have to create a form that can be submitted with a
submit button. You will then add the onsubmit event handler to the opening form tag. The
following code will give a “Thank You™ alert to the viewer once the submit button is clicked:

onsubmit used in the

<form onsubmit="window.alert ('Thank You');">e¢— — —— ing
opening form tag

What's your name?<br />

<input type="text" id="thename" /><br />

<input type="submit" value="Submit Form"> ¢— ——
</form>

The submit button triggers the
submit event when it is clicked

The submit event doesn’t do you much good now (especially with the contents of the form
not really going anywhere), but this event will become more useful when you get to form
validation in Chapter 14.

The Unload Event (onunload)

The unload event occurs when a viewer leaves the current Web page. The viewer could leave
by clicking a link, typing another address in the browser, or closing the window. The event
handler used for the unload event is onunload.

This event is known to annoy viewers, because it enables the site owner to do something
while visitors are trying to move on to another page or another Web site (forcing them to wait).
To have an alert pop up when the user leaves the page, you could write the following code:

The onunload event handler is added to the body tag

<body onunload="window.alert('Be sure to come back, OK?');">
Other HTML code goes here...
</body>



Chapter 7 Event Handlers 165

3 Examphe - Muzilla Fireflux
Fle Edt \ew Hgtory Bookmarks Tock Help

o- = C X v (13 ]heous o.comf v - | [ICl]cacge P

145 Mast Visitod  Getting Started |51 | Latest Headings
© wisabler 5 Cokes+ | J Csbe B tormer M) imagss+ (@) Information= (0 Mescallansouss o Qutine® | § Resizer ¥ Tooler ) view Sourcer  Uptians® v & &

Cither HTML code goes here.

[JavaScript Application]

I_ Be cure bo come back, OKF

M | | B |(Pmcnteestosnc| ~ |

Figure 7-7 This alert pops up when the viewer tries to leave the page

Figure 7-7 shows the result of the preceding script. As viewers try to leave the page that
contains this script, an alert pops up telling them to be sure to come back. Of course, this could
cause a viewer to become quite inconvenienced if it is used on an index page or on a number

of pages within a Web site.
As with the onload event handler, you can use the onunload event handler in the script

code rather than as an attribute of the body tag by using window.onunload.
Overall, be sure to think twice before using the unload event on a live page. There can be

good uses for it, but be careful because it does annoy most Web users.

Use Events to Send Out Alerts

"""""""""""""""""" i This project enables you to practice using a few of the event handlers you have
learned so far in this chapter. You will be creating a page with various links and
form elements that will use events to send out alerts.

Step by Step
1. Create an HTML page and save it as pr7_2.html.

2. Add a link to the page that links to the URL http://www.yahoo.com. Add an event handler
to the link tag so that when the viewer moves the mouse cursor over the link, an alert pops
up that says, “Sorry, I'm not in the mood for you to leave yet!”

3. Add a <br /> tag after the link.
(continued)


http://www.yahoo.com

166  JavaScript: A Beginner's Guide

4. Add the <form> and </form> tags to the page below the <br /> tag, and then add the form
elements in the following steps between these tags.

5. Add a text box that asks the viewer for a phone number. Set it up so that when the viewer
gives the text box focus, an alert pops up that says, “Format is xxx-xxxx.”

6. Add a second text box that asks for the viewer’s name. Set it up so that when a blur event
occurs, an alert pops up that says, “Thanks, if that is your real name!”

7. Add a third text box that asks for the viewer’s e-mail address. Don’t set it to react to any
events.

8. Add a submit button that says, “Click Here to Submit.” Set it up so that when the viewer
clicks it, an alert pops up that says, “Hey! I'm just a button. Leave me alone!”

9. Save the file, and open it in your browser.
10. Move your mouse over the first link. You should get the first alert.
11. Click inside the text box that asks for a phone number. You should get an alert.
12. Click the text box that asks for your name, and type in a name if you’d like.

13. Click the text box that asks for an e-mail address. You should get an alert about your name
since you gave focus to this new text box, taking it away from the previous one. Note that if
you have not clicked the text box for the name, you won’t be removing focus from it; so be
sure to give the name box focus, and then give this box focus right afterward.

14. Click the submit button so that it gives you an alert letting you know it doesn’t want any
company.

Try This Summary

In this project, you used your skills with several of the event handlers outlined in this chapter.
You created an HTML page that reacts to a number of possible actions of the viewer, such as a
mouseover, a click, or giving focus to something on the page.

Ask the Expert

Q: Why are there so many events?

A: There are so many things that a viewer (or the browser itself) can do while on a Web page
that you end up with a bunch of events. The events in this chapter are only a small subset of
all the events.



Chapter 7 Event Handlers 167

e

Do I need to memorize all of these events?

A: You probably only need to memorize them if you have a test, are doing this for a job and
need to know things quickly, or if you just like knowing the events off the top of your head;
otherwise, you can just refer to Table 7-1 in this chapter if you are not sure which event
needs to be used.

Q: Will T be using every single event in this book?

A: Since this book is a beginner’s guide, you will not get to the point where you use every
single event.

Creating Scripts Using Event Handlers

Now that you have tackled the long list of event handlers, it’s time to have a little fun. In this
section, you are going to learn two new properties that will do things other than write to the
page and send an alert.

After you have seen all of those examples with alerts, the alert is probably a little stale
now. Thus, you are going to try two new scripts. One will place a message inside a text box
and the other will make a form button into a button that acts like a link. To begin, try placing a
message in a text box.

The Text Box Message
Since you have learned the mouseover and mouseout events, you can use them in addition to
other knowledge you have acquired in this chapter to build a script that will display a message
in a text box when you move your mouse over a link located above the text box (it could be
located anywhere you like, but for this example the link will be placed above the text box).
First, you will need to create an HTML document (save it as textbox_message.html). In
this document, you will set up a link and give its anchor tag an id. Then, you will set up a text
box and give its input tag an id. For example, you could use the following code:

<body>
<a href="message.html" id="msg_link">Get Message</a>
<br /><br />

<form>

<input type="text" id="msg_box" />

</form>

<script type="text/javascript" src="textbox_message.js"></script>
</body>

From this little bit of HTML code, you can use JavaScript to make this simple page go
from static to interactive.



168

JavaScript: A Beginner’s Guide

TIP

For accessibility purposes, it is good to point all hyperlinks to an actual URL with
content (in this case, you might simply have the message text). This allows those without
JavaScript to access the content in the script, while allowing those with JavaScript to
simply use the mouseover event to access the message.

Since the text box is going to display a message when the mouse moves over the link,
you’ll first need to set up some variables in your JavaScript file (save it as testbox_message.js
as referenced in the script tag in the preceding code). You will set up variables for the message
text, the link element, and the text box element, as follows:

var message_text = "Help! I'm in a box!";
var message_link = document.getElementById("msg_link");
var message_box = document.getElementById("msg_box") ;

The message_text variable holds the text for the message you will display on the mouseover
event, the message_link variable grabs the link element by its id (msg_link), and the message_box
variable grabs the text box element by its id (msg_box).

Now that you have this information set up, you can use it along with the onmouseover
event handler to display the message to the viewer in the text box:

var message_text = "Help! I'm in a box!";
var message_link = document.getElementById("msg_link");
var message_box = document.getElementById("msg_box") ;

The onmouseover event handler is
message_link.onmouseover = function() { «—————assigned an anonymous function

message_box.value = message_text;
Y

The value of the text box is changed to display the message text

Most everything should be familiar here. The onmouseover event handler is assigned an
anonymous function that handles the event. The function tells the browser to change the value
of the text box so that it displays the message text. You’ll notice the use of message_box.value.
The value property holds the current value of an element. In the case of a text box, it holds the
value of whatever is currently displayed in the text box (if it is empty, its value would be an
empty string). Using this property, you can change the value to something of your choosing,
as was done here.

If you save the HTML and JavaScript files and load the HTML file in your browser, you
will see the result. Move your mouse over the “Get Message” link and the “Help! I'm in a
box!” message should display in the text box.

Now, if you don’t want that message to remain in the text box indefinitely, you can use
another event to clear the text box of the message. You could use any event of your choice
(on any element of your choice). One solution is to simply clear the message when the viewer



Chapter 7:  Event Handlers

moves the mouse off the link using the onmouseout event handler. Thus, you could now use
the following code in your JavaScript file:

var message_text = "Help! I'm in a box!";
var message_link = document.getElementById("msg_link") ;
var message_box = document.getElementById("msg_box") ;

message_link.onmouseover = function() {
message_box.value = message_text;

Y

message_link.onmouseout = function () {
message_box.value = "";

Y

Notice that in the function for the onmouseout event handler, the message_box.value is changed
to an empty string, which clears the message from the text box.

Save the JavaScript file and then refresh the HTML page in your browser. You should now
be able to move the mouse over the link to receive the message and move your mouse off the
link to have the message disappear. Figures 7-8 and 7-9 show the completed script in action.

The next script will make form buttons act like hyperlinks.

The Button Link

Using JavaScript, you can send the viewer to another URL. To do this, you need to use another
new property: window.location. This property enables you to change the URL address of the
window in which you use it. The following is the general syntax for the command:

window.location="http://someplace.com";

3 Example - Mozilla Firefox

Fic Edt Yiew Hstory Bookmarks Tooks Heb
@ d C' X |: Ig | file: {22 phpitiquresich7itextbos message.html W - [G]- ook )f'.
L8 Most Visited M Getting Started (5] Latest lieadines
@ Disable~ B Cookios= (-1 €55 F7] Forms= M Imoges= (B Information= £ Miscollancous= o/ Outine= § J Resize= 4 Toals= fi] View Source= .- Options= + 2 8

Get Mcssgﬁ

Help! F'm in & boxt

_php/figures| i M | | B |(Plmcntemsemnivinc| ~

Figure 7-8  The script will display the message when the mouse moves over the link

169



170

JavaScript: A Beginner’s Guide

3 Example - Mozilla Firefox

Fic Edit View History Bockmarks Took Help

@ - C X & |.|“I Mﬁfﬂéurcskr‘_?ibc_&thox_mcs:agcmm e

18 Most Visited M Getting Started (5 | Latest Headines

&) Disable= [ Coaldes= ) €55+ ] Forms= 8| Images= () Intormation= (0 Miscellancous= o/ Outine= | & Mesize= % Tools= i) View Source= | Optians= v & 8
Get Message h

T M | | D |ttt ~

Figure 7-9 The message will go away when the mouse moves off the link

You replace the URL http.://someplace.com with the address you wish to use in its place, such
as http://www.yahoo.com or some other Web address.

To get started, you will again need to create an HTML document (save it as button_link.
html). In this page, you will create an input button and give it an id, as shown here:

<form>
<input type="button" value="Go Searching!" id="btnl" />
</form>

Now, to make a button work like a link, all you need to do is use the location property with
the onclick event handler. Create an external JavaScript file (save it as button_link.js) and use
the following code:

The URL to go to is assigned to the web_page1 variable

var web_pagel = "http://www.yahoo.com";

var bl = document.getElementById("btnl"); «—7mM— —— The input butfon element is

assigned to the b1 variable

bl.onclick = function() { =
'Wll’ldOW. location = web_pagel; A function is assigned to the onclick
}i The location of the viewer is event handler for the input button
changed to the new URL

Much like the previous script, this grabs the necessary values and then uses an anonymous
function to execute a JavaScript command. When the viewer clicks the button, the browser
goes to the new Web page.


http://someplace.com
http://www.yahoo.com

Chapter 7 Event Handlers 171

Of course, you can do this for any number of buttons. If you want three buttons to link to
three places, you could use the following HTML and JavaScript code:

<form>

<input type="button" value="Go Searching!" id="btnl" /><br /><br />
<input type="button" value="HTML Help" id="btn2" /><br /><br />
<input type="button" value="JavaScripts" id="btn3" />

</form>

With the extra buttons, add the necessary code and events for each element:

var web_pagel = "http://www.yahoo.com";

var web_page?2 "http://www.pageresource.com";
var web_page3 "http://www.javascriptcity.com";
var bl = document.getElementById("btnl");

var b2 = document.getElementById("btn2");

var b3 = document.getElementById("btn3");

bl.onclick = function() {
window.location = web_pagel;

}i

b2.onclick = function() {
window.location = web_page2;

}i

b3.onclick = function() {
window.location = web_page3;

I

This code creates three buttons that link to three different sites. Of course, if you decide to use
a large number of these, it might be easier to work with arrays. Arrays will be discussed in
Chapter 11.

CAUTION

This type of button link is an accessibility issue (since those without JavaScript will have
the button do nothing). If you need to make accessible pages, you will need to provide
the links with normal anchor tags in addition to having the buttons to ensure they are
available to all users. Some additional scripting can handle this, and you will see how
this can be done in Chapter 16.

Now you can do a few more things and have a little more fun with your examples. The
window.location property will become quite useful to you as you move through the later chapters.

Other Ways to Register Events
There are two other methods for registering events in addition to the method you have used.

As of the time of this writing, neither of these methods works cross-browser (which is a bit
of a drawback since using them requires you to register the same event multiple times, but if



172

JavaScript: A Beginner’s Guide

certain parts of their functionality are needed they can be helpful to achieve the task at hand).
These methods allow you to more easily add multiple functions for handling the same event
and to more easily remove event handling functions that are not needed for a particular script.
For now, you will just get a brief introduction to their use, which may prove helpful if they are
needed or if one of the methods begins to work in all the major browsers.

First, you will look at the model from the World Wide Web Consortium (W3C). Next, you
will look at the model from Microsoft.

The addEventlistener() Method

The addEventListener() method is the one from W3C. It allows you to specify an event, a
function to execute for the event, and a value of true or false depending on how you want the
event handler function to be executed in the capturing (true) or bubbling (false) phase. The
general format looks like this:

element.addEventListener ('event type', function name, true or false);

Thus, if you want to create a linked input button as you did earlier in this chapter, you could
adjust the JavaScript code to look like this:

var web_pagel = "http://www.yahoo.com";

var bl = document.getElementById("btnl");

bl.addEventListener('click', function() { window.location = web_pagel;
}, false);

Notice that rather than using the event handler, this method uses the name of the event (instead
of onclick you simply use click). Also, this method will accept a function name without
parentheses, or allows you to use an anonymous function (as shown above).

The capturing and bubbling matter when you have elements inside other elements that
both have the same event type registered to them. Which event occurs first will depend on
which method is used. If capturing is used, then the outermost element’s event occurs first
and the innermost element’s event will occur last. If bubbling is used, the opposite is the case.
The capturing phase occurs before the bubbling phase, so keep that in mind when using both
phases in a script.

To remove an event, you would use the removeEventListener() method:

element.removeEventListener ('event type', function name, true or false);

The attachEvent() Method

The attachEvent() method works in a similar way to addEventListener(). However, it only
works with event bubbling and does not currently (as of the time of this writing) have a way to
use event capturing. It is used like this:

element.attachEvent (event handler, function name) ;



Chapter 7:  Event Handlers

Thus, if you want to use the same script you have been using, you could write it like this:

var web_pagel = "http://www.yahoo.com";
var bl = document.getElementById("btnl");
bl.attachEvent (onclick, function() { window.location = web_pagel; } );

Notice that this method does use the name of the event handler (onclick). Also, it does not
have the third option; it just uses event bubbling.
To remove an event, you would use the detachEvent() method:

element.detachEvent (event handler, function name) ;

For the time being, you will continue to use in your scripts the method you have used
previously in this book.

Chapter 7 Self Test

1. An event handler is a predefined JavaScript property of an object that is used to handle an
event on a Web page.

A True
B False

2. Event handlers are useful because they enable you to gain to the
that may occur on the page.

3. To use an event handler, you need to know the for the event handler and where
to place the event handler in the HTML code.

4. Which of the following correctly codes an alert on the click event?
A <input type="button” onclick="window.alert(“Hey there!”);">
B <input type=“button” onClick="window.alert(‘Hey there!”);”>
C <input type="button” onclick="window.alert(‘Hey there!”);">
D <input type="button” onChange="“window.alert(“Hey there!”);”>
5. The event occurs when a Web page has finished loading.
6. A mouseover event occurs when:
A The viewer clicks the mouse while the cursor is over a button.
B The viewer moves the mouse cursor away from a link.
C The viewer clicks a link, linked image, or linked area of an image map.

D The viewer moves the mouse cursor over an element on the page.

173



174  JavaScript: A Beginner's Guide

7. A mouseout event occurs when a viewer clicks an element on the page.

A True

B False
8. The event occurs when the viewer leaves the current Web page.
9. The blur event is the opposite of the event.

10. Which of the following correctly calls a function named major_alert() inside the onfocus
event handler?

A <input type="“text” onfocus="major_alert();">
B <input type="text” onfocus="major alert();”">
C <input type="text” onfocus="major_alert(); >
D <input type="text” onFocus=‘major_alert()”>
11. The event occurs when a viewer changes something within a form element.

12. The submit event occurs when the viewer a on a Web page.

13. The keydown event occurs when a viewer presses down a key on the keyboard.
A True
B False
14. The mousedown event uses what keyword as its event handler?
A onmouseout
B onmousepress
C onmousedown
D mousedown

15. The method and the method are two new ways to register events.



Chapter 8

Objects



176

JavaScript: A Beginner’s Guide

Key Skills & Concepts

Defining Objects
Creating Objects

Understanding Predefined JavaScript Objects

Since JavaScript is an object-based language, you need to look at objects to understand what
they are and how you can use them. The predefined objects in JavaScript are very useful;
however, to use them effectively, it is a good idea to learn how objects work in general and
how to create your own objects if you need them.

This chapter begins by defining what objects are and how objects can be useful to you in
your scripts. You will then discover how to create and name your own objects that you can
use in your code. Finally, this chapter introduces the properties and methods of the predefined
navigator and history objects.

Defining Obijects

To begin using JavaScript objects, you need to find out what they are and how they can be useful
to you in your scripts. First take a look at what JavaScript objects are.

What Is an Object?

An object is a way of modeling something real, even though the object is an abstract entity.
When you think of an object, you’ll probably want to visualize something general, such as a car.
When you see a car, you notice that it has certain features, or properties. You might see that the
car has a radio with a CD player, leather seats, and a V-8 engine. All of these things are features
of the car, or, in terms of objects, properties of the car object.

You could break this down further by making the radio have properties, or you could go
the other way and make the car part of a larger object. For instance, you could say the CD
radio has certain features, such as touch volume control, radio station presets, and a digital
interface. If you go the other way, you could say that a car is part of an automobile object,
which could include cars, vans, trucks, and various other motor vehicles as properties.

By doing this, you could create a visualization that could be followed down from the top.
If you have an automobile that is a car, it would have properties of its own such as color, year,
make, and model. It would also be made up of other objects such as tires, a radio, a steering
wheel, and a dashboard, each of which could have properties and objects of its own.

If you follow the car down the path of the radio, you could suppose it has a CD radio with
a digital interface, and you would see a pattern like the following:

Automobile -> Car -> CD Radio -> Digital Interface



Chapter 8:  Objects 177

You could instead have a truck, but leave the other features the same. Then you would have the
following pattern:

Automobile -> Truck -> CD Radio -> Digital Interface

The preceding example works a little bit like a family tree, with the top level starting
everything. Each level after the top level may have brothers and sisters (objects on the same
level). Then the tree can continue expanding. The visualization can get confusing, but you
shouldn’t be confused when you work with the actual JavaScript objects. Many objects go just
one level deep, so you probably won’t need to worry about the “family tree” very much. The
main thing you want to learn is that an object can hold a number of properties inside it that you
can access from the outside to use in your scripts.

Why Objects Are Useful

Objects are useful because they give you another way to organize things within a script. Rather
than having a bunch of similar variables that are out there on their own, you can group them
together under an object.

If you take your car object and create variables to represent the features of the car, you can
begin to see how this type of grouping works. You could create variables with the names seats,
engine, and theradio. You will not create the car object until later in the chapter, so for now
assume that the car object exists and that it has the properties of seats, engine, and theradio.
Since these properties are variables, they can have values. The question is, how do you access
these properties to get their values?

In JavaScript, you access object properties through the use of the dot operator, which is
just a dot or period. For instance, if you wanted the value of the seats property of the car, you
could access it with the following line:

var chtype= car.seats;

Don’t let the assigning of the value of the seats property to a variable (chtype) be confusing.
What you want to see here is the car.seats part of the code. The name of the object is written
first, then the property you want to access is connected to it on the right using the dot operator.

The seats property doesn’t currently have a value (since you haven’t created the car
object). You will see how to give it and other properties values when you begin creating
objects in the next section.

Creating Obijects

Now that you understand what objects are and their usefulness, you can begin creating your
own JavaScript objects. To do this, you will learn about naming conventions, the structure of
an object, and how to include methods in your objects.

Naming

As with variables and functions, there are certain rules you have to follow when naming your
objects in JavaScript. They are essentially the same rules you follow for naming variables and
functions, so I will just discuss them briefly here since you have been through this twice already.



178

JavaScript: A Beginner’s Guide

Case Sensitivity

As with previous naming, object names are case sensitive. Thus, an object named car would be
different from an object named Car, CAR, or caR. In order to access the right object, you have
to be sure to use the proper case when you use it in the script; otherwise, you will receive an
error such as “Car is not an object” when you try to run the script.

Avoiding Reserved Words/Obijects

The other thing to remember when naming your own objects is that you cannot use a JavaScript
reserved word (refer to the table of reserved words in the section “Avoiding Reserved Words” in
Chapter 3); thus, trying to make an object named switch could give you problems because that
word is used for the JavaScript switch statement.

Obiject Structure

There are two ways to create objects in JavaScript: by using a constructor function or by using
an object initializer. First, you will learn how to use constructor functions to create objects.
That is followed by a brief discussion of how to use the object initializers.

Constructor Functions
A constructor function allows you to build an object using the same basic syntax as a regular
function. The only difference is the code you place inside of the function and how you access
its contents.

For example, to create your car object, you would create a constructor function named
car() and then add your properties within the function. The following example shows an
outline of the car() function:

function car() { - The constructor function is defined
Properties go here.

}

The properties will be listed here for the object you are creating

To complete the preceding function, you need to add your properties to the function.
Recall that you want to create an object named car with the properties of seats, engine, and
theradio. The following code shows how this is done:

function car (seats,engine,theradio) {-<—————The function takes in three parameters
this.seats=seats;

this.engine=engine; The parameter values are assigned
to the properties of the object

this.theradio=theradio; |

}

In this code, on the first line, you see that the function takes three parameters, which is the
number of properties you want the car object to have. The next thing you see is that the values
of the parameters are assigned to the properties you want the car object to have; however, there
is a new keyword named this. The keyword this in JavaScript is used to represent the current
object being used, or “this object,” so to speak.



Chapter 8:  Objects

Once you have the object’s properties set with the constructor function, you need to create
what is called an instance of the object in order to use it, because a constructor function creates
only the structure of an object, not a usable instance of an object. To create an instance of an
object, you use another JavaScript keyword: new.

The use of the new keyword to create an instance of your car object is shown in the
following code:

var work car= new car ("cloth","V-6","Tape Deck") ;

The first thing you see is that you are creating a new variable named work_car. This variable
will be a new instance of the car object due to the value you are assigning to it.

You next see that the work_car variable is assigned the result of the car constructor function,
with a twist. In front of the call to the car function is the new keyword, which makes sure you
are creating a new instance of the constructor function object.

Next, you see that the car function is called with values sent as parameters. These are the
values you want to use for this instance of the car object. Given the order, you are saying that
you want the seats to be cloth, the engine to be V-6, and the radio to be Tape Deck.

You can now access the work_car instance of the car object. If you want to know what
type of engine the work_car has, you can access it with the dot operator:

var engine type= work car.engine;

This assigns the value of the engine property of the work_car instance of the car object to the
variable engine_type. Since you sent V-6 as the engine parameter to the constructor function,
the engine_type variable is assigned a value of V-6.

Putting the Pieces Together To help you visualize this process, it’s time to put all these parts
together so that you can see how it works. The following code combines all the code of the
previous examples to make things easier to see:

function car (seats,engine,theradio) {——
this.seats=seats;

this.engine=engine; —— The constructor function
this.theradio=theradio;

1 An instance of the object is
var work_car= new car ("cloth","V-6","Tape Deck") ; «—created, sending parameters
var engine type= work car.engine; to be used as property values

A property of the new instance of the object is assigned to an independent variable

Now you can see the constructor function, the creation of an instance of the car object, and the
assignment of one of the properties of the object to a variable. When the work_car instance

of the car object is set, it gets the values of cloth for the property work_car.seats, V-6 for the
property work_car.engine, and Tape Deck for the property work_car.theradio.

179



180

JavaScript: A Beginner’s Guide

In order to see how an instance of an object works, you need to add another instance of the
car object to your code. The following code uses two instances of the car object, one named
work_car and a new one named fun_car:

function car (seats, engine, theradio) {—
this.seats=seats;

this.engine=engine; I The constructor function
this.theradio=theradio;

}

var work car= new car ("cloth","V-6", "Tape Deck") ; Two object instances
var fun_car= new car("leather","vV-8","CD Player") ;:| are created

var engine type= work car.engine;
var engine type2= fun car.engine;

One property value from each instance of the object gets assigned to two independent variables,
which contain different values because they are from two different object instances

Notice how the new instance of the object uses the same constructor function, but with
different values. You also have a new variable named engine_type2, which is given the value
of the engine property of the fun_car instance of the car object.

By assigning the property values of the different instances of the car object to variables,
you could now write out the features you would like to have in a custom car that combines
features from each type of car. For example, take a look at the following code, which writes
out the features you might like in a custom car:

The part of the script with the constructor function,
instance creations, and variable assignments

function car (seats, engine, theradio) {
this.seats=seats;
this.engine=engine;
this.theradio=theradio;

}

var work car= new car ("cloth","V-6", "Tape Deck") ;

var fun car= new car("leather","v-8","CD Player");

var engine type= work car.engine;

var seat type= fun car.seats;

var radio type= fun car.theradio;

document .write ("I want a car with "+seat type+" seats.<br />");
document .write ("It also needs a "+engine type+" engine.<br />");
document .write ("Oh, and I would like a "+radio type+" also.");

The document.write() commands are used in the
body section so that they display in the browser

Using the variable values that grab what you want from each instance of the car object,
you are able to print to the screen the description of the car you would like to have. Save this



Chapter 8:  Objects

file as objects_01.js and create an HTML file with the following body code and save it as
objects_01.html:

<body>
<script type="text/javascript" src="objects 0l.js"></script>
</body>

Open the objects_01.html file in your Web browser. The results of this script are shown in
Figure 8-1.

You could also achieve the result of the preceding example by creating a new instance of
the car object with your choices and then printing those to the screen. If you create an instance
named custom_car, you could use the following code:

A new instance of the object is created, sending the values
of the properties of other object instances as parameters

function car (seats,engine,theradio) ({
this.seats=seats;
this.engine=engine;
this.theradio=theradio;

}

var work car= new car("cloth","V-6", "Tape Deck") ;

var fun car= new car("leather","v-8","CD Player");

var custom car= new car (fun_car.seats,work car.engine, fun car.theradio) ;

document .write ("I want a car with "+custom car.seats+" seats.<br />");
document .write ("It also needs a "+custom car.engine+" engine.<br />");
document .write ("Oh, and I would like a "+custom car.theradio+" also.");

TheJJroperﬁes of the new instance of the object are
used like variables in the document.write() statements

) Example - Mozilla Firefox

File Edit ‘“iew History Eookmarks Tools Help

6 - c 37{ L l: |j |FiIe:,l’,l’,l’E:,l’zz;uhp,l’figures,l’chB,l’objects_D1.html {_\\r v| |'|G00gle )':)|

(8] Mast visited % Getting Started |5 Latest Headlines

@ Disabler 2 Cookiesw [ €55+ ] Farms~ [H] Images~ @ Information~ () Miscellaneous~ ./ Gutline~ ;: Resize~ (f’ Tools~ Q Wigw Sourcer

Twant a car with leather seats.
It also needs a V-6 engine.
Oh, and I would like a CD Player also.

Done M | | D) |(Z)menteesiendvier| ~

Figure 8-1 The features you like from each type of car are printed in the browser

181



182

JavaScript: A Beginner’s Guide

Notice how the creation of the custom_car instance of the car object sends parameters
that happen to be the properties of the other instances of the car object. You are able to use
object properties like variables in many cases, so this cuts the amount of code you need to
write. Also notice that the document.write() commands were changed to use the properties of
the custom_car instead of the old variables. The output of the script is the same, as shown in
Figure 8-2.

Property Values While this isn’t real estate, you can alter your property values. In your
scripts, you can change the value of an object property on-the-fly by assigning it a new
value, just like a variable. For example, if you wanted to change the value of the work_car.
engine property from the previous examples, you could just assign it a new value of your
choice. The following example shows the assignment of a new value to the work_car.engine

property:

work_car.engine= "V-4";

While perhaps not a good change, it could save you money on insurance (and gas)!

It is important to note that the preceding assignment will change the value of the work_
car.engine property for any calls made to it after the change. Anything you do with its value
before the change would not be affected. So, to have an effect on the outcome of your script,
you would have to change the value of the work_car.engine property before you create your
custom_car instance of the car object, which uses this property.

) Example - Mozilla Firefox

File Edit ‘“iew History EBookmarks Tools Help

6 - c }g L l: |j |FiIe:,l’,l’,l’E:,l’zz;uhp,l’figures,l’chB,l’objects_D1.html {_\\r v| |'|G00gle )'::'|

(8] Mast visited % Getting Started |5 Latest Headlines

@ Disabler 2 Cookiesw [ €55+ ] Farms~ [M] Images~ @ Information~ () Miscellaneous~ ./ Gutline~ :: Resize™ W{b Tools~ Q Wigw Sourcer
Twant a car with leather seats.

It also needs a V-6 engine.

Oh, and I would like a CD Player also.

Done M | | ) |(Zimenseestensvier| ~

Figure 8-2 Although coded differently, the output is the same as that of Figure 8-1



Chapter 8:  Objects

The following code gives a new assignment to the property before the new instance of the
object is created:

function car (seats, engine, theradio) {
this.seats=seats;
this.engine=engine;
this.theradio=theradio;
}
var work car= new car("cloth","V-6", "Tape Deck") ;
var fun car= new car("leather","v-8","CD Player");

work car.engine="V-4"; < One of the properties of an object is chonged, which

alters that property for anything using it afterward

var custom car= new car (fun car.seats,work car.engine, fun car.theradio) ;

document .write ("I want a car with "+custom car.seats+" seats.<br />");
document .write ("It also needs a "+custom car.engine+" engine.<br />");
document .write ("Oh, and I would like a "+custom car.theradio+" also.");

The work_car.engine property is originally set to V-6, but it is changed to V-4 just before
the custom_car instance of the car object is created. This means that when you use the
work_car.engine property while creating your custom_car instance, it will use the changed
value of V-4 because it is used after the change was made. Figure 8-3 shows the results of this
changed code.

) Example - Mozilla Firefox

File Edit Yiew History Bookmarks Tools  Help

6 - c }Q 2y ( |;D| |FiIe:,l’,l’,l’E:,l’zz;uhp,l’figures,l’chB,l’objects_D1.html f} v| |'|G00gle }:)|

(8] Most visited 8 Getting Started (5. Latest Headlines

@ Disabler 2 Cookiesw [0 €55+ ] Forms™ [M] Images~ @ Informatior () Miscellaneous™ /' Outliner 5 Resize™ 4% Tools™ i Wiew Sourcer |

T want a car with leather seats.
It also needs a V-4 engine.
Ch, and Twould like a CD Player also.

Dene M | | D) |(P)menenshensvier|

Figure 8-3 One of the property values is changed, changing the output of the script

183



184

JavaScript: A Beginner’s Guide

To drive home the point, you could use the property both before and after it is changed to
see how it affects the script. The following code shows this:

function car (seats, engine, theradio) {
this.seats=seats;
this.engine=engine; The original value of the property is
this.theradio=theradio; assigned fo an independent variable
1
var work car= new car("cloth","V-6", "Tape Deck") ;
var fun car= new car("leather","v-8","CD Player");

var first engine=work car.engine; «

<

work car.engine="V-4"; 4 The properP{tis changed, changing
i

the value of it when used afterwar:

var custom car= new car (fun car.seats,work car.engine, fun car.theradio);

document .write ("At first, I wanted a "+first engine+" engine.<br />");
document .write ("But after thinking about it a bit:<br />");

document .write ("I want a car with "+custom car.seats+" seats.<br />");
document .write ("It also needs a "+custom car.engine+" engine.<br />");
document .write ("Oh, and I would like a "+custom car.theradio+" also.");

Notice how the work_car.engine value is assigned to the first_engine variable. It is then
changed before you create your custom_car instance of the car object. When you write the
value of the first_engine variable to the browser, it has the old value of the work_car.engine
property since it was assigned before the change was made.

When you write the values of your custom_car properties, you can see that the change was
made sometime before you created the custom_car instance of the car object. Figure 8-4 shows
the results of this script in a browser.

Now that you know how to use constructor functions, take a look at the object initializer
method.

Object Initializers
An object initializer is a little bit shorter than a constructor function. The following is the
syntax of an object initializer:

object name={property:value}

In the preceding code, you would replace object_name with the name you want to give your
object; replace property with the name you want to use for a property of the object; and replace
value with the value of the property that precedes it. You can add more properties and values
by separating each with a comma.

An object created with the initializer function is already an instance of the object, so you
can just use the properties without the need to create a new instance of the object.



Chapter 8:  Objects

) Example - Mozilla Firefox

File Edit ‘iew History EBookmarks Tools Help

6 - c &.g ot l: |j |File:,l’,l’,l’E:,l’zzghp,l’figures,l’chB,l’objects_D1.html {_\f v| |‘|Google )":)|

[&] Most visited @ Getting Started 5] Latest Headlines

(@ Disable /2 Cockiesw | 55 ] Forms= (M) Images (@ Information I’v Miscellaneous " Outline ;: Resize™ f Toals™ Q Wiew Sourcer -

At first, T wanted a V-6 engine.

But after thinking about it a bit:

T want a car with leather seats.

It also needs a V-4 engine.

Ch, and Twould like a CD Player also.

Done M | | |m| &

Figure 8-4 The change in the property value affects the statements that use it after the
change, but not those that use it before the change

Next, you will create a work_car object by using the initializer method. You want the
object name to be work_car, and you will have three sets of properties and values. The
following code shows how to create the object by using the object initializer method:

work car= {seats:"cloth",engine:"V-6",theradio:"Tape Deck"}

Since there is no need to create an instance of the object, you can use its properties just as you
did before, and assign them to variables or write them to the page. For instance, the property of
work_car.seats would be cloth.

If you want the fun_car object back as well, you can use another initializer, as shown in the
following example code:

work car= {seats:"cloth",engine:"V-6",theradio:"Tape Deck"}
fun car= {seats:"leather",engine:"V-8", theradio:"CD Player"}

You can then write out what you want to have in a car using those properties, as shown in the
following code:

Objects are created using object initializers

work car= {seats: "cloth",engine:"V-6",theradio: "Tape Deck" }jJ
fun car= {seats: "leather",engine:"V-8",theradio:"CD Player" }

document .write ("I want a car with "+fun car.seats+" seats.<BR>");
document .write ("It also needs a "+work car.engine+" engine.<BR>");
document .write ("Oh, and I would like a "+fun car.theradio+" also.");

Properties of the objects are used in document.write() statements

185



186

JavaScript: A Beginner’s Guide

) Example - Mozilla Firefox

File Edit ‘iew History EBookmarks Tools Help

6 - c g,.g {ay l: |j |File:,l’,l’,l’E:,l’zzghp,l’figures,l’chB,l’objects_D1.html {_\f v| |‘|Google ):|
(8] Most visited @ Getting Started (5. Latest Headlines

(@ Disable /2 Cockiesw | 55 ] Forms= (M) Images (@ Information I’v Miscellaneous " Outline ;: Resize™ (éb Toals™ Q Wiew Sourcer -

T want a car with leather seats.
It also needs a V-6 engine.
Oh, and I would like a CD Player also.

Done M | |n |M| =

Figure 8-5 The properties you like from each type of car are shown in the browser

This prints what you like from each type of car to the browser screen. Figure 8-5 shows the
results of this script in a browser.

This method can cut the coding a bit, at least if you only want to use one or two instances
of the same type of object.

Adding Methods

A method is a function call that is part of an object. The function called can perform various
tasks that you might want to execute with the properties of the object.

Consider the car object that you created with a constructor function earlier in the chapter.
You might want to have functions for the car to stop, accelerate, or turn. You might also decide
to make a calculation of some sort, like a payment. If you wanted to add a function for that
object that would calculate the monthly payments on the various types (instances) of cars that
you sent to it, you could create a function like the following:

Function fo be used as a method is defined  The payment variable is created

and given an initial value
function get payment () {<—| 9 |

var the payment=250; «
if (this.seats == "leather") {—
the payment+=100;

An if/else statement decides how much to
else { ———— add to the payment variable based on the

c|ue O he sears property or ar Ob ec
the pay[[lerlt+—_50 7 M I
}




Chapter 8:  Objects 187

if (this.engine == "V-8") {—
the payment+=150;
} - An if/else statement decides how much to
else { add to the payment variable based on the
value of the engine property of an object
the payment+=75;
}
if (this.theradio == "CD Player") {—
the payment+=35;
} —paym An if/else statement decides how much to
1 add to the payment variable based on the
else { value of the theradio property of an object
the payment+=10;
}
return the payment; « The value of the_payment is returned

Well, the previous function is really long. It can be shortened by using the conditional
operator for each if/else statement here (for further information on the conditional operator,
refer to Chapter 6):

The conditional operator is used in place of the
if/else statements to make the code shorter

function get payment () {
var the payment=250;
the payment += (this.seats == "leather") ? 100 : 50;
the payment += (this.engine == "V-8") ? 150 : 75;
the payment += (this.theradio == "CD Player") ? 35 : 10;
return the payment;
}

After you have defined the function, you need to assign it to your object within your object
constructor function. Using your trusty car object constructor function, you would assign it as
shown in the following code:

function car (seats,engine, theradio) {
this.seats=seats;
this.engine=engine;
this.theradio=theradio; The get_payment() function is assigned like a properrﬁ,

this.payment=get payment; <—mc1|<in?l it a method of the current object; notice that the
} parentheses are not used in the assignment

Notice that this example defines a method named payment that calls the get_payment()
function from outside the constructor function. Also notice that when the function is called
here, the parentheses are not used on the end of the function call. This is how your outside
function becomes a method of the object (by assigning it the function rather than the result of
the function).



188

JavaScript: A Beginner’s Guide

In order to call the payment() method of the object, you need an instance of the car object.
If you add the three instances you made earlier, you will be able to do some things with your
new method. So, add those instances to the code you already have:

The function that is used as a method

function get payment () {
var the payment=250;

the payment += (this.seats == "leather") ? 100 : 50;
the payment += (this.engine == "V-8") ? 150 : 75;
the payment += (this.theradio == "CD Player") ? 35 : 10;

return the payment;

}

function car (seats,engine, theradio) { —
this.seats=seats;
this.engine=engine;
this.theradio=theradio;
this.payment=get payment;

The constructor function, which makes
the function a method function

}

var work car= new car ("cloth","V-6", "Tape Deck") ;
var fun car= new car("leather","v-8","CD Player");
var custom car= new car (fun car.seats,work car.engine, fun car.theradio) ;

Instances of the object are created
and can use the method if needed
Now you have the function that is used to create the payment() method of the car object,
the creation of the payment() method within the car object constructor function, and three
instances of the car object.
To find the monthly payments for work_car, you would call the payment() method using
the following syntax:

var work car payments= work car.payment () ;

The value of the work_car_payments variable will be the value returned from the payment()
method, which is what is returned from the get_payment() function when run with the values
used for the work_car instance of the car object.

Since the seats are cloth, the_payment is increased by 50 (if they were leather it would
have been 100). Since the engine is a V-6, the_payment is increased by 75. Finally, since the
theradio property has a value of Tape Deck, the the_payment variable is increased by 10. This
gives you a payment of 250 (initial value) + 50 (nonleather seats) + 75 (non-V-8 engine) +10
(radio without CD player), which turns out to be 385.

Using the payment() method, you could now write a script to display the payment amount for
each type of car in the browser so the viewer can decide what type of car to buy. You would just
expand on your previous code to include in the body of the page some document.write() commands
that use the values returned from the payment() method. Save the JavaScript file as objects_02.js
and create an HTML file with the following body code and save it as objects_02.html:

<body>
<script type="text/javascript" src="objects 02.js"></scripts>
</body>



Chapter 8:  Objects 189

The following JavaScript code for the objects_02.js file gives an example of the payment()
method when used for each instance of the car object:

function get payment () {
var the payment=250;

the payment += (this.seats == "leather") ? 100 : 50;
the payment += (this.engine == "V-8") ? 150 : 75;
the payment += (this.theradio == "CD Player") ? 35 : 10;

return the payment;

}

function car (seats,engine,theradio) ({
this.seats=seats;
this.engine=engine;
this.theradio=theradio;
this.payment=get payment;

The returned value of the method function
for each of three instances of the object is
assigned to three independent variables

var work car= new car ("cloth","V-6","Tape Deck") ;
var fun car= new car("leather","v-8","CD Player") ;
var custom car= new car (fun car.seats,work car.engine,fun car.theradio) ;

var work car payment= work car.payment () ;
var fun car payment= fun car.payment () ; —
var custom_car_payment= custom car.payment () ;

document .write ("<h2>The information on the cars you requested:</h2>");——
document .write ("<strong>Work Car: </strong>");

document .write (work car.seats+","+work car.engine+", "+work car.theradio) ;
document .write ("<br />");

document .write ("<strong>Payments:</strong> $"+work car payment) ;

document .write ("<p>") ;

document .write ("<strong >Fun Car: </strongs>");

document .write (fun car.seats+","+fun car.engine+","+fun car.theradio) ;
document .write ("<br />");

document .write ("<strong>Payments:</strong> $"+fun car payment) ;
document .write ("</p>") ;

document .write ("<p>") ;

document .write ("<strong>Custom Car: </strong>") ;

document .write (custom car.seats+", "+custom car.engine+",");

document .write (custom car.theradio) ;

document .write ("<br />");

document .write ("<strong>Payments:</strong> $"+custom car payment) ;
document .write ("</p>") ;

Various object properties and variables are used in the document.write() statements
to create a listing of the cars, their features, and the payment amounts

The script is quite long compared to most of the scripts you have done up to this point.
The result of the preceding script is a listing of each type of car, its features, and the payment
amount for the car.



190

JavaScript: A Beginner’s Guide

Some of the document.write() statements in the previous code are being used to continue
the statement preceding them, because of the limited space available to show the code. In
your text editor, you don’t have such space limitations, so you could put as much code in one
document.write() command as you like. Figure 8-6 shows the results of the code when run in a
browser. You are starting to make some scripts that are more useful!

Object Manipulation Statements
JavaScript allows you to use the for-in loop to help you manipulate objects and the with
statement to access particular objects more easily.

The for-in Loop
The for-in loop allows you to cycle through the properties of an object to display them or to
manipulate their values. The following code shows the structure of a for-in loop:

The loop begins by naming a variable to represent the property
names in the object, along with the name of the object
for (var variable name in object name) {
JavaScript statements = JavaScript statements go here

}

) Example - Mozilla Firefox

File Edit ‘“iew History EBookmarks Tools Help

@ - c A b I: |j |Fi|e:,I',I',I'E:,I'ZZJJhD,I'ﬁgLIrES,I'ChB,I'DbjECtS_UZ.htl‘n| {_:? v| |'|G00g|e )"::'|

(8] Most visited P Getting Started 5] Latest Headlines

@ Disable 2 Cookiesw [ €55+ ] Forms [M] Images+ @ Information= () Miscellaneous~ o/ Outline~ ;: Resize™ ‘}5 Tools™ Q Wiew Sourcer

The information on the cars you requested:

Work Car: cloth, V-6, Tape Deck
Payments: $335

Fun Car: leather,VV-8,CD Player
Payments: £535

Custom Car: leather,V-6,CD Player
Payments: §460

Gl M | ) |(Pamenesstansvier| -

Figure 8-6 A listing of the types of cars, their features, and their calculated monthly payments



Chapter 8:  Objects 191

Suppose you wanted to cycle through the properties of a work_car instance of a car object in
order to display the values of each property on the page. The for-in loop allows you to do this
without the need to type each property name, as in this code:

The object is created

function car (seats, engine, theradio) {
this.seats=seats;
this.engine=engine; An~ instance of the
this.theradio=theradio; ob|ecf is created
}
var work car= new car("cloth","V-6", "Tape Deck"); -
for (var prop name in work car) { - The for-in loop begins
document .write (work car [prop namel]+"<br />");

}

The value of each property of the work_car
instance of the car object is written on the page

You will notice that the work_car[prop_name] part of the script is unfamiliar. The for-in
loop uses an array to store the property values, which calls for this syntax. You will learn more
about arrays in Chapter 11, so don’t worry if this isn’t clear yet. Once you have learned how to
use arrays, the for-in loop will be a useful way to manipulate your objects. For now, you only
need to know the function of the for-in loop.

The with Statement
The with statement allows you to access or manipulate the properties and methods of an object
more easily if you plan to use a large number of statements that use the object. For instance, if
you want to write a number of statements about an object named car on a Web page, you might
grow weary of typing the object name (car), the dot operator, and then the property name.

The with statement allows you to leave off the object name and the dot operator for
statements inside the with block, so that you only need to type the property names to access the
properties you need. The following code shows the structure of a with statement:

with (object) { = The name of the object is placed inside the parentheses
JavaScript statements

}

JavaScript statements that use the object go here

Suppose you have an object named car with the properties seats, engine, and radio, and
an instance of the object named work_car. You could use the with statement to avoid typing
work_car and the dot operator repeatedly, as in the following example:

function car (seats, engine, theradio) {—
this.seats=seats;

this.engine=engine; ——The object is created
this.theradio=theradio;

}
var work car= new car("cloth","v-6", "Tape Deck"); «———
with (work car) {

An instance of the
object is created

The with statement is used with the work_car instance of the object



192

JavaScript: A Beginner’s Guide

document .write ("Seats: "+seats+"<br />");
document .write ("Engine: "+engine+"<br />");
document .write ("Radio: "+theradio) ;

}

Now the properties of the work_car instance of the object can be accessed without
the need to type work_car and the dot operator each time a property is used

This example writes the values of the properties of the work_car instance of the car object on
the page. Notice that while inside the with block, the property names could be used without the
need to type work_car and the dot operator in front of them.

Now that you have seen how to create objects, properties, and methods of your own,
you can better understand how some of the predefined JavaScript objects work. A number of
predefined JavaScript objects are discussed as you move through the rest of this chapter and
through several of the chapters to follow.

Ask the Expert

Q: Dot really have to create an instance of an object every time I want one when I use a
constructor function?

A: Yes. The constructor function only gives the browser the structure of an object. To use that
structure, you need to create an instance of the object. You will see in Chapter 12 that you
need to create instances with some of the predefined JavaScript objects as well.

Q: So what about object initializers? I don’t have to create instances with them?

A: Object initializers create an object rather than just giving it a structure like a constructor
function. So, the object created doesn’t need to have instances created.

Q: Will I need to use self-written objects a lot?

A: Probably not, but it depends on your script and what you want to do. Many of the scripts in
this book use predefined JavaScript objects; however, you may use a self-written object if it
helps you with your scripts later.

Q: canan object have more than one method?

A: You can include as many methods as you like in an object by repeating what you did with
y Yy ) Y rep g Y
your method earlier in the chapter. For instance, you could have added another method to
calculate the insurance costs of each type of car based on the properties you had for the car

types.



Chapter 8:  Objects

Create a Computer Object

pr8_1.html
ipris8_1.3s i : . : o
i i methods, and instances of the object to create feature lists and price lists for the

In this project, you create objects on your own and develop the skills involved in
object creation. The script will create a computer object and then use properties,

different types of computers.

Step by Step

1.

Create an HTML page and save it as pr8_1.html. Add the necessary script tags to point to
an external JavaScript file named prjs8_1.js.

. Create an external JavaScript file and save it as prjs8_1.js. Use it for steps 3—12.

3. Create an object named computer that has three properties named speed, hdspace, and ram.

10.

11.

. Create an instance of the computer object and name it work_computer. Send the string

values of 2GHz for the speed parameter, 80GB for the hdspace parameter, and 1GB for the
ram parameter.

. Create an instance of the computer object and name it home_computer. Send the string

values of 1.5GHz for the speed parameter, 40GB for the hdspace parameter, and 512MB for
the ram parameter.

. Create an instance of the computer object and name it laptop_computer. Send the string

values of 1GHz for the speed parameter, 20GB for the hdspace parameter, and 256MB for
the ram parameter.

. Create a function named get_price() that will calculate the price of a computer. The base

price of a computer is 500 and should be assigned to a variable named the_price. If the
speed property of an object is equal to 2GHz, add 200 to the value of the_price; otherwise,
add 100 to the_price. If the hdspace property of an object is 80GB, add 50 to the value of
the_price; otherwise, add 25 to the_price. If the ram property of an object is 1GB, add 150
to the value of the_price; otherwise, add 75 to the_price. End the function with a return
statement that returns the value of the variable the_price.

. Add a call to the function created in step 6 to the computer object. Give the method the

name price.

. Assign the value returned by the price() method when used with the work_computer

instance of the object to a variable named work_computer_price.

Assign the value returned by the price() method when used with the home_computer
instance of the object to a variable named home_computer_price.

Assign the value returned by the price() method when used with the laptop_computer
instance of the object to a variable named laptop_computer_price.

(continued)

193



194

JavaScript: A Beginner’s Guide

12. Write the features and price for each type of computer to the browser screen in the same
format you used in the car example earlier in the chapter.

13. Save the JavaScript file and view the HTML file in your browser. You should have a list of
features and the price for each computer written on the screen.

Try This Summary

In this project, you were able to use your new knowledge of objects to create an object with
properties and a method function. You were able to create a Web page that displays the prices
of different computers in the browser.

Understanding Predefined JavaScript Objects

In JavaScript, there are many predefined objects you can use to gain access to certain properties
or methods you may need. You can make your scripts even more interactive once you learn the
various objects and what you can do with them.

This book will be covering a number of the major predefined objects. Some of them will
be the basis for an entire chapter, while others are smaller and may only need a portion of a
chapter. To get started, in this chapter, you are going to look at the navigator object and history
objects, and what you can do with them.

The Navigator Obiject

The navigator object gives you access to various properties of the viewer’s browser, such as its
name, version number, and more. It got its name from the Netscape Navigator browser, which
preceded Mozilla/Firefox.

The navigator object is part of the window object, which means you can access its properties
and methods using window.navigator.property_or_method_name, but it can also be shortened to
simply navigator.property_or_method_name. This is true even for direct properties or methods
of the window object as well (for example, window.alert(“Hi"); could be shortened to simply
alert(“Hi”); and it would still be valid). You’ll commonly see such properties and methods of the
window object shortened in this way to save extra typing or to help shorten the source code.

First, take a look at the properties of the navigator object.

Properties
The properties of the navigator object let you find out various things about the browser the
viewer is using. The properties of the navigator object cannot be changed, because they are set
as read-only. This is so you don’t try to change the user’s browser version from 6.0 to 7.0 or
something similar. Instead, you can just find out what the value of the property is and use it to
allow your scripts to do different things for different browsers.

Table 8-1 shows the properties of the navigator object and the values returned by each
property. Also, if a property only works in one or two of the three major browsers mentioned
in this book, there is a note in parentheses for that property.



Chapter 8:  Objects 195

Property Valve

appCodeName The code name of the browser

appName The name of the browser

appMinorVersion A string representing the minor version of the browser (Internet Explorer only)
appVersion The version of the browser and some other information

browserLanguage The language of the browser being used (Internet Explorer and Opera)
buildID The build identifier of the browser being used (Firefox only)

cookieEnabled

Specifies whether or not the browser has cookies enabled

cpuClass A string representing the class of the CPU (Internet Explorer only)

language The language of the browser being used (Firefox and Opera)

mimeTypes An array of MIME types supported by the browser

online Specifies whether or not the browser is in “global offline mode”

oscpu A string representing the operating system of the computer (Firefox only)
platform The machine type for which the browser was created

plugins An array of the plugins the browser has installed on it

product A string representing the product name of the browser being used (Firefox only)
productSub The build number of the browser being used (Firefox only)

securityPolicy

An empty string—returned a value in Netscape 4.7 (Firefox only)

systemLanguage The default language used by the operating system (Internet Explorer only)

userLanguage The natural language of the operating system (Internet Explorer and Opera)

userAgent The user agent header for the browser

vendor An empty string—returned a string representing the vendor of the browser
being used (Firefox only)

vendorSub An empty string—returned the vendor version number of the browser being
used (Firefox only)

Table 8-1 Properties of the Navigator Object

Now that you know the properties of the navigator object, you can begin to use them in
your scripts. The following sections take a look at some of the more useful properties in more

detail.

The appCodeName Property This property holds the value of the application code name
of the browser, which is often something like Mozilla. Other than writing it to the screen or
sending an alert to the viewer, you don’t have much use for it at this time. The following code
shows how to send an alert to the viewer to tell him or her the appCodeName of the browser
being used to view the page:

window.alert ("You are using "+navigator.appCodeName) ;



196

JavaScript: A Beginner’s Guide

Notice that you use the object name followed by the dot operator and then the property name,
just like you did when you created your own objects. This is how you are able to access the
properties of the navigator object.

Note that with this property, most every browser returns Mozilla, which was used as the
code name for an early version of Netscape Navigator.

The appName Property  This property allows you to find out which type of browser the
viewer is using to browse the page. If the browser is Firefox, the value of this property will be
Netscape. If the browser is Internet Explorer, then the value of this property will be Microsoft
Internet Explorer. Other browsers will have corresponding values.

If you need to know the value for a particular browser, you can create a script to alert the
value of this property, place the script inside script tags on a Web page, and then view the
page in that browser. You will then be alerted to the value of the property for that browser. The
following code shows how the alert can be coded:

window.alert ("You have "+navigator.appName) ;

Since this enables you to find out the type of browser being used, you can create a simple
browser-detection script.

Suppose you want to send the viewer an alert based on your opinion of the browser being
used. You could use the navigator.appName property to create an if/else block and send the
appropriate comment to the viewer based on the browser type.

The following code shows an example of how you could perform this task:

<body>
<script type="text/javascript"s
switch (navigator.appName) {

case "Netscape" : window.alert ("Firefox/Netscape is cool."); break;
case "Microsoft Internet Explorer" : window.alert ("Internet Explorer is Cool.");
break;
case "Opera" : window.alert ("Opera is cool."); break;
default : window.alert ("What browser is this?");
}
</scripts>
Hi, and welcome!
</body> A switch block is used to determine the value of the navigator

.appName property and give the viewer the proper alert

As you can see, the viewer can now find out just what you think of the browser being used.
Figure 8-7 shows the alert you would get if you were using Firefox to view the page.

The appVersion Property This property has a value of the version number of the browser
and some additional information. For example, in Firefox 3 for Windows XP, you might see
the following text as the value of this property:

5.0 (Windows; en-US)



Chapter 8:  Objects

"3 Example - Mozilla Firefox

File Edit ‘iew History EBookmarks Tools Help .}

‘; - c x oy ( D |Fi|e:,I',I',I'E:,I'ZZJJhD,I'figUrES,I’ChB,I’figU?.htm| ﬁ v| |‘|Google p|

Most Yisited , Getting Started |5 | Latest Headlines

(@ Disable 2 Cockiesw | 55 ] Forms= (M) Images= (@ Information @ Miscellaneous " Outline 2: Resize™ éb Toals™ Q Wigws Source o

[JawaScript Application]

!‘\.\ Firefox/Metscape is cool.

Dene M| | D) |(P)menenshensvier|

Figure 8-7 The alert you get when entering the page with Firefox

This can be beneficial when you use techniques that should only be executed in browser
versions above a certain level. Note, though, that browsers return various results for this
property, as the value returned for Internet Explorer 7 on Windows Vista shown here:

4.0 (compatible; MSIE 7.0; Windows NT 6.0; SLCC1l; .NET CLR 2.0.50727;
Media Center PC 5.0; .NET CLR 3.5.30729; .NET CLR 3.0.30618)

The first part of the string is 4.0, and later it describes itself as MSIE 7.0. Thus, you must use
care when using this property as you will need to know what various browsers return to make
the best use of the information.

The cookieEnabled Property This property returns a Boolean value of true if cookies are
enabled in the browser, and returns a Boolean value of false if cookies are not enabled in the
browser. You will read about cookies in more detail in Chapter 16.

The online Property This property returns a Boolean value of true if the viewer’s system is
not in global offline mode (see http://msdn.microsoft.com/en-us/library/aa768170(VS.85).aspx
for details on this), and returns a Boolean value of false if the system is in global offline mode.

The platform Property This property holds the value of the type of machine for which the
browser was created. For example, on a Windows XP machine, the value would be Win32.

197


http://msdn.microsoft.com/en-us/library/aa768170(VS.85).aspx

198

JavaScript: A Beginner’s Guide

There are different values for various types of machines. If you want to let the viewer know
the machine type being used, you could send an alert with this property:

window.alert ("Your machine is a "+navigator.platform+" machine.") ;

While not very useful here, the property could be used to redirect viewers to an appropriate
page based on their machine type.

The plugins Property This array holds the values of all the plugins installed in the viewer’s
browser. You will find out more about arrays in Chapter 12.

The userAgent Property This property gives you another long string of information about
the browser. This string is the user agent header for the browser. For instance, in Firefox 3 for
Windows XP, you might see the following string:

Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.0.4)
Gecko/2008102920
Firefox/3.0.4

It is pretty similar to the text you saw for the navigator.app Version property, but with a little

more information.

Now that you know about the properties of the navigator object, you are ready to look at
the methods of the object.

Methods

The navigator object also has a number of methods you can use to perform various tasks.
Table 8-2 shows the methods available in the navigator object.
The following section looks at the javaEnabled() method and how it can be used.

The iavaEnabled() Method This method returns a Boolean value of true if the viewer has
Java enabled in the browser; otherwise, it returns false. The javaEnabled() method could
be useful if you want to display a Java applet to the viewer, but only if the viewer has Java

enabled in the browser.

Method

Purpose

javaEnabled()

Used to test whether or not Java is enabled in the browser

mozlsLocallyAvailable()

Checks to see if a file at a certain address is available locally (Firefox only)

preference()

Allows certain browser preferences to be set (requires signed script)

registerContentHandler()

Allows a Web site to set itself as a potential handler of a certain MIME type

registerProtocolHandler()

Allows a Web site to set itself as a potential handler of a certain protocol

taintEnabled()

Returns false— because the method is no longer being in use. It was used
to specify whether or not data tainting was enabled in the browser

Table 8-2 Methods of the Navigator Object



Chapter 8:  Objects 199

For now, you will just see how to send the viewer an alert, as an example. This way you
don’t need to mess with any Java syntax yet. The following code sends one alert if the viewer
has Java enabled and sends another if the viewer does not have Java enabled:

var hasJava= navigator.javaEnabled()
if (hasJava==true)
window.alert ("Cool, you have Javal");

}

else {
window.alert ("Java disabled? You cannot see my Java Applet!");

}

This tests the value returned by the navigator.javaEnabled() method and gives the user
the correct alert. Again, this is more useful if you have a Java applet that you want to use
someplace on the page.

The History Object

The history object, which is also part of the window object, provides information on the
browser history of the current window.

Property

The history object has only one property, named length (in Firefox, a few more are available,
but they do not work with Web content). This property returns the number of pages in the
session history of the browser for the current window, which includes the currently loaded
page. It could be used in a manner similar to this:

<body>

<script type="text/javascript"s>

alert ("Your current window has viewed "+history.length+" pages!")
</script>

</body>

This simply sends an alert to the viewer to say how many pages have been visited in the
current browser window.

Methods

There are three methods of the history object, listed in Table 8-3.

Method Purpose

Back() Sends the browser window back one page in the history list

Forward() Sends the browser one page forward in the history list

Gol) Sends the browser to a specified page in the history list using an integer value

Table 8-3  Methods of the History Object



200

JavaScript: A Beginner’s Guide

The following sections discuss each of these methods in more detail.

The back() Method The back() method sends the browser to the last page visited in the
history list before the current page, which is like using the browser’s “back” button. To use it,
you simply call the method in your script where desired. Thus, if you wanted your own “back”
button made from a form button, you could use something similar to the following code. First
is the HTML body section code (save as history_01.html):

<body>

<form>

<input type="button" value="Back" id="back button" />
</form>

<script type="text/javascript" src="history 01l.js"></script>
</body>

Next is the external JavaScript code (save as history_01.js):

var bb = document.getElementById("back button") ;
bb.onclick = function() {
history.back() ;

}i

Loading the HTML page will display the “back” button. When you click it, the browser
will go to the last page visited before the current page. If the browser window has no previous
history, clicking the button will do nothing.

The forward() Method The forward() method sends the browser to the page visited in the

history list after the current page, which is like using the browser’s “forward” button. To use it, you

simply call the method in your script where desired. Using this, you could update your previous

script to add a “forward” button as well. The updated HTML and JavaScript code is shown next.
The HTML code:

<body>
<form>
<input type="button" value="Back" id="back button" /s<br />
<input type="button" value="Forward" id="forward button" />
</form>
<script type="text/javascript" src="history 01l.js"></script>
</body>

The updated external JavaScript code:

var bb = document.getElementById("back button") ;
var fb = document.getElementById("forward button") ;
bb.onclick = function() ({

history.back() ;
}i
fb.onclick = function() {

history.forward() ;

i



Chapter 8:  Objects 201

Loading the HTML page will now display both buttons. As with the back() method, the
use of forward() without a forward page in the window’s history list will do nothing.

The go() Method The go() method takes in an integer as a parameter. The integer can be
a negative number to go back in the history list or a positive number to move forward in the
history list. For instance, the following code would go back two pages in the window’s history:

history.go(-2);
The following code would go three pages forward in the history list:
history.go(3) ;

As with the other two methods, if the page the viewer is attempting to access does not exist
(for example, something like history.go(15) may not exist in the window’s history), then the
method will simply do nothing.

The predefined JavaScript objects can be quite helpful. As you’ll see in the next chapter,
the document object gives you access to a number of additional properties and methods for
working with the HTML document.

Practice with the Predefined Navigator
Object

Cle o brmn This project allows you to practice using some of the properties and methods of
grj =8 ) 2.5s i the predefined navigator object. You will create a page that alerts the viewer to
R e i various types of information, based on the browser being used.

Step by Step
1. Create an HTML page and save it as pr8_2.html.
2. Create an external JavaScript file and save it as prjs8_2.js. Use it for steps 3—12.

3. Code an alert that pops up when the viewer enters the page. The alert should say “Hi! You are
viewing my page with . . .” followed by the name of the browser being used by the viewer.

4. If the user has Java enabled, send a new alert to the viewer that says “You have Java
enabled, that is cool!” If the viewer does not have Java enabled, send an alert that says “No
Java? Well, no fun stuff here then.”

5. Send a new alert that tells the viewer what type of machine is being used. The alert should say
“You are using . . .” followed by the type of machine the viewer is using to view the page.

6. Save the files and open the HTML file in one or more browsers (or other computers if you
can). See how the results vary based on what is being used while viewing the Web page.

(continued)



202  JavaScript: A Beginner's Guide

Try This Summary
In this project, you used your knowledge of the properties and methods of the predefined
navigator object. You were able to create a Web page that sends different alerts to the viewer
based on the browser, the machine type, and whether or not Java is enabled.

Chapter 8 Self Test

An object is a way of modeling something , even though the object is a(n)
entity.

. When you think of an object, you’ll probably want to visualize something
. Objects are useful because they give you another way to things within a script.

. In JavaScript, you access object properties through the use of the

addition operator

dot operator

N w >

multiplication operator

D You can’t access the properties of an object

. The rules for naming objects are similar to those for naming and

. You can create JavaScript objects using either a function or an object

. A constructor function allows you to build an object using the same basic syntax as a

regular function.
A True
B False

. An object initializer is a little bit longer than a constructor function.

A True
B False

. What could you say about the following code:

var x=myhouse.kitchen;
A Tt assigns the string myhouse.kitchen to the variable x.

B It adds the values of myhouse and kitchen and assigns them to an object named x.



10.

11.

12.

13.

14.
15.

Chapter 8:  Objects 203

C Assuming the myhouse object exists, it assigns the value of the kitchen property of the
myhouse object to the variable x.

D Assuming the kitchen object exists, it assigns the value of the myhouse property of the
kitchen object to the variable x.

Which of the following lines correctly creates a method named cost from a function named
get_cost(), if this line is within a constructor function?

A this.cost=get_cost();
B cost=get_cost;

C get_cost=this.cost();
D this.cost=get_cost;

Which of the following would send an alert to the viewer that tells the name of the browser
being used?

A window.alert(“You are using “+navigator.app Version);
B window.alert(“"You are using “+navigator.appName);
C window.alert(“'You are using “+navigator.javaEnabled());
D window.alert(“'You are using navigator.appName”);
What could you say about the following code?
myhouse.kitchen="big";
A Assuming the kitchen object exists, the myhouse property is assigned a new string value.

B Assuming the myhouse object exists, the value of the variable kitchen is added to the
string big.

C Assuming the myhouse object exists, the kitchen property is assigned a new string value.
D This wouldn’t do anything.

In JavaScript, there are many objects you can use to gain access to certain
properties and methods you may need.

The object gives you access to the various properties of the viewer’s browser.
Which of the following is not a property of the navigator object?

A appName

B appCodeName
C appType
D

app Version



This page intentional ly left blank



Chapter 9

The Document Object

205



206

JavaScript: A Beginner’s Guide

Key Skills & Concepts

Defining the Document Object

Using the Document Object Model

Using the Properties of the Document Object
Using the Methods of the Document Object

Creating Dynamic Scripts

N ow that you know how objects work and how to use predefined JavaScript objects, it is
time to look at some of the major predefined objects in JavaScript.

This chapter covers the document object, which helps you to gather information about
the page that is being viewed in the browser. As you will find out in this chapter, some of the
document object’s properties and methods can be used to get information about the document
or to change information about the document. You will also be introduced to the Document
Object Model, and see how this can be used with style sheets to create dynamic scripts.

Defining the Document Obiject

The document object is an object that is created by the browser for each new HTML page
(document) that is viewed. By doing this, JavaScript gives you access to a number of properties
and methods that can affect the document in various ways.

You have been using the write() method of the document object for quite some time in this
book. This method allows you to write a string of text into an HTML document.

To begin your journey through the document object, you will take a look at the Document
Object Model (DOM) and the various properties you can access with this object. Many of these
properties will turn out to be quite useful when writing scripts.

Using the Document Object Model

The Document Object Model (DOM) allows JavaScript (and other scripting languages) to
access the structure of the document in the browser. Each document is made up of structured
nodes (for example, the body tag would be a node, and any elements within the body element
would be child nodes of the body element). With this structure in place, a scripting language can
access the elements within the document in a number of ways, allowing for the modification of
the elements within the document.



Chapter 9: The Document Object 207

body
I
b1 (child node of body) - imyg (child node of bady)
| |

My Page (child of h1 node)  sre="myimage jpg" — alt="hy Picture"
{attribute nodes of img node)

Figure 9-1 An example of part of a document's structure

If you had the following HTML code, you could use JavaScript to access its structure:

<body>

<hl>My Page</hl>

<img src="myimage.jpg" alt="My Picture" />
</body>

Figure 9-1 shows how the body element is a node, and how it can have child nodes and
attribute nodes.

The h1 and img elements are both child nodes of the body element. Each element also has
its own nodes. The h1 element contains a text node as its child node (the text “My Page”), while
the img element contains two attribute nodes (src="myimage.jpg” and alt="My Picture”). This
type of structure is available throughout the document, so while this is a simple example, much
more complex document structure trees could be drawn for most HTML pages.

You have already been accessing the DOM using the document.getElementById() method
to access elements in the document by their id attribute values. You can also get groups of
elements using such methods as getElementsByTagName() or getElementsByClassName().

Accessing the DOM with JavaScript allows you to create more dynamic scripts that can alter
elements within the document in reaction to user events. You are also able to create elements
and nodes using certain JavaScript methods of the document object (such as createElement() or
createTextNode()). These types of scripts will be covered later in the chapter.

First, you will look at the properties and methods of the document object.

Using the Properties of the Document Object

Table 9-1 lists the properties of the document object with a short description of each. Following
the table, some specific properties are discussed in more detail. Sample scripts are provided for
several of the properties. Note that a number of the properties use arrays to hold information. If
you would like to learn about arrays to better understand their use, see Chapter 11.

NOTE

Not all of these properties work cross-browser. Also, a number of them have been
deprecated (alinkColor, bgColor, fgColor, linkColor, and vlinkColor). You can see
more information on these properties by visiting http://developer.mozilla.org/
en/DOM/document#Properties and http://msdn.microsoft.com/en-us/library/
ms531073(VS.85).aspx.


http://developer.mozilla.org/en/DOM/document#Properties
http://developer.mozilla.org/en/DOM/document#Properties
http://msdn.microsoft.com/en-us/library/ms531073(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms531073(VS.85).aspx

208

JavaScript: A Beginner’s Guide

Property

Description

activeElement

Returns a string holding the value of the active element in the document

alinkColor Returns the hexadecimal value of the active link color of the document

anchors An array of all the named anchors in the document

async Used to tell the browser whether to load a document with an asynchronous
request or a synchronous request

c:pp|ets An array of all the Java qpp|ets in a document

bgCo|or Returns the hexadecimal value of the chkground color of the document

body Returns the body or frameset element of the document

characterSet Returns a string value that represents the character set used to encode the
document

charset Returns a string value that represents the character set used to encode the
document

childNodes An array of all of the child nodes of the document

compatMode Returns the string “BackCompat” if the document is rendered in Quirks mode or
the string “CSS1Compat” if the document is rendered in Strict mode

contentType Returns a string for the Content-Type from the MIME header of the document

cookie Used to set JavaScript cookies in a document

defaultCharset Returns a string value that represents the default character set used to encode
the document

defaultView References the window object for the document

designMode Returns a strin%vcxlue that provides information on whether or not the
document can be edited

dir Returns a string value that represents the reading direction of the document

doctype Returns the doctype declaration associated with the document

documentElement

Returns a string representing the root node of the document

documentURIObject | Returns an object representing the URI of the document (only available to
privileged JavaScript code)

domain Returns the domain name of the server for the document

embeds An array of all the embed tags in the document

expando Returns a Boolean value based on whether or not arbitrary variables can be
created within the document

fgColor Returns the hexadecimal value of the default text color of the document

fileCreatedDate

Table 9-1

Returns the date the document was created

The Properties of the Document Object



Property

Chapter 9:  The Document Object 209

Description

fileModifiedDate

Returns the date the document was last modified

formName Not a property itself, but creates a new property with each named form placed
in the document

forms An array of all the form tags ina document

frames An array of all of the frames used in the document

height Returns the height, in pixels, of the body element of the document

images An array of all the image (img) tags in the document

implementation

Returns a string value representing the implementation obiject of the document

inputEncoding

Returns a string representing the document’s encoding

lastModified Returns the date of the last modification of the document

layers An array of all the layer tags on the page (Netscape Navigator 4 only)
all Allows access to all the objects on a page

linkColor Returns the hexadecimal value of the default link color for the document
links An array of all the link (<a>) tags in the document

location Returns the URI of the document

namespaces An array of all the namespaces in the document

parentWindow Returns a reference to the parent window (the parent window’s document object)
plugins An array of all the plugins used in the document

protocol Returns the protocol portion of the Web address (URL) of the document
readyState Returns a string value that represents the current state of the document
referrer Returns the URL of the document that referred the viewer to the current document
scripts An array of all the script tags used in the document

styleSheets An array of all the style sheets used in the document

tags Sets the style of an HTML tag in the document

title Returns the text used inside the title tags of the document

uniquelD Returns a string value that represents a unique ID given to the document
URL Returns the URL of the current document

URLUnencoded Returns the URL of the document without any encoding

vlinkColor Returns the hexadecimal value of the visited link color for the document
width Returns the width, in pixels, of the body element of the document

Table 9-1 The Properties of the Document Object (continued)



210

JavaScript: A Beginner’s Guide

The Color Properties

The alinkColor, bgColor, fgColor, linkColor, and vlinkColor properties were often used to obtain
or change the color of various elements on the page. These properties are now recommended to
be set with CSS or changed using style properties (discussed later in the chapter).

The anchors Property (Array)
The anchors property is actually an array that is set by the browser for all the named anchors
in a document (such as <a name="“top”>). Since you haven’t studied arrays yet, this won’t be
very helpful to you for now; however, you will find out more on how arrays like this one can
be useful when you get to Chapter 11.

JavaScript gives you the length property to enable you to find out the number of named
anchors on the page. You can use the length property to write to the browser window how
many named anchors are on a page:

<body>

<hl>My Page</hl>

The first named anchor is
set with the anchor tag

<a name="secl"></a> =
<h2>Section 1</h2>
This section is all about section 1 stuff...

The second named cmchor

a name="sec2" a> - . .
< ></a> is set with the anchor tag

<h2>Section 2</h2>

This section talks about all the section 2 issues and ...

<br />

<script type="text/javascript's>

document .write ("There are "+document.anchors.length+" named anchors");

</scripts>

</body> The number of named anchors
is displayed on the page

This code creates two named anchors on the page and then writes the number of anchors
on the page to the screen afterward. Figure 9-2 shows the result of this script in the browser
window.

Again, this is more of an informational property for now. Once you learn arrays, you can
make more use of the anchors property.

The cookie Property

The cookie property is used to set a JavaScript cookie to store information for the viewer. A
cookie is a small text file saved to the viewer’s computer for a particular amount of time (a set
date or a browser session). Cookies can be helpful in allowing a site to remember and retrieve
information for a viewer (such as the contents of a shopping cart, special settings, or session
information).



Chapter 9:  The Document Object

3 Example - Muzills Firefox
File Edit ‘ew History Bookmarke Tools  Help

Qi ¢ X & (Omumm o~ [Cileose
I Most visited # Gotting Started 5 | Latest Headines

© isabler S Coakest [ o5 £ Forme= M) Imagese (@) Informavons (7 Mscellanecuss o Cutiner | & Beszer ¥ Took+ ] view Sourcer . Options® v 8 8

My Page

Section 1

This section is all about section 1 stull..
Seclion 2

This scction talks about all the scction 2 issues and ..
There are 2 named anchors

pone M | ) |(Dmcareestmnein| ~

Figure 9-2 The number of named anchors on the page is displayed in the browser window

To set a cookie, you set the value of the document.cookie property to a string that contains
the information you want to store for the viewer. The following is the syntax:

document .cookie=string;

You would replace string with a text string that contains the information you want to use.
Usually, this is in a format like the one shown in the following example setting of a cookie:

document .cookie="site=homepage";

You can see that there is one thing set by the cookie: the site is homepage. In between the two
the equal sign is used to help separate the site and homepage when the cookie is read.

You will need to get a handle on more advanced string-handling techniques before you
try to deal with cookies any further. You will see how to use the advanced string-handling
techniques and how to set and read cookies in more detail in later chapters. For now, you just
need to know that the document.cookie property is used to set cookies.

The dir Property

The dir property returns a string value that represents the reading direction of the document.
This value can be either ltr (left to right) or rtl (right to left). This property is useful for
displaying Web pages in languages that are read from right to left rather than left to right,

211



212

JavaScript: A Beginner’s Guide

by setting the value to rtl. For fun, you can change the way your page looks on-the-fly with
this property, as in the following example code:

var the button = document.getElementById("change sides") ;
the button.onclick = function() ({
document .dir = (document.dir!="1tr") ? "ltr" : "rtl";

}

The code checks for the values and changes them
Then, in your HTML file, you add a button to make the switch:

<body>

<form>

<input type="button" value="Change Sides" id="change sides"
onclick="switch sides();" />

</form>

</body>

When the viewer clicks the button, the reading direction of the page will change. In this case,
your button starts out on the left side of the page and moves to the right side when the button is
clicked. Figure 9-3 shows the page before the button is clicked, and Figure 9-4 shows the page
after the button is clicked.

The domain Property

The domain property holds the value of the domain name that served the page to the viewer.
This value is whatever comes after http:// at the beginning of a Web address and before any
forward slashes. So, if you were looking at a page from http://www.pageresource.com, the
document.domain value would be www.pageresource.com.

3 Example - Muzilla Firefux |Z”§"E|

File Edit ‘iew History Bookmarks Tools Help 1

6 = € 2 v (L7 sz phpifigurssichuifigus bl v +] Gl oous P

14 Mast Visited P Getting Started & Latest Hoadines

@ vieabler 5 Cookiesr [ Cube 57 rormer M| imagese () Informaton= (0 Miscelansouss L Gutines | - Heszer ¥ Tockr £ view sources | Uptione® v &0
Change Sides

fone M | B |(Riscammsnand| ~

Figure 9-3 The Web page before the button is clicked


http://www.pageresource.com
www.pageresource.com

Chapter 9:  The Document Object

} Example - Mozilla Firefox
File Edit View History Bookmarks Tools Help

C; - €@ ¥t (O] eunEs shotiauesichotigna.rm

L8 Most Visited #8® Getting Starked | Latest Headines

{S) Disable= & Coakes= |1 €55+ 57| Forms= ) Imoges= (8 Intormation= (53 Miscellancous= o/ Outine= | & Resice= 4% Toobs= {&] View Source= . Options= v 8 8

Dane M | B |(imcntemsemniiine| ~

Figure 9-4 The Web page after the button is clicked

To use the domain property, you send an alert to the viewer that identifies the domain.
Placing the following code in a document would pop up an alert with the value of the domain

property:

<body>

<script type="text/javascript's>

window.alert ("You have reached the "+document.domain+" domain!") ;
</scripts>

</body>

If this code were placed on any page at http://javascriptcity.com, an alert saying ‘“You have
reached the javascriptcity.com domain!” would be sent to the viewer.

NOTE

When using this property locally without a Web server, the returned value may be an
empty string rather than a domain name.

The formname Property

The formname property isn’t actually a property itself. Any time you name a form, you create
a formname property, but the property is actually the name of the form and not formname. To
see the meaning of this, take a look at a page with a form on it. The following code will give
you an HTML page that includes a form:

<body> The form is given a name fo create a property

<form name="funform">

<input type= "button" name="funb" value="You can click me I suppose" />
</form>

</body>

213


http://javascriptcity.com

214

JavaScript: A Beginner’s Guide

This code creates a document.funform property from the name="funform” attribute in the
opening <form> tag. While this doesn’t do much on its own, it does allow you access to the
form elements within the form.

The funform property actually has properties under it, which are named after the elements
of the form. You could access the button you used in the form from its name="funb” attribute
using document.funform.funb to get to it; however, even this doesn’t let you do much by itself.

You need to dig down one more level. The value property allows you to set or change the
value of the contents of a form element. These contents are usually set in the value attribute of
the form element’s tag. In the form here, you could change the value of the text on the button
by accessing its value property using document.funform.funb.value and assigning it a new
value.

The following example shows how you could use the onclick event handler to make the
button text change when the button is clicked:

<body> The button text is changed by giving it a new value
<form name="funform">

<input type="button" name="funb" value="You can click me I suppose"
onclick="document.funform.funb.value='Thanks, you clicked me!';" />
</form>

</body>

Figure 9-5 shows how the page and the button will look before the button is clicked. Notice
that the button shows the text that was set in the value attribute of its input tag. Now take a look
at the button in Figure 9-6, after it has been clicked. The text on the button has been changed!
The button lets you know that you clicked it, and it is displaying manners by saying “Thanks”
to you for the click.

It should be noted that while this will work, modern browsers can simply access each form
element and its value by assigning it an id and using the document.getElementBylId() method
instead of going through the form’s name first.

3 Example - Muzilla Firefux
File Edit ‘iew History Bookmarks Toolks  Help

@ = € X dar [ |tz phpifiguesichifigts. il i~ | |G| conge 5
85 Most Visited M Gotting Starked 3] Latest Hoadines
Dicabler [ Cookiess [ Lsse 57 Former W) Images () Infarmation () Mscelianeouss /' Outine® | & Heces 4% look+ {2 view Source® . Uptions® D €
LR G

“f'ou can click me | suppose

Dens M | B |(Pimeatsemsanar| ~

Figure 9-5 The browser display before the button is clicked



Chapter 9: The Document Object 215

3 Example - Mozilla Firefox
Fle Edit View History Bookmarks Tools Help

O - ¢ % o (e & ) s 3

18 Most Visited M Getting Starked | Latest Headines
&) Disable= B Coakies= |1 €55+ £ Forms= ) Imoges= €0 Intormation= (3 Misceflancous= o Outine= | o Resize= 4% Tooks= {i] View Source= . Options= v 8 8

pane M | | B |(Plmcnsomstmniinc| ~

Figure 9-6 The browser display after the button is clicked

The forms Property (Array)
The forms property is an array that has an entry for each form on a Web page. The array gives
you an alternative to using the formname property; however, you still need to study arrays in
Chapter 11 before you can look into this array in more detail.

As with the other similar properties, you can use the length property in the form of
document.forms.length to find out how many forms are on the page.

The images Property (Array)
The images property is another array. This array has an entry for each image on a Web page.
As with the other similar properties, you can use the length property in the form of document.
images.length to find out the number of images that are in an HTML document.

Another thing this property can be used for is to detect what browsers support the Image
object in JavaScript. This is helpful if you wish to preload an image. Preloading an image is
a good idea when using image rollover scripts (which you will create in Chapter 16) and can
also be useful if you want to place in the viewer’s cache file an image that will be used on
another page within your Web site, to make that page load more quickly for the viewer.

To check whether a browser supports the Image object, you can place any code that needs
the Image object within an if block. The if block will test for the existence of the document.
images property, as shown in the following example code:

if (document.images)
JavaScript Statements -

}

Notice that all you need inside the parentheses is document.images. If this property exists,
it returns true (since anything besides null would be treated as true—basically a short way

This is where you place the code that needs
the document.images property to work




216

JavaScript: A Beginner’s Guide

of saying !=null), and the statements inside the block are executed. If the property does not
exist, the block is ignored, and the older browsers are happy that they don’t have to try any of
that code.

To preload an image, you first need to create a new instance of the JavaScript Image object.
The following code shows the syntax used for creating a new instance of the Image object:

var varname= new Image (width, height) ;

You replace varname with the name you want to give to this instance of the Image object. You
replace width with the width, in pixels, of the image you wish to use, and replace height with
the height, in pixels, of the image.

So, if you want to create an instance of the Image object named myimage, where the image
would have a width of 100 pixels and a height of 75 pixels, you could use the following code:

var myimage= new Image (100,75) ;

The width and height parameters are optional. You can simply create the instance of the object
without them as well:

var myimage= new Image () ;

Next, you need a way to define what image will be used (like the source [src] attribute in
an image tag). The Image object comes with an src property that allows you to do this. You
just have to set it by giving it a value. The following code shows how this is done:

var myimage= new Image () ;
myimage.src= "smile.gif";

Now the browser will try to load the image at the local address of smile.gif. You can also
use a full URL if you need to do so. Since the image tries to load here without the need to be
displayed, it is being preloaded.

TIP

Preloading is usually done in the head section of a document (or in an external script file
that is called in the head section) so that the image starts loading as soon as possible.

To put all of this together, you need to place this code inside your if block so that it does
not get run by browsers that don’t support the Image object. The following code puts both
pieces together and places the script inside the head section of a document. This will preload
the image for later use.

<head>
<script language="javascript"s>
if (document.images) {

var myimage= new Image (); 4————————— A new insfance of the Image object is created
myimage.src= "smile.gif";

}

</script> The object is given a value for its

</head> src property, preloading the image

This does the job of preloading your image so you can use it later.



Chapter 9:  The Document Object

To preload more than one image, you need to create an instance of the Image object for
each image you want to preload. So, if you want to preload three images, you could use the
following code:

<head>
<script type="text/javascript"s>
if (document.images) {

var myimage= new Image () ; o )
myimage.src= "smile.gif" ;:'7 The first image is preloaded

var yourimage= new Image () ; . .
X s . "__|7 The second image is preloaded
yourimage.src= "friendly.gif";
var herimage= new Image() ; Lo .
herimage.src= "happy.gif" ;jiThe third image is preloaded
}
</script>
</head>

This preloads three images for you. The new instance yourimage preloads an image with the
filename friendly.gif. The instance herimage preloads an image with the filename happy.gif.
You can add more images, using the same technique, if you’d like.

The lastModified Property

The lastModified property holds the value of the date and time the current document was
last modified. This is used mostly for informational purposes, such as displaying the date the
document was last modified so the viewer knows when you last updated your page. The value
of this property depends on your browser, as different browsers have different results if you
write the last modified date on the page.

Consider the following code, which writes the value of the document.lastModified
property into a Web page to display the last modified date and time:

<body>
<hl>My Always Updated Web Page!</H1l>
<script type="text/javascript's>
document .write ("Last Updated: "+document.lastModified) ;
</scripts>
</body>

Figure 9-7 shows the result of this when viewed in Mozilla Firefox.

When writing the date of the last modification on the page, the differences only matter in
terms of space on the page. Some layouts may need to have extra space arranged for the longer
version of the property.

The layers Property (Array)

The layers property, yet another array, has an entry for each layer tag on the page, and you can
use the length property in the form of document.layers.length to find the number of layers on
a page. The layer tag was used in Netscape Navigator 4 as a way to create different sections

217



218

JavaScript: A Beginner’s Guide

3 Example - Muzilla Firefux
File Edit Miew History Boolmarks Tools Help

@ = € X e [ [ HeusEsz2_phptiguresichoitign? bt 7~ | |Gz Googe P
151 Most Visited 8 Gotting Starked 7| Latest Headines
& Deabler B Cookess |3 Cose 7] Former W] Images+ ) Informaton= (1 mecelanecuss ' Outiner | & Receer 4% 1ook+ ] view Sourcer Y Options+ v 8 8

My Always Updated Web Page!

Last Tpdaled. 02082008 23 30 .52

Dane M | | B |(lmeasemssmnivinc| ~

Figure 9-7 The last modified date when viewed in Mozilla Firefox

of a page (which could be layered) and access them for scripting. In modern browsers, it
is no longer used, as each element can be accessed by other means (such as the document.
getElementByld() method).

Since this property is only available in version 4 of Netscape Navigator, you can use this
property to see whether the browser being used is Netscape Navigator 4. You can test for the
document.layers property in the same way you tested for the document.images property, which
is nice and short:

if (document.layers) {
window.alert ("You have Netscape Navigator 4!");

This is useful if you need to make certain scripts are backward-compatible with Netscape
Navigator 4.

The all Property

Whereas the layers property helps you to detect Netscape Navigator 4, the all property can
help you to detect Internet Explorer 4 or higher. The all property was created to give JavaScript
access to all the objects on a page. Again, this is better done in modern browsers using other
methods such as the document.getElementByld() method.

So, to see if the viewer is using Internet Explorer 4 or higher, you could use the following
code:

if (document.all) {
window.alert ("You have Internet Explorer 4 or better!");
}



Chapter 9:  The Document Object 219

The links Property (Array)

The links property, another array, holds a value for each link (such as <a href="url”>) and
linked area of an image map (such as <area href="url”>) on a page. You can find out how
many links are on the page by using the document.links.length property.

The referrer Property
The referrer property is used for informational purposes and holds the value of the URL of
the page that the viewer was on before arriving at your page (the referring page). While this
can be useful, the viewer doesn’t always come in with a referring URL (such as when using
a bookmark or typing in the address), so the value could be nothing. Also, the value of this
property isn’t always correct, because different browsers may consider different types of things
as referring the viewer to the new page, rather than just links.

To use this property, you could send an alert to the viewers of a page telling them where
they were before they got to your page. Placing the code in the following example into the
document would do the trick:

<body>
<script type="text/javascript"s>
window.alert ("You came from "+document.referrer+"!");
</script>
</body>

So, if the referring page were http://www.pageresource.com/webdes.htm, an alert saying “You
came from http://www.pageresource.com/webdes.htm!” would be sent to the viewer.

The title Property

The title property holds the string value of the title of the HTML document. The title is set
inside the <title> and </title> tags of a page.

You can use the title property to display the title of the page to the viewer someplace other
than in the top bar of the window. The following code would allow you to do this:

<head>

<titles>Lions, Tigers and Bears!</title> «————The title of the document is set here
</head>

<body>
<script type="text/javascript"s>

document .write ("<hl>" + document.title + "</hls"); 4 Theftitleis shownasa
</scripts heading to the viewer
Lions and tigers and bears were what I saw when I went to ...
</body>

This displays your title as a heading on the page. Figure 9-8 shows the result of this when
viewed in a browser.


http://www.pageresource.com/webdes.htm
http://www.pageresource.com/webdes.htm

220

JavaScript: A Beginner’s Guide

¥ Livns, Tigers and Bears! - Mozilla Firefox

File Edit ‘iew History Bookmarks Tools Help

@ = € 3 e [0 ez phpinguresichsifigus.hemi vy -] [ICle] socas P
18 Most visited R Getting Started 3| Latest Headines
Dicabler [ Cookiess [ Lsse 7 Former W) Images (@ Infarmation () Mscelianecuss /' Outiner | & Hecoes 4% look+ {2 view Source® . Uptions® D €
LR -

Lions, Tigers and Bears!

Laons amd lgers and bears were wht T saw when Twent Lo

e M | B |(Phmeatsematr| ~

Figure 9-8 The title of the document is shown as a heading on the page

The URL Property

The URL property holds the value of the full URL of the current document. This information
can be useful if you print it at the bottom of your HTML page, because it will show the page
URL for anyone who prints out your page.

While you could just type the URL at the bottom on your own, this could become tedious
when it needs to be done on numerous pages. This is where this property can be handy, because
you can cut and paste a little script to each page rather than type the various URL addresses
each time. An example of writing the URL address on the page is shown in the following code:

<body>
<hl>Buy Something!</hl>
If you don't buy something I will be really upset so you had better...

<br/><br/>
<script type="text/javascript"s>
document .write ("You are at: "+document.URL) ;
</scripts>
</body>

Figure 9-9 shows the result of the preceding code in a browser. The last line of the page
tells the viewer the current location. The figure shows a local file address, but it would show a
regular URL if the page were online.

The URLUnencoded Property

The URLUnencoded property returns the URL of the document without any encoding. For
instance, if there is a filename with a space in it, the property will return the space rather than
a %20 in its place. For the URL http://www.pageresource.com/my script.html, the document.


http://www.pageresource.com/myscript.html

Chapter 9:  The Document Object

3 Example - Muzilla Firefux
File Edit ‘iew History Boolmarks Tools Help

O - C X G (D % ] [Cfose
|‘§.Nost\’isitcd 'Gcﬂ:inustarbcd @ | Latest Hoadines

Dicabler [ Cookiess [ Lase 7 Former W) Images () Infarmation (0 Mscellaneouss /' Outine® | & Heczes 4% look+ {2 view Source® . Uptions® e €
] G

Buy Something!
IEyou don't buy something I will be really upset so you had better...

Yo are at tiledfEfrr_phpdhmaresfch9figls himl

e M | B |(Pimeatstmncniar| ~

Figure 9-9 The URL of the document is shown at the end of the page contents

URL property would return http://www.pageresource.com/my%?20script.html. The document.
URLUnencoded property returns http://www.pageresource.com/my script.html, the URL
without the encoding for the space. Note that at the time of this writing this property was only
available in Microsoft Internet Explorer (of the three browsers mentioned in this book).

Ask the Expert

Q: so many of these properties were arrays that I couldn’t really use yet. Will I ever use
them for anything?

A: The reason the arrays weren’t discussed in more detail is that you haven’t yet learned
how arrays work. When you do, you will be able to make better use of the properties that
create arrays because you will know how to access the array and what you can do with the
elements of the array when you access them.

Q: The referrer property is cool! Is there any way I can write that information to a file
each time a visitor drops in so that I know where my visitors are coming from?

A: Unfortunately, client-side JavaScript cannot save information in a file (other than cookies,
which are only useful to an individual viewer); thus, you can’t use this property to track
the URL addresses of referring pages in a personal file. To do this, you would need to use a
server-side language to get the information and save it in a file on the server.

(continued)

221


http://www.pageresource.com/my%20script.html
http://www.pageresource.com/myscript.html

222

JavaScript: A Beginner’s Guide

The creation of a formname property through naming a form was a little confusing.

Then, trying to change the value of a form element by using its name and a value
property made it more confusing. Can I see another example, perhaps with a text box
or something other than a button?

This method of accessing form elements is not used as often with modern browsers. More

often than not, a newer method such as getElementById() will be used, with which you are
already familiar. If it is still confusing, do not fear. You have an entire chapter on the use of
JavaScript with forms later in the book (Chapter 14).

Using the Methods of the Document Object

The methods of the document object allow you to do some new things that you haven’t been
able to do yet. Table 9-2 lists the methods with a short description of each. Because a number
of these methods are browser-specific (as with the properties) at the time of this writing, only
some specific methods are described in more detail following the table.

Method

Description

attachEvent()

Attaches a function to an event, so that the function runs when the event
occurs (Internet Explorer only)

createAttribute()

Creates an attribute with a name that is sent to it as a parameter

createAttributeNS()

Creates a new attribute in a particular namespace

createCDATASection()

Creates a new CDATA section

createComment()

Creates a comment with the value that is sent to it as a parameter

createDocumentFragment()

Creates a new document fragment

createElement()

Creates an element of the type sent to it as a parameter

createElementNS()

Creates an element in a particular URI and a particular type sent to it as
parameters

createEntityReference()

Creates a new entity reference

createEvent{()

Creates an event

createEventObject()

Creates an event object for the purpose of passing event information

createNodelterator()

Creates a node iterator object

createNSResolver()

Creates a namespace reso|ver

createProcessinglnstruction()

Creates a processing instruction

Table 9-2 The Methods of the Document Object



Chapter 9:  The Document Object

Method Description

createRange() Creates a range object

createStyleSheet() Creates a style sheet for the document to use (Internet Explorer only)
createTextNode() Creates a text string from the value sent fo it as a parameter

createTreeWalker()

Creates a treewalker object

detachEvent()

Detaches a function from an event (Internet Explorer only)

elementFromPoint()

Returns the element object that appears at the location that is sent to it in
two parameter values (pixels from left and pixels from top)

evaluate() Returns a result based on the parameters sent fo it

execCommand() Executes a command on the document when the document is in design
mode

getElementByld() Returns a reference to the object with the ID attribute that is sent fo it as

a parameter

getElementsByClassName()

Returns references to the elements with the class name that is sent fo it as
a parameter

getElementsByName()

Returns references to the objects with the name attribute that is sent fo it
as a parameter

getElementsByTagName()

Returns references to the elements with the tag name that is sent fo it as
a parameter

getElementsByTagNameNS()

Returns references to the elements with the tag name and namespace
sent to it as parameters

getSelection() Returns the value of a string of selected text in the document

hasFocus() Returns a Boolean value based on whether or not the document has focus

load() Loads an XML document

mergeAttributes|) Copies attributes from an object

open() Opens a new document that allows you to write its contents using write()
or writeln() statements

close() Closes a new document that has been opened with the open() method

queryCommandEnabled() | Returns a Boolean value based on whether or not a command sent fo it

as a parameter can be executed

queryCommandindeterm()

Returns a Boolean value based on whether or not a command sent fo it
as a parameter is in the indeterminate state

queryCommandState()

Returns a Boolean value based on whether or not a command sent to it
as a parameter has executed

queryCommandSupported)

Returns a Boolean value based on whether or not a command sent to it
as a parameter is supported

Table 9-2  The Methods of the Document Object (continued)

223



224

JavaScript: A Beginner’s Guide

Method

Description

queryCommandValue()

Returns the current value of the document for the command that is sent to
it as a parameter

recalc()

Recalculates the dynamic properties in the document

releaseCapture()

Releases the mouse capture from the document

setActive() Sets an object as active, but does not give it focus
write() Allows you to write a string of text into an HTML document
writeln() Allows you to write a string of text into an HTML document, but ends the

line with a JavaScript newline character

Table 9-2  The Methods of the Document Object (continued)

NOTE

Not all of these properties work cross-browser. You can see more information on these
properties by visiting http://developer.mozilla.org/en/DOM/document#Methods and
http://msdn.microsoft.com/en-us/library/ms531073(VS.85).aspx.

The getElementByld() Method

The getElementByld() method is one that you have been using extensively in the book already.
It allows you access to an element by the value of its id attribute. As you already know, if you
have the following code, you can access the element with this method:

<div id="some text">This is some text.</div>

Since the id attribute of the div element has the value of some_text, the document.
getElementByld() method can access the div element using that value as a string parameter:

var text element

document .getElementById("some text");

As you have done before, you could make use of an event that occurs on this element and
script a reaction to the event.

The getElementsByClassName() Method

This method allows you to get an array filled with all the elements in the document that have
the specified class name (from a CSS class) sent as a parameter. For example, to obtain all of
the elements with a class name of number_one, you could use the following code:

var my class =

document .getElementsByClassName ("number one") ;

This can be a good way to access a particular group of elements on the page. Since it deals
with arrays, this method will be discussed in more detail in Chapter 11.


http://developer.mozilla.org/en/DOM/document#Methods
http://msdn.microsoft.com/en-us/library/ms531073(VS.85).aspx

Chapter 9:  The Document Object

The getElementsByTagName() Method

This method allows you to get an array filled with all the elements in the document that have
the specified tag name sent as a parameter. For example, to obtain all of the image elements in
the document, you could use the following code:

var all images = document.getElementsByTagName ("img") ;

Since it deals with arrays, this method will be discussed in more detail in Chapter 11.

The open() and close() Methods

The open() method allows you to open a new document and create its contents entirely with
document.write() or document.writlen() statements. When the open() method is called, the
browser looks for these statements so that it can write the new page. Once the write() and/or
writeln() statements are completed, you need to use document.close() to finish the new page.

To get an example of the use of the open() method, suppose you want to write a new page
based on the name of the viewer. To do this, you not only need to use the open() and close()
methods, but also need to create a formName property to use so that you can grab the name
entered by the viewer in a text box.

Start with the code for the body section of the initial page. You need a form with a text box
and a way to invoke a function that will create the new document. The following code shows a
way that you can do this (save the file as document_open.html):

<body>
<strong>Enter your name in the box below, then click

the button to see a personalized page!</strong> The form is given an id

<br />

<form id="newp" onsubmit="newpage() ;"> =

Name: <input type="text" id="yourname" size="25">

<br/><br/>

<input type="submit" value="Submit"s> The text box is given an id
</form>

<script type="text/javascript" src="document open.js"></script>
</body>

This sets up your script, giving you a form with an id of newp and a text box with an id of
yourname. It also has a button to submit the form. You now need to create the newpage()
function in your external JavaScript file so that this form will work.

The newpage() function needs to grab the contents of the text box and assign it to a variable.

It then needs to open your new customized page in the browser window. The following code
shows how this can be done (save the file as document_open.js):

The value of the text box contents is assigned to a variable

function newpage () {
var thename = document.getElementById("yourname") .value;

document .open () ; <—|

A setup for a new document is opened

225



226

JavaScript: A Beginner’s Guide

The new document uses these
statements to know what to display

document .write ("<hl>Welcome!</hl>") ;
document .write ("Hello, "+thename+", and welcome to my page!");
document.close () ;

}

The setup for the new document is
closed, allowing it to be displayed

The first thing the function does is to grab the contents of the text box. To get the contents of
the text box, you need to use the value property, which you add to the end to get document.
getElementBylId(“yourname”).value. This value is then assigned to the thename variable for
easy use within your document.write() commands.

Once you have that value, you are ready to open the new page. To do this, you use the
document.open() command, which allows you to use a series of document.write() statements
until the document.close() command is used. You use the document.write() statements to write
a greeting to the viewer on the page.

You can now try this out by opening the HTML page in your browser. Figure 9-10 shows
the initial page with the form (the page before the form button is clicked). This is where the
viewer can enter a name and click the button.

Figure 9-11 shows the result of entering the name “John” in the text box and clicking the
button. The new page appears with a greeting!

TiP

The open() and close() methods can be useful to make pages on-the-fly based on
variables like names, favorite foods, or other things for which you may want to
customize a new page.

3 Example - Muzilla Firefux
Hle Edt Wiew Hctory Bockmarks Took Help

@ = € 3 tar ([ ]meutitssz phoffiguesichyidonment openhimi A ] [l sooe A
1] Most Visited 1 Gotting Started 5 | Latest Headines

© vieabler [ Coakest [ o5+ £ Forme M| Imagese (@) Informavons (7 Mscellaneouss ' Cutiner | & Beszer ¥ look+ ] view Sourcer . Options® v & 0
Enter your name in the hox hclm then click the button to sec a personalized page!

Mame: |

Dens M | | B |(imcatmmstonirinc| ~

Figure 9-10 This is the page that allows the viewer to enter information



Chapter 9:  The Document Object

3 Muzilla Firefux

File Edit Miew History Boolmarks Tools Help

@ = € X ar ()] HeuiE:iz pholtiqueschoitionz piml 17 +] [[Clx] so0s ya)
1 Most Visited 1 Gotting Started 5 | Latest Headines

S ieabler [ Coakest [ o5 £ Forme M) Images+ () Informavons (0 Mscelaneouss o Cutiner | o Raseer ¥ Took+ £ view Sourcer . Options® X e 0
Welcome!

Hello, Tohn, and welcome to my pagel

e M | | B |(Pimeatstmnaniar|

Figure 9-11 Once the button is clicked, the viewer will get a new page similar to this one

The write() Method

You started using the write() method early in the book, so you should know quite a bit about
how it works already; but here’s a brief description of this method, as a refresher.

The document.write() method is used to write a string value to the page. The following
code would write “hi there” in the body of an HTML document:

<body>

<script type="text/javascript">
document .write ("hi there");
</script>

</body>

The writeln() Method

The writeln() method works the same way as the document.write() method, but adds a
JavaScript newline character (\n) at the end of the statement. Recall that Chapter 3 discussed
how the JavaScript newline character works—it only places a new line in the page source code
to make it easier to read.

TIP

While the newline character only affects the appearance of the source code when using
document.write(), it can be used to create new lines in display elements created by
JavaScript such as alert, prompt, and confirm boxes.

227



228  JavaScript: A Beginner's Guide

The appearance of the page itself is not affected by the JavaScript newline character.
Recall the example from Chapter 3 that split the code into two different lines with the newline
character:

<body>

<script type="text/javascript"s>

document .write ("<strong>JavaScript Rules!</strong>\n This is fun.");
</script>

</body>

Since the document.writeln() method adds a newline character at the end of the statement, you
could rewrite the preceding code using the following document.writeln() statements:

<body>

<script type="text/javascript">

document .writeln ("<strong>JavaScript Rules!</strong>") ;
document .writeln(" This is fun.");

</script>

</body>

This would put the lines of code on two different lines in the page source, but would not affect
the appearance of the page in the browser.

Creation Methods

There are also methods of the document object (such as createElement(), createAttribute(),
and createTextNode()) that allow you to create various elements or nodes on the page using
JavaScript. To make use of them, though, the new content must be appended as a child of an
existing node in the DOM. This is where DOM node properties and methods are needed.

DOM Node Properties
The DOM node properties are listed in Table 9-3.

Property Description

attributes An array of all of the attributes in the specified node; the name and value
properties of this property can be used to access the attribute name or attribute
value for each member of the array

childNodes An array of all the child nodes of the specified node

className Returns the value of the class attribute of the specified node

clientHeight Returns the height, in pixels, of the specified node

clientWidth Returns the width, in pixels, of the specified node

dir Returns the value of the direction of the text in the specified node (ltr or rt)
firstChild Returns the first child node of the specified node

Table 9-3 The DOM Node Properties



Chapter 9:  The Document Object 229

Property Description

id Returns the value of the id of the specified node

innerHTML Returns the HTML code (text, image code, tags, etc.) within the specified node,
such as all of the HTML code within a div element

lang Returns the language value of the specified node

lastChild Returns the last child node of the specified node

nextSibling Returns the node following the specified node

nodeName Returns the name of the specified node (such as div for a div element)

nodeType Returns the type of the specified node

nodeValue Returns the value of the specified node (such as the text within a div element or
the value of an attribute)

offsetHeight Returns the offset height of the specified node

offsetWidth Returns the offset width of the specified node

ownerDocument Returns the document object that contains the specified node

parentNode Returns the parent node of the specified node

previousSibling

Returns the node before the specified node

scrollLeft Returns the difference between the left edge and the left edge in view of the
specified node

scrollTop Returns the difference between the top edge and the top edge in view of the
specified node

scrollHeight Returns the entire height (including anything hidden and viewable via a scroll
bar) of the specified node

scrollWidth Returns the entire width (including anything hidden and viewable via a scroll
bar) of the specified node

style Returns the style object of the specified node

tablndex Returns the tab index of the specified node

tagName Returns the tag name (in uppercase) of the specified node

title Returns the value of the title attribute of the specified node

Table 9-3 The DOM Node Properties (continued)

When Table 9-3 mentions the specified node, a node works much like how you worked
with elements in previous chapters. For instance, you might have the following HTML code:

<body>
<div id="divl" title="All about me!">
This page is about me, me, and... me!
</divs>

</body>



230

JavaScript: A Beginner’s Guide

If you wanted to obtain the value of the title attribute of the div element, you could use
document.getElementByld() to grab the div element by its id of div1l. This would be the
specified node for the DOM node title property. Then, you could access the title property of
the element node, as in the following code:

Assigns the value of the

element’s title property
to a variable
|

Gets the element by its id and assigns it to a variable

var me div = document.getElementById("divl") ;4—,
var me title = me div.title; =
window.alert ("The title of the div element is" + me title);

Alerts the value to the viewer

This works just like object properties, as you learned in the previous chapter. The me_div.title
property returns the string value “All about me!” which is the value of the div element node’s
title attribute.

Knowing this, you can use the DOM node methods in the same way.

DOM Node Methods
Table 9-4 lists the DOM node methods.

Method

Description

addEventListener()

Adds an event listener fo the specified node to run a function on the
event sent to it as a parameter

appendChild() Appends a node as the last child of the specified node

attachEvent() Attaches an event to the specified node to run a function on the event
sent to it as a parameter

blur() Removes focus from the specified node

click() Executes the click event on the specified node

cloneNode()

Creates a clone of the specified node

efachEven efaches an event from the specitied node
detachEvent() Detach t from the specified nod
ispatchEven xecutes an event on the specitied node

dispatchEvent{() Execut t on the specified nod

ocus ives focus fo the specitied node

focusl) Gives focus fo the specified nod

getAttribute() Returns the value of the attribute name sent to it as a parameter on the
specified node

getAttributeNS() Returns the value of the attribute name and namespace sent to it as a
parameter on the specified node

getAttributeNode() Returns the attribute node of the attribute name sent to it as a
parameter for the specified node

getAttributeNodeNS() Returns the attribute node of the attribute name and namespace sent to

it as parameters for the specified node

Table 9-4 The DOM Node Methods



Method

Chapter 9:  The Document Object

Description

getElementsByTagName()

An array of all the child element nodes with the tag name sent fo it as
a parameter in the specified node

getElementsByTagNameNS()

An array of all the child element nodes with the tag name and
namespace sent to it as parameters in the specified node

hasAttribute() Returns true if the attribute name sent to it as a parameter exists on the
specified node, or false if not

hasAttributeNS() Returns true if the attribute name and namespace sent to it as parameters
exist on the specified node, or false if not

hasAttributes() Returns true if the specified node has any attribute nodes defined, or

false if not

hasChildNodes()

Returns true if the specified node has any child nodes. or false if not

insertBefore() Inserts a node sent to it as a parameter before the node sent to it as a
second parameter inside the specified node
normalize() Normalizes the specified node

removeAttribute()

Removes the attribute node for the attribute name sent to it as a
parameter from the specified node

removeAttributeNode()

Removes the attribute node for the attribute node object reference sent
to it as a parameter from the specified node

removeAttributeNS()

Removes the attribute node for the attribute name sent to it as @
parameter with the namespace sent fo it as a parameter from the
specified node

removeChild()

Removes the child node sent fo it as a parameter from the specified node

removeEventListener()

Removes an event listener from the specified node

replaceChild()

Replaces the child node sent to it as the second parameter with the
child node sent to it as the first parameter in the specified node

scrollintoView()

Scrolls the specified node into view in the browser window

setAttribute() Sets an attribute node’s name (first parameter) and value (second
parameter) for the specified node

setAttributeNode() Sets an attribute node as the attribute node object sent to it as a
parameter for the specified node

setAttributeNodeNS() Sets an attribute node as the attribute node object sent to it as a
parameter with the namespace sent to it as a parameter for the
specified node

setAttributeNS() Sets an attribute node’s namespace (first parameter), name (second

parameter), and value (third parameter) for the specified node

Table 9-4 The DOM Node Methods (continued)

231



232  JavaScript: A Beginner's Guide

NOTE

When you see properties or methods listed that use namespaces, these are used mainly
in XML documents and will not be referred to frequently in this book.

As mentioned earlier, to make the creation methods of the document object useful by
adding the created node to the document, the DOM node method, such as appendChild() or
insertBefore(), is needed to add the new node to the document.

For instance, you might have the HTML code used earlier, as follows:

<body>
<div id="divl" title="All about me!">
This page is about me, me, and... me!
</divs>
</body>

This code has a div element node with a child text node (and attribute nodes). If you want to
create another div element as the last child node of the divl element node, you could use a
combination of document.createElement(), document.createTextNode(), and the DOM node
method appendChild().

First, go into the JavaScript code and grab the divl element by its id:

var me div = document.getElementById("divl");
Next, create the new element node using document.createElement():

var inner div = document.createElement ("div") ;

After that, create the text node for the inner_div node by using the document.createTextNode()
method:

var inner div text = document.createTextNode ("More about me...")

Next, use the DOM node method appendChild() to add the text node as a child of the new
inner_div node:

inner div.appendChild(inner div text);

Finally, use the DOM node method appendChild() to add the inner_div node to the document
structure as the last child element of the me_div node:

me div.appendChild (inner div);

This adds your new div node at the end of the original div element (but before the original
element is closed, since it will be a child node). Thus, the document structure for the HTML
code would now be like this (though it won’t show up using a “View Source” command):

<body>
<div id="divl" title="All about me!">
This page is about me, me, and... me!



Chapter 9:  The Document Object

<div>

More about me...
</div>

</div>

</body>

These properties and methods for the DOM nodes will be useful to you as you create more

complex scripts. You will use the innerHTML and style properties quite often through the
remainder of this book, as well as some of the other DOM node properties and methods.

gpr9_l.html %
iprjs9_1.js

Add a DOM Node to the Document

This project allows you to practice using the new document and DOM node
properties and methods you have learned in this chapter.

Step by Step

5.

Create an HTML page with the following code for the body section and save it as pr9_
1.html:

<body>

<div id="divl" title="Gosh!">

Whatever I feel like I want to write...

</divs>

<script type="text/javascript" src="prjs9 1l.js"></scripts>
</body>

. Create an external JavaScript file and save it as prjs9_1.js. Use it for steps 3-5.

. Get the value of the title attribute of the element with the id of “div1” and send that value as

an alert to the viewer.

. Create a new div element with the text “See you!” and add it to the document structure as a

child of the div element with the id of “div1”.

Save the JavaScript file and open the HTML file in your browser to view the results.

Try This Summary
In this project, you used your knowledge of the properties and methods of the document object
and the DOM nodes to alert a DOM node property and to create a new div element in the
document’s structure.

233



234

JavaScript: A Beginner’s Guide

Creating Dynamic Scripts

As you have seen, JavaScript gives you access to all of the elements in the document

with the various methods such as document.getElementByld() and document.
getElementsByTagName(). Once you have access to the elements, you can also access their
style attributes (typically initially set by a style sheet) to make changes to such things as their
locations, colors, borders, sizes, or just about any other part of the element’s style attributes
using the style DOM node property.

Styles in JavaScript
When setting styles using Cascading Style Sheets (CSS), you may set up something like the
following in your CSS code (save it as dyn_01.css):

#divl { color:#000000; background-color:#FFFFFF; }
#div2 { border-style:solid; border-width:1px; border-color:#000000; }

This gives you style attributes for two ids, divl and div2. Thus, if you had the following
HTML code (save as dyn_01.html), the div elements would use the preceding styles in their
presentation on the Web page:

The CSS file is linked to the document here

<head>
<link rel="stylesheet" type="text/css" href="dyn 0l.css" />
</head>

<body>

<div id="divl">

I am in divl. It seems like a nice place. The div element with
</div> an id of “div1”

<div id="div2">
I am in div2. It's a little fancier here.
</div>
<script type="text/javascript" src="dyn 0l.js"></script>
</body>

The div element with
an id of “div2”

The JavaScript file is called here

The HTML code is linked to the CSS code via the link tag. Thus, the divl element is going
to display as simple black text on a white background and the div2 element is going to have a
plain, solid-black border around it.

As you can see, this page is using ids for each div element—so not only can you access
those elements’ ids with the CSS code, you can also access the elements via their ids in the
JavaScript code. So, you can start out your JavaScript file (called in the preceding HTML
code—save as dyn_01.js) with some code to grab both div elements by their ids by using the
document.getElementBylId() method:

var dl = document.getElementById("divl") ;
var d2 = document.getElementById("div2") ;

Now you have variables for both elements.



Chapter 9: The Document Object 235

If you want to alter the styles that were set up in the CSS code via JavaScript, you’ll need
to make use of the style property that is a part of each element node. Then, JavaScript uses the
same name as the CSS selector to access that particular property. For instance, if you wanted to
change the color of the text in the divl element to green, you would use the following code:

var dl = document.getElementById("divl") ;
var d2 document .getElementById ("div2") ;
dl.style.color = "#00FF0O";

In the CSS code, the selector color is used to alter the element’s foreground color. In JavaScript,
it is also the name of the property used to alter it after accessing the element’s style property.

What if the CSS selector is not all one single word? For example, the background-color
selector would not work in JavaScript if you used it the same way as in the CSS code. The
following code attempts to change the background color to green:

var dl = document.getElementById("divl") ;
var d2 = document.getElementById("div2") ;
dl.style.background-color = "#00FFO0O";

This wouldn’t work, because JavaScript doesn’t allow the hyphen (-) character as part of a
property name. Instead, JavaScript puts both words together and capitalizes the first letter of
any additional words after the first word. Thus, the CSS selector background-color becomes
backgroundColor in JavaScript (also, something like border-right-color would become
borderRightColor).

The JavaScript code could be rewritten as follows to make the change effective:

var dl = document.getElementById("divl") ;
var d2 = document.getElementById("div2") ;
dl.style.backgroundColor = "#00FFO0O0O";

This will change the background color of the divl element to green. The only issue now is that
this will happen as soon as the script runs, which in this case is probably before the viewer ever
notices there was another background color on the divl element in the first place. To make
this more useful, you can use this ability to access an element’s style and combine it with your
knowledge of handling events (covered in Chapter 7) to create a script that makes style changes
in reaction to user events.

Coding a Dynamic Script
Now that you know how to alter an element’s style properties, you can alter them in
reaction to user events to create dynamic scripts. This offers you numerous possibilities
to alter just about any style property in reaction to just about any event. Here, you will
continue with the same CSS, HTML, and JavaScript files you have been using to create a
dynamic, event-driven script.

With the current CSS and HTML code in place, you now can code the JavaScript to create the
reactions to the events that will trigger your changes. Thus, if you want to alter the background



236

JavaScript: A Beginner’s Guide

color of the divl element and also alter the border of the div2 element when the mouse moves
over the divl element, you could add the event handling code to the JavaScript to react to the
event and make the style changes in the function handling the event:

var dl = document.getElementById("divl") ;
var d2 = document.getElementById("div2") ;

dl.onmouseover = function|() {
dl.style.backgroundColor = "#00FFO0O0";
d2.style.borderWidth = "7px";

}i

This will make the changes to the appearance of the div elements when the mouse moves over
the div1 element.

To make the script more complete, you could also change the values back when the mouse
moves off the divl element:

var dl = document.getElementById("divl") ;
var d2 = document.getElementById("div2") ;

dl.onmouseover = function() {
dl.style.backgroundColor = "#00FFO0O0O";
d2.style.borderWidth = "7px";

}i

dl.onmouseout = function() {
dl.style.backgroundColor = "#FFFFFF";

d2.style.borderWidth = "1lpx";

}i

Save the JavaScript file and open the HTML file in your browser. You should be able to
move the mouse over the first div element to see the changes and to see the changes go back to
the original look when the mouse moves off the first div element.

Of course, you can also alter the entirety of the HTML code within a given element using
the DOM node innerHTML property.

The innerHTML Property

The innerHTML DOM node property allows you to change the HTML code that is inside of a
given element. For instance, you could start out with the following HTML code:

<body>

<div id="divl">

What is 2+2°?

</div>

<div id="div2">

<a href="answer.html" id="answer link">Get the answer</a>
</div>

</body>



Chapter 9:  The Document Object

This code sets up a div element node with an id of div1, another div element node with an id
of div2, and the link with an id of answer_link. Now, if you want to change the HTML code

in the div1 element so that it displays the answer for the viewer when the link is clicked, you
can use the click event on the link to start the script in motion and then change the innerHTML
property on the divl element node to change the contents of that element from the question to
the answer:

var dl = document.getElementById("divl") ;
var a_link = document.getElementById("answer link");

answer link.onclick = function() {
dl.innerHTML = "That is easy, the answer is <strongs4</strong>!";
return false;

}i

Recall that in order to keep this link from being followed when clicked, you add the return
false statement after performing the desired actions.

When run, this script changes the content inside the divl element on the page, so that the
HTML code would now be the following (though it will not be seen using the browser’s “View
Source” command):

<body>

<div id="divli">

That is easy, the answer is <strong>4</strong>!

</divs>

<div id="div2">

<a href="answer.html" id="answer link">Get the answer</a>
</divs>

</body>

As you can see, this can be a handy way to make dynamic changes to the content of a Web page.

TIP

To make the script accessible to those without JavaScript, a default link destination
(answer.html) is used. Including the answer text on the linked page allows users without
JavaScript to still click the link and obtain the answer to the question.

Using what you have learned in this chapter to access the DOM and use the properties
and methods of the document object and the DOM nodes, you can build scripts to make any
number of alterations to the document’s appearance or content.

237



238  JavaScript: A Beginner's Guide

Trying out Property Changes

gpr9_2.html %
iprjs9_2.js

Seecerscrncorssnans

This project allows you to practice using the new style and innerHTML properties
you have learned in this chapter.

Step by Step

5.

Create an HTML page with the following code for the body section and save it as pr9_2.html:

<body>

<div id="divi">

When will I update this page?

</divs>

<div id="div2">

<a href="answer.html" id="c link">Find out!</a>

</divs>

<script type="text/javascript" src="prjs9 2.js"></scripts>
</body>

. Create an external JavaScript file and save it as prjs9_1.js. Use it for steps 3-5.

. Write some code so that when the link is clicked, the background color of the div element

with the id of div1l changes to #CCCCCC and the content of the same element changes to
the following:

<strong>Right now!</strong> Was that quick or what?

. Make sure the same answer content is included in a separate HTML file named answer.html

for those without JavaScript enabled.

Save the JavaScript file and open the HTML file in your browser to view the results.

Try This Summary
In this project, you used your knowledge of the style and innerHTML properties of DOM
nodes to make style and content changes to the Web page.

y Chapter 9 Self Test

The object is an object that is created by the browser for each new HTML page
that is viewed.

2. The property of the document object returns the URL of the document that

referred the viewer to the current document.



10.

11.

Chapter 9:  The Document Object

. You can use the DOM node property style to alter the style sheet attributes of an element.

A True
B False

. The method of the document object allows you to get an element by the value

of its id attribute.

A getElementsByClassName()
B createElement()

C getSelection()

D getElementByld()

. The appendChild() DOM node method allows you to add a child node as the first child node

of a specified node.
A True
B False

. Which of the following would be the value of the document.domain property if you were

viewing a Web page at the URL http://www.pageresource.com/html/index.html?
A pageresource.com
B www.pageresource.com/html/index.html
C www.pageresource.com

D http://www.pageresource.com/html/index.html

. The property of the document object is an array that contains all of the anchor

(<a>) tags on the page.

. The DOM node property allows you to change the HTML content of an

element node.

. The property holds the value of the date and time the current document was

last modified.

The Document Object Model (DOM) allows JavaScript (and other scripting languages) to
access the structure of the document in the browser.

A True
B False

You can use the title property to display the title of a Web page someplace other than in the
top bar of the browser window.

A True
B False

239


http://www.pageresource.com/html/index.html?
www.pageresource.com/html/index.html
www.pageresource.com
http://www.pageresource.com/html/index.html

240  JovaScript: A Beginner's Guide

12. Which property returns the complete URL of the current document?
A domain
B referrer
C URL
D title
13. How does the writeln() method differ from the write() method?
A 1t adds the equivalent of an HTML <br /> tag at the end of the line.
B It adds the equivalent of an HTML <p> tag at the end of the line.
C It adds a JavaScript newline character at the end of the line.
D It is exactly the same as the write() method.
14. How is a formName type property created in JavaScript?
A When a form is given a name, the name of the form becomes the property name.
B When a form is given a name, the string formName is used as the property name.
C The forms aren’t given names; instead, formName is used as the property name.
D

When the form is given a name, an fis added to the beginning and is used as the
property name.

15. What statements are most common between a document.open() and a document.close()
statement?

A HTML commands
B document.write() and document.writeln() statements
C Only document.writeln() statements

D Only window.alert() statements



Chapter 10

Window Object



242  javaScript: A Beginner's Guide

Key Skills & Concepts

Using the Properties of the Window Object
Using the Methods of the Window Object

The JavaScript window object gives you access to more properties and methods you can use
in your scripts. By using the window object, you will be able to do a number of new things,
such as prompt the user for information, open new windows, confirm an action by a viewer,

and more.

An Introduction to the Window Obiject

The window object is created for each window that appears on the screen. A window can be the
main window, a frame set or individual frame, or even a new window created with JavaScript.
It differs from the document object in that the window object contains the document object (as
well as many other objects, such as history, navigator, and so on). This object makes available
for use in your scripts a number of new properties and methods that are directly under the
window object.

In previous chapters, you have used the alert() method of the window object within your
scripts. As you will recall, the alert() method enables you to pop up a message for the viewer.
You will now see a number of new methods of this object that do things such as confirm a
viewer’s action or prompt the viewer for information, and this will enable you to add more
interactivity to your scripts.

The first thing that you will look at are the properties of the window object. Then the next
section will introduce and explain the methods that you can use with this object.

Using the Properties of the Window Object

To begin your study of the window object, take a look at its properties that you can use, which
are listed and described in Table 10-1. Some of the properties are discussed in more detail
following Table 10-1.

NOTE

As in previous chapters, some of the properties and methods listed in this chapter are
not cross-browser or only work in modern browsers. For more information and more
complete listings, see: https://developer.mozilla.org/en/DOM/window and http://

msdn.microsoft.com/en-us/library/ms535873(VS.85).aspx.


https://developer.mozilla.org/en/DOM/window
http://msdn.microsoft.com/en-us/library/ms535873(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms535873(VS.85).aspx

Chapter 10:  Window Object

Property Description

closed Holds the value based on whether or not a window has been closed

defaultStatus Defines the default message displayed in the status bar

document A reference to the document object of the window

frames An array that represents all of the frames in a given window

history Provides information on the browser history of the current window (discussed in
Chapter 8)

innerHeight Returns the height, in pixels, of the viewable area within the window

innerWidth Returns the width, in pixe|s, of the viewable area within the window

length Holds a value equal to the number of frames in a window

location Holds the value of the current URL of the window

name Enables a window to be named

opener Refers to the window that opened another window

outerHeight Returns the width, in pixels, of the entire browser window

outerWidth Returns the width, in pixels, of the entire browser window

parent Refers to the frame set that contains the current frame

screen.availWidth

Returns the available width of the browser window in pixels

screen.availHeight

Returns the available height of the browser window in pixels

screen.colorDepth

Returns the color depth of the screen in bits per pixel

screen.height

Returns the total height of the screen in pixels

screen.pixelDepth

Returns the bit depth of the screen in bits per pixel

screen.width

Returns the total width of the screen in pixels

self Provides another way to reference the current window

status Enables a message to be placed in the status bar; overrides defaultStatus

top A reference to the top window containing a frame, frame set, or nested frame set
window A reference to the current window

Table 10-1  Properties of the Window Object

The closed Property

The closed property is used to check whether or not a window has been closed by the
viewer. The way it is normally used is with the name of a window, followed by the closed
property, such as in the following example:

if (windowname.closed) ({
JavaScript Statements

}

243



244

JavaScript: A Beginner’s Guide

You would replace the windowname part with the name of the window that you wish to check.
This is often a new window that you opened with JavaScript; you will see how to name a new
window later in the chapter in the section “The open() Method.”

You can also use the closed property inside a new window to check whether the window
that opened it has been closed. To do that, you would use closed after the opener property
(discussed soon in “The opener Property” section), as in the following example:

if (window.opener.closed) {
JavaScript Statements

}

This use of the closed property is really handy if you choose to create a new window that
enables the viewer to navigate the main window through links in the new window.

The defaultStatus Property

The defaultStatus property sets the text string that is displayed by default in the status bar
when nothing has been assigned to the window.status property. A change of the window.status
property overrides this setting, because it is only shown as the default.

The defaultStatus property is often set in the load event. This is used mainly to display a
custom message by default when the viewer is not performing an action that would change the
text in the status bar. It can be set at any time, though, so you could set this using other events
besides the load event.

CAUTION

Most modern browsers, by default, do not display status bar text altered by JavaScript,
to keep unscrupulous Web sites from deceiving users with false link destinations and so
forth in the status bar. Thus, the defaultStatus and status properties often do not work
unless browser settings are altered by the viewer. Since it is a security risk fo change
browser settings to allow dltered status bar text, using these properties in your scripts is
not recommended.

The frames Property (Array)
The frames property is an array that holds a value for each frame within a frame set. It is
often used to gain access to the properties of the various frames on a page. Since you have not
studied arrays yet, you can’t do much with the frames property now. You will be learning about
arrays in Chapter 11, however.

You can find the number of frames in a window by using the window.frames.length property.
This is handy if you decide to use the array later to perform tasks on the frames of a page in
sequence.

The innerHeight and innerWidth Properties

The innerWidth and innerHeight properties hold values for width and height of the area
of the window in view, which means that these values do not include scroll bars, menu bars,
toolbars, or other browser features. These properties work in Mozilla Firefox and Opera,



Chapter 10:  Window Object

but (at the time of this writing) not in Internet Explorer. However, Internet Explorer offers
alternatives to obtain these values (document.body.clientWidth and document.body.clientHeight).

So, if you wanted to obtain the width of the content area you have available to your script,
you could use the following code:

var mywin width = window.innerWidth;

Of course, if you want to use different HTML code for the browser depending on the
available innerWidth of the window, you could use the following code:

The value of the innerWidth property is The conditional operator is used for a
assigned to the mywin_width variable quick if-else statement to determine how
. . o . . . many pixels the width of the div element
var mywin width = window.innerWidth; A shou|dpbe based on the available space
var div_width (mywin width >= 800) ? "750px" : "400px";

document .write ('<div style="width:'+div_width+'; background-color:#CCC;">"') ;
document .write ('Some text for the new div element.');
document .write ('</div>") ;
The value obtained for the width of the div element is
used on the div element that is written on the page

This will determine whether the viewer has 800 pixels of viewable width. If so, the width of
the div element will be set to 750 pixels. Otherwise, the div element will have a safer width of
400 pixels. The background color should span the full width of the div element, allowing you
to see the difference when the script is run with different browser widths.

To make this more cross-browser, you can grab the value for Internet Explorer users as
well using the document.body.clientWidth property. You can also make sure a default value is
set for the mywin_width variable for those using older browsers:

var mywin width = 450; // Sets a low default value
if (window.innerWidth || document.body.clientWidth) {
mywin width = (window.innerWidth) ? window.innerwWidth :
document .body.clientWidth;
}

var div_width = (mywin width >= 800) ? "750px" : "400px";

document .write ('<div style="width:'+div_width+'; background-color:#CCC;">"');
document .write ('Some text for the new div element.');
document .write ('</div>"') ;

This time, a low default value is set for the mywin_width variable for those browsers that
don’t support either property (meaning those browsers will get a div element with the
smaller width of 400 pixels). The script then checks to see whether either property exists
in the browser being used. If so, the mywin_width variable is reassigned the value of the
innerWidth property if it exists, or the document.body.clientWidth property otherwise. After
that, the script works the same way as before, creating a div element with a width based on
the available content area.

245



246

JavaScript: A Beginner’s Guide

The length Property

The length property tells you how many frames are in a window, just like the window.frames
Jdength property. This just shortens it to window.length (which is often more convenient when
you are writing code).

The location Property

The location property holds the current URL of the window. It is also its own object with its
own properties and methods. You have used this property already to create button links (back
in Chapter 7).

You can also use the location property to cause instant redirection of the browser to a new
page (if your page has moved to a new location, for instance). However, make sure that you
don’t use this technique on a page that is listed with search engines that do not allow quick
redirection, because they may drop the page from their listings.

If a page has been moved and you want to redirect the viewer without any delay, you could
just give the location property a new value with a script in the head section of the page, as
shown in the following code:

<head>

<title>Page has moved</title>

<script type="text/javascript"s>
window.location="page2.html"; «——

</script>

</head>

<body>

Lacking JavaScript? Click the link below for the new page then!

<br />

<a href="page2.html">New Page</a>

</body>

This sends the viewer away instantly, since no
action needs to take place to set this in motion

This would just take the viewer to the local URL page2.html. An option was included in the
body section for browsers without JavaScript. Otherwise, the preceding code would load a
blank page for those viewers and nothing would happen.

NOTE

Instant redirection is best suited for testing purposes on pages that are not indexed by a
search engine, since the rules on redirection vary from one search engine to the next.

This property will become quite useful to you when you build scripts for navigation in
Chapter 14.

The name Property

The name property holds the name of the current window and also enables you to give a
window a name. If you want to give the main window a name, you could assign to this
property the name you want to use. If you want to test to see that it worked, you could write
the value of the property to the page in the body section.



Chapter 10:  Window Object

The following code shows an example of assigning a name to a window and then writing
the name into the body of the page:

<body> The window is given its own name
<script type="text/javascript"s>
window.name="cool window" ;s
document .write ("This window is named "+window.name) ;
</script>
</body> The name of the window is written to the screen

The script gives the window a name, and then writes that name into the document. Figure 10-1
shows the result of this script in a browser. Notice how the name cool_window is written on
the screen.

The opener Property

The opener property is used to reference the window that opened the current window. This is
often used in new windows opened using the open() method, which you will see later in the
chapter in the section “The open() Method.” By using the opener property in a new window,
you could detect whether the main window has been closed using the closed property you
learned earlier. The following example shows how you could perform this test:

if (window.opener.closed)

This adds the closed property after the opener property to check whether the window that opened
the current window has been closed. This is helpful if you want to perform an action in the
main window through the new one, because you could check to see that it still exists before
doing anything.

3 Example - Muzilla Firefux

File

6 = € X0 e (17| Aeuesiz phofhguresfchalufiurhim vy -] [ICle] socas P
151 Most Visited 8 Gotting Starked 3| Latest Headines
© visabler [ Coakest [ o5 £ Former M| imagest (@) Informavons (7 Mscelaneouss o Cutiner | § Baczer ¥ Took+ ] View Sourcer . Options® v & 8

This window is named coel window

Edit iew History Bookmarks Tools  Help

M | ) |(Pimeatstnnta| ~

Figure 10-1 The name of the window is written on the screen

247



248

JavaScript: A Beginner’s Guide

The parent Property

The parent property is only used when there are frames on a page. It enables you to access the
parent frame set of the current frame. This is helpful when you wish to change a property in
one frame from another frame. I will discuss this in more detail when I cover JavaScript and
frames in Chapter 15.

The self Property

The self property is another way of saying “the current window” in JavaScript. It is used
like the window object and can access the properties of the current window just like the window
object. The self property is useful if you have a lot of windows with names and want to be sure
you are using a property of the current window and not one in another named window.

The status Property
The status property contains the value of the text set in the status bar of the window. Changing
this property overrides the content of the status bar set with the defaultStatus property.

CAUTION

Most modern browsers, by default, do not display status bar text altered by JavaScript,
to keep unscrupulous Web sites from deceiving users with false link destinations and so
forth in the status bar. Thus, the defaultStatus and status properties often do not work
unless browser settings are altered by the viewer. Since it is a security risk fo change
browser settings to allow altered status bar text, using these properties in your scripts is
not recommended.

The top Property
The top property is used to access the top window out of all the frame sets (which could be
nested). This is a little different from the parent property, which only goes to the top of the
frame set that contains the current frame. The top property instead goes all the way to the top
window, even if the window contains nested frame sets.

You will see more on the use of this property when you get to Chapter 15 on JavaScript
and frames.

Use the location and innerWidth

prl0 1.html
i prjslo_1.3s . : I
R st compatible by adding the document.body.clientWidth property.

Properties

This project enables you to practice using the location and innerWidth properties
of the window object. Also, you will help make the script more cross-browser



Chapter 10:  Window Object 249

Step by Step

1. Create an HTML page, leaving the body section blank other than including a set of script
tags to reference a JavaScript file named prjs10_1.js just before the closing </body> tag.
Save the file as pr10_1.html.

2. Create a JavaScript file and save it as prjs10_1.js. Use this file for steps 3—6.
3. Set a default value for a variable named mywin_width.

4. Change the value of mywin_width to the value of the window.innerWidth property or the
value of the document.body.clientWidth property, if one of these properties is available to use.

5. If the value of mywin_width is greater than or equal to 1000, send the viewer to the
URL http://www.pageresource.com. Otherwise, send the viewer to the URL http://www
Jjavascriptcity.com (use the window.location property).

6. Save the JavaScript file and open the HTML file in your Web browser. Try changing the
width and then reopening the page with the new width to see which Web site it gives you.

Try This Summary
In this project, you were able to use your knowledge of the location and innerWidth properties

of the window object to create a script that will redirect a viewer based on the available width
of the viewing area in the viewer’s browser.

Using the Methods of the Window Object

Now that you know how to use the properties of the window object, you can move on to
using window methods. Table 10-2 lists a number of the methods of the window object with a
description of each and particular methods are described in more detail next.

The alert() Method

You have used the alert() method extensively in earlier chapters in example scripts. This pops
up a message to the viewer, and the viewer has to click an OK button to continue. Recall that
the syntax is like the following alert:

window.alert ("Hi therel!");

This just gives the viewer the “Hi there!” message as an alert on the screen.
As noted when the alert() method was first introduced, this method is often shortened in
scripts using syntax like the following:

alert ("Hi there!"):


http://www.pageresource.com
http://www.javascriptcity.com
http://www.javascriptcity.com

250

JavaScript: A Beginner’s Guide

Method Description

alert() Pops up an dlert to the viewer, who must then click OK to proceed
back() Takes the window back one item in its history list

blur() Removes the focus from a window

clearlnterval()

Cancels the action of a setlnterval() method call

clearTimeout()

Cancels the action of a setTimeout() method calll

close() Closes a browser window

confirm() Displays a confirmation dialog box to the viewer, who must then click OK or Cancel
to proceed

escape() Converts special characters in a string to hexadecimal characters

find() Enables the viewer to launch the Find utility in the browser to find text on a page

focus() Gives the focus to a window

forward() Takes the window one item forward in its history list

home() Sends the viewer to the home page the viewer has set in the Web browser settings

moveBy() Moves a window by certain pixel values that are sent as parameters

moveTo) Moves the top-left corner of the window to the coordinates sent as parameters

open() Opens a new browser window

print() Prints the contents of the window

prompt() Pops up a prompt dialog box asking the viewer to input information

resizeBy() Resizes a window by moving the bottom-right corner by certain pixel values that are
sent as parameters

resizeTo) Resizes an entire window to the height and width that are sent as parameters

scrollBy() Scrolls the viewing area of a window by certain pixel values that are sent as
parameters

scrollTo() Scrolls the viewing area of the window to the specified coordinates that are sent as

parameters

setlnterval()

Calls a function each time a certain amount of time passes

sefTimeout() Calls a function once after a certain amount of time has passed
stop() Stops the window from loading its content
unescape() Converts an escaped string back to its normal characters

Table 10-2  Methods of the Window Object



Chapter 10:  Window Object 251

How can you get away with that? Remember that JavaScript is fairly lenient, so you are
allowed to take shortcuts like this in some instances. In this case, it is permissible because the
window object is the default object in JavaScript. Since it is assumed to be there, you don’t
need to make the call to it. Instead, you can just call the method, and JavaScript will know it is
a window method.

This type of shortcut will work for all the window properties and methods in most cases.
In fact, the document object you studied in the last chapter is under the window object in the
object hierarchy. You can leave the window part off the document object calls because the
window is assumed to exist.

The cases in which you may need to be more specific are often with new windows and
with the location property.

The confirm() Method

The confirm() method can be used to give the viewer a chance to confirm or cancel an action.
This method returns a Boolean value of true or false, so its result is often assigned to a variable
when it is used.

The following is the syntax for assigning the value to a variable:

var varname = window.confirm("Your Message") ;

You would replace varname with a variable name that you wish to use. You would then replace
the “Your Message” text with the text you wish to have in the dialog box that pops up. So,

if you wanted to assign the result to a variable named is_sure and ask the question “Are you
sure?” you could use the following code:

var is_sure = window.confirm("Are you sure?");

Figure 10-2 shows a sample confirm dialog box that is displayed by the preceding code. Notice
the two buttons the viewer can choose to click: OK and Cancel. Depending on the browser,
this may look slightly different. If the viewer clicks OK, the method returns true. If the user
clicks Cancel, the method returns false. The bad news is that you can’t change the value of
the text in the buttons. You are stuck with OK and Cancel, at least while using the confirm
method.

As a real example of this method, suppose that you want to create a link to another page,
but you want to be sure the viewer wants to leave before being sent away. You could use

[JavaScript Application]

0 Are you sure?

Cancel

Figure 10-2 An example of a confirm dialog box



252

JavaScript: A Beginner’s Guide

the confirm dialog box to find out whether or not the viewer wishes to leave the page. The
following code shows how you can get a confirmation from the viewer and react appropriately.
First, the HTML code:

<body>
<a href="http://www.google.com" id="search link">Go Searching</a>

</body>
Next, use JavaScript to confirm whether the user really wants to leave when the link is clicked:

var s_link = document.getElementById("search link");

s_link.onclick = function() {
var is_sure = window.confirm("Are you sure you want to leave?");
if (!is_sure)

window.alert ("OK. You can stay here.");
return false;

}

The function confirms whether or not the viewer wants to leave

Notice that if OK is clicked and the confirm() method returns true, the viewer is taken to the
linked Web site. If cancel is clicked and the confirm() method returns false, an alert is sent to
the viewer and the function returns false so that the link won’t be followed by the browser (you
can also simply omit the alert and just have nothing happen after Cancel is clicked, by using
only the return false statement.)

Figure 10-3 shows the browser window after the link is clicked on the page. The confirm
dialog box with your “Are you sure you want to leave?” message pops up on the screen.

J Example - Mozilla Firefox
Ble Edt View Higory Boclmarks Tocks Help

e o= © Xt ()| tesgire:sez_phpfti 107103 htmi 7 -] [IGl] cooge P
181 Most Visited M Getting Started 5 | Latest Headines
& Disable= [ Cookics= | €55= ] Forms= M| Images= () Intormation= (3 Miscelancous= o/ Oubline= | & Resize= ¥ Tools= §i] View Source= ' Options= v B 8

Go S

[JavaScripl Application]

0 Are you sure you want bo leave?

o M | | B |(Pimeatsmmnanar| ~

Figure 10-3 A confirm dialog box pops up when the button is clicked



Chapter 10:  Window Object

The find() Method

You can use the find() method to let the viewer find a certain bit of text on your page. It tells
the browser to use its built-in Find utility and enables the viewer to type in what to look for on
the page.

For example, if you wanted to create a button for viewers to click when they want to find
something on your page, you could use the following code:

<form>

<input type="button" value="Click to Find Text"
onclick="window.find () ;" />

</form>

This pops up the Find dialog box in the browser and enables the viewer to search for text
within the page. Figure 10-4 shows the result of this script when it is added to an HTML
document.

This functionality is useful if you have a really long page and want the viewer to be able to
find things more quickly by searching the page.

The home() Method

The home() method is used to send the viewer to the home page the viewer has set in the Web
browser settings. For instance, you could use it to offer viewers a button that will take them to
their selected home page when clicked, as in the following code (at the time of this writing this
method worked in Mozilla Firefox and Opera but did not work in Microsoft Internet Explorer):

<form>
<input type="button" value="Go Home!" onclick="window.home () ;">
</form>

J Examphe - Muzilla Firefox
File Edit ‘iew History Bookmarks Toolks Help

e v € X g [0 ez phpiguresichatojfigus.himi vy | |G| socgs 2

81 Most Visited 4 Gottin Started 3| Latest Headines

S tieabier S Cookiest |3 (o 7] Former M| Images (@ Informavion= (0 Mscelansoust o Gutiner | & Resiza ¥ Tooks (2 view Sourcer Y Uphions® v 8 8
folick o Find Tex Find in This Paps

Tind whet: Gnd Nest
[l matchesso [ 0580 ) [ caned ]

[ wrap | Ole @ Down |

e M | B |(Phmentmstmatir| ~

Figure 10-4 A Find dialog box pops up, enabling the viewer to search for text on the page

253



254

JavaScript: A Beginner’s Guide

The print() Method

The print() method enables the viewer to print the current window. When this method is called,
it should open the viewer’s Print dialog box so that the viewer can set the printer settings to
print the document.

To use it, you could create a button that enables the viewer to print the page they are
viewing:

<form>

<input type="button" value="Click to Print Page"
onclick="window.print () ;">

</form>

This code should open the user’s Print dialog box when the user clicks the Click to Print
Page button. Figure 10-5 shows the result of running this script in a browser. This dialog
box may appear differently for different viewers, depending on the browser and printer
being used.

3 Examphe - Muzilla Firefox

Fle Edit Miew Higtory Bookmarks Took Help
o v € X dar (17| fesipesiz=_phpjfiqueesichatuffigus.himi vy +| [IiGle]wocg A
U5 Most visited e Gotting Started 5| Latest Headines
S visabler S Coakest [ o5 £ bormer M) Imagest () Informavens (7 Mscalaneouss o Outiner | & Heseer ¥ look+ £ view sourcer . Uptions® v 8 86
Chck to | 'nntPoge S—
Print [2||§|
Printes
Mame: Fiopedtiaz,
Statur:  Ready
Tope Micasoll Offices Document Inege Witk Dives
‘whete:  Mictosolt Document Imaging ‘writer Post:
Comment: [ Piinit n fi
Prink range Copies
@A Numbes of copies: |1 3
O Pages  fram |1 buc .E .B i
Collate
Pried Frames
s el el o e szt
The selected frame
Each lrame sepatataly I Di( i | Dﬂ:ci ]
o M | | B |Dentmmsnenvin| ~

Figure 10-5 The viewer’s print options pop up when the print button is clicked



Chapter 10:  Window Object 255

The prompt() Method

The prompt() method is used to prompt the viewer to enter information. Using this method,
you can do things based on what the viewer enters into the text box at the prompt.

First, you need to see the syntax for this method. As with the confirm() method, the result
(what the viewer enters) is assigned to a variable for later use. The following is an example of
the syntax:

var varname = window.prompt ("Your Text","Default Entry");

You replace varname with a variable name, and replace “Your Text” with the message that
you want to send to the viewer (usually a question). The second parameter, “Default Entry”,
enables you to enter a default entry for the viewer. Often this is left as “”, which is a blank
entry. However, you could set it to something if you would like to have a default answer ready
for the viewer to use.

You could use the prompt() method to get the viewer’s name and send an alert while the
page is loading. The following code prompts the viewer to enter their name and then includes
the name in a message that is displayed to the viewer in an alert:

The viewer gets a prompt asking for a name here

var thename = window.prompt ("What's your name?","");

if (thename.length < 1) {-« This tests fo see whether the
thename = "Anonymous Visitor"; input box was left blank

}

window.alert ("Hello "+thename+"!") ;

The name input by the viewer is sent in an alert

Notice that the script checks to see if thename.length is less than 1. When using the length
property on a string, it returns the number of characters in the string. So, if the length is less
than one character, the prompt field was left blank by the viewer. If the viewer leaves the name
field blank, the viewer will be named “Anonymous Visitor”; otherwise, the variable thename
keeps the value entered by the viewer. Then, the viewer gets an alert with the value of the
thename variable in a greeting. Figure 10-6 shows the result of this script when nothing is
entered by the viewer in the prompt.

Instead of placing the name into an alert, you could write it on the page for the viewer
instead. In this way, the viewer isn’t bothered with an alert, and the name appears as though it
is part of the page. First, start with the HTML code:

<body>

<div id="greeting">

<hl>Hello! Welcome!</hl>

</divs>

<div id="content'">

This page talks about what I think about...
</divs>

</body>



256

JavaScript: A Beginner’s Guide

J Examphe - Mucilla Firefox

Fls Edt Wew Hgoy Bookmarks Tock Help &
o r € X tar [ feuifiesizz phpihguresichatuigus. i vy -] [ICls] soogs 3l
1] Most Visited 1 Gotting Started 3 | Latest Headines

S tieabler S Cookiest |3 Cuo E7] Formes M| Images @ Informavion= (0 Mccelansoust o Gutiner | & Resizar ¥ Took~ (2] view Sourcer Y Uphions® v 2 86

[JavaScripl Application]

Dene M | | ) |(Phmentssnntnt| ~

Figure 10-6 An alert greets the viewer

The HTML code uses two div elements, one for the greeting and one for the page content.
Inside the greeting div element, a default greeting is provided for those without JavaScript. For
those with JavaScript, you will use the prompt() method to offer them the opportunity for a
more personal greeting. You could use the following JavaScript code:

var greet = document.getElementById("greeting") ;

var thename = window.prompt ("What's your name?","");
if (thename.length < 1) {
thename = "Anonymous Visitor";

}

greet.innerHTML = "<hl>Hello " + thename + "! Welcome!</hl>";

This script gets the greet element by its id (greeting), obtains the value of thename from the
prompt, and then changes the value of the greet element’s innerHTML property to a more
personal greeting.

Figure 10-7 shows the result of this in the browser if the viewer enters the name John at
the prompt.

The open() Method

The open() method is the method that enables you to open a new window with JavaScript. This
method takes three parameters, the third of which sets a number of options that the window
may need.



Chapter 10:  Window Object

3 Example - Muzilla Firefux
File Edit ‘ew History Bookmarks Toolks Help

@ = € X tar [ | eiesiz phpifiguesichalujfgus i | [IGls] oo e
15 Most Visited ## Gottin Started 5] Latest Headines
Dicabler [ Cookiess [ Lsse 7 Former W] Images () Infarmation (0 Miscellanecuss /' Outiner | & Hecze 4% look+ £2] View Source® . Uptions® v & €
LR G

Hello John! Welcome!

Thus pawe talks about whal T thmk about...

Dere M | D |(imatmatoeeg| ~

Figure 10-7 The viewer’s name is written on the page affer the viewer has entered it at a
prompt

The general syntax for using the open() method is shown in the following example:

window.open ("URL", "name", "attributel=value,attribute2=value") ;

The first parameter, “URL”, is replaced with the URL of the HTML document that is to be
opened in the new window. The “name” parameter is replaced with the name you wish to give
to the window. The last parameter enables you to add attributes for the new window. These
attributes are set by using “yes”, “no”, or a numeric value on the right side of the equal sign.
Notice that each time an attribute is set with a value, there is a comma before the next one and
no spaces in between.

If you want to open a window with the features of the current window, you could do so by
leaving off the last parameter with the attributes. The following example would open a new
window with a local URL of newpage.htm and a name of my_window; it will have the same
features as the window that opened it:

window.open ("newpage.html", "my window") ;

Standard Attributes

If you want to include window features, you need to learn some of the attributes that you can
use with the windows. Table 10-3 lists the standard attributes that you can use as part of the
last parameter in the open() method.

If you begin to use the attribute parameter, you should note that once you place something
in the attribute parameter, any attribute not defined will now default to “no” instead of copying
the main window. So, if you want to open a basic new window with a width of 400 pixels and
a height of 300 pixels, you could use the following code:

window.open ("newpage.html", "my window", "width=400,height=300") ;

257



258

JavaScript: A Beginner’s Guide

Attribute | Possible

Name Values Function

width number Defines the width of the new window in pixels

height number Defines the height of the new window in pixels

directories | yes, no, 1,0 | Defines whether or not the new window has directory buttons (like the
What's New or Link buttons near the top of the browser)

location yes,no, 1,0 | Defines whether or not the new window has a location box to type in a
new URL

menubar yes, no, 1,0 | Defines whether or not the window has a menu bar (File menu, Edit
menu, and so on)

resizable yes, no, 1,0 Defines whether or not the viewer is allowed to resize the new window

scrollbars yes, no, 1,0 Defines whether or not the new window has scroll bars if the contents of
the window are larger than the window’s size

status yes, no, 1,0 | Defines whether or not the new window has a status bar at the bottom

toolbar yes, no, 1,0 Defines whether or not the new window has a toolbar (Forward and
Back buttons, Stop button, and so on)

Table 10-3 Standard Attributes for a New Window

The only feature this window will have is a title bar that shows the title of the document and
the buttons on the top right for the viewer to close or minimize it.

To set the other attributes (which are all Boolean), you can assign them a value of “yes” or
“no” depending on whether or not you want each feature. You may also use 1 for yes and O for no
if you prefer, as they will have the same effect. So, if you wanted to have a 300x200 pixel window
with just a menu bar added (this adds the Forward, Back, Stop, and other similar buttons), you
could use the following code:

window.open ("newpage.html", "cool", "width=300,height=200, menubar=yes") ;

This gives you a new window with the contents of newpage.html, a name of “cool,”
dimensions of 300x200 pixels, and a menu bar.

You can add as many of the attributes as you want inside the quote marks of the third
parameter by separating each one with a comma. Remember that you should include no spaces
between anything and that the entire command should be on one line in your text editor.

NOTE

Due to space limitations, a new window command may occasionally be on more
than one line in the code in this book. Be sure that when you use the code, you
put everything from window.open to the ending semicolon (;) on one line to avoid
JavaScript errors.



Chapter 10:  Window Object 259

The following example opens a window with all the features mentioned in Table 10-3
(again, this takes up more than one line here, but when you enter it in your text editor, the code
should go on a single line):

window.open ("newpage.html", "cool", "width=300,height=200,directories=yes,
location=yes, menubar=yes, resizable=yes, scrollbars=yes, status=yes,
toolbar=yes") ;

This opens a 300x200 pixel window with all the standard features. If you want a viewable
example, you need to make a page named newpage.html and create the code for the main page
to include a window.open() command, as described next.

First, create the code for newpage.html (this is just a short page that has some text in it):

<body>

I am a new window! I am newer than that old window
that opened me, so I am special. Ha, ha!

</body>

Now, create the main page (save as mainpage.html):

<body>

Click the link below to open an arrogant new window

<br /> . . ~ The link is
<a href="newpage.html" id="nwin">New Page</a>- gWenanH

<script type="text/javascript" src="openwin.js"s></script>
</body>

The external JavaScript is called

Finally, create the JavaScript code (save as openwin.js):

The link element is

var nw win = document.getElementById("nwin") ; . .
- assigned to a variable

nw _win.onclick = function() ({
window.open ("newpage.html", "cool", "width=400,height=300, status=yes") ;

return false;
Vi

The anonymous function opens the new window and returns false

The anonymous function works when the link is clicked and launches the new window with
the contents of your newpage.html document. This window is 400x300 pixels and has only a
status bar at the bottom as an added feature. Note that the return false statement is added after
opening the window, so that if the viewer has JavaScript, the newpage.html file will not also
be opened in the main browser window when the link is clicked (if the viewer does not have
JavaScript, the link will work normally and open the newpage.html file in the same window).
Figure 10-8 shows the result of opening the main page in the browser and clicking the link

to open the new window.



260

JavaScript: A Beginner’s Guide

J Examphe - Muzilla Firefox
Ble Edt View Higory Bockmarks Tocks Help

on- C X tar (1) [Heuiiesiz st i w2 -] [Cle] cosas bl
I Most Visited R Gotting Started 3| Latest Headines
S visabler [ Coakest [ o5 £ Formes M) Imagess () Informavons (0 Mscelaneouss . Cutiner | & Besee ¥ look+ £ view Sourcer . Options® v O 8

 link below to open an arrogant new window .

3t):ampl.c Mozilla Firetox

( 31 Tt fee shpifapn estebiat Qfrmicnge id 771

I am a new window! I am newer than that ¢ld windew that
opened me, so Tan specal. Ha, hal

M | | B |(Pimeamasenaner| ~

Figure 10-8 A new window is opened when a link is clicked

Just when you thought there could be no more features to digest...the following section
describes additional options that newer browsers offer.

Extended Attributes
With newer browsers, you can use a number of new attributes for your new windows. The
only trouble is that they may not work cross-browser, so you have to be careful to test the code
to ensure that the attributes you use work in the browsers in which you need them to work.
Table 10-4 lists a number of extended attributes for new windows.

The problem with the attributes in Table 10-4 is that they may not work cross-browser. For
instance, to make the screen position work with Internet Explorer, Mozilla Firefox, and Opera,

Attribute Possible Values | Function

fullscreen yes, no, 1,0 Defines whether or not the window should open in a full screen

left number Defines the distance from the left of the screen for the new window
personalbar | yes, no, 1,0 Defines whether or not the new window has a personal toolbar
screenX number Defines the distance from the left of the screen for the new window
screenY number Defines the distance from the top of the screen for the new window
top number Defines the distance from the top of the screen for the new window

Table 10-4 Extended New Window Atiributes



Chapter 10:  Window Object 261

you need to add all four of the attributes to the last parameter of the open() method. Each
browser will just ignore the attributes that it does not recognize. The following code (changing
the open_win.js file from earlier) opens your newpage.html document in a new 300200 pixel
window in the top-left corner of the screen (0 pixels from the left, O pixels from the top) when
the button is clicked:

var nw_win = document.getElementById("nwin") ;

nw_win.onclick = function() {
window.open ("newpage.html", "cool", "width=400,height=300, status=yes,
screenX=0, left=0, screenY=0, top=0") ;
return false;

}i

The new window is given some standard attributes and then a position
on the screen by using all four attributes (two for each browser)

In this version, you added the new attributes to set the new window at the coordinates (0,0) on
the screen.

Figure 10-9 shows the result of this in a browser after the button is clicked. Notice how the
new window now opens at the top left of the screen.

The other attributes are not as useful at this point; but as the browsers develop further,
some of the attributes may begin to be supported in both browsers in one form or another.

Now back to examining the methods.

The close() Method

The close() method is used to close a window; however, unless your script has certain security
rights, this can only be used to close a window that has been opened by you with JavaScript.

3 Example - Mozilla Firefox |z||§|fz| X
pr v | T P— 2
T am a new window! T am neswer than that ald wandow that page htmi AL {IGl={ Googe Vs
opened me, so L am special 1la, hal
0 Miscelancous= o/ Oukine= J [ Resize= ¥ Tooks= £ View Source= ' Options= v B 8
Do
Done M | | B |(Pimcntmessonivn|

Figure 10-9 The new window opens where you want it to on the screen, at the top left



262

JavaScript: A Beginner’s Guide

To use the close() method, you could modify your newpage.html code to provide a button
at the end of the text that enables the viewer to close the window by clicking it. So, you could
change the code of newpage.html to look like the following code:

<body>

I am a new window! I am newer than that old window

that opened me, so I am special. Ha, ha!

<form>

<input type="button" value="Close Window" onclick="window.close();" />
</form> </body>

The window is closed when the button is clicked

When the button is clicked now, the window.close() method is invoked and closes the window
just like the standard Close button at the top right of a window. If you want to try it out, use
the main page you used in the previous section and click the button to open the new window.
It should offer the new button with the option to close the window, and it should close the
window if you click the button.

The moveBy() Method

The moveBy() method can be used to move a new window to a new location on the screen.
This moves a window by the number of pixels given as parameters in the method call. The
following is the syntax for using this method:

window.moveBy (x-pixels, y-pixels) ;

You replace x-pixels with the number of pixels you want to move the window from left to
right. So, if you want the window to move to the right, you enter a positive number. If you
want it to move to the left, you enter a negative number.

You replace y-pixels with the number of pixels you want to move the window from top to
bottom, with positive numbers pushing the window down and negative numbers pulling the
window up.

For example, if you want to give the viewer the option to move the window by the number
of pixels of your choice, you could add a button to make it do so when the viewer clicks the
button. You could use the following code:

The window will move 50 pixels to the right and 50 pixels down
<body>

I am a new window! I am newer than that old window
that opened me, so I am special. Ha, ha!

<form>

<input type="button" value="Move Window" onclick="window.moveBy (50,50);" />
<br /><br />

<input type="button" value="Close Window" onclick="window.close();" />

</form> </body>

This moves the window 50 pixels to the right and 50 pixels down when the button is clicked.
If you open this from the main window you coded earlier in the chapter, you can see this in



Chapter 10:  Window Object

3 Example - Mozilla Firefox
Fie Edit ‘iew History Boolmarks Tools Help

on- C X tar (D) [reusegezphom irpoge. 77 -] (Gl cooge P
I8 tost Visited 4 Getting Started 5| Latest Headines
& Disabie= [ Coolics= | €55= ] Forms= M| Images= (@ Intormation= () Miscelancous= /' Oubiine= | & Resize= ¥ Tools= §&)] View Source= ' Options= v 0 8

link below to open an arrogant new window

) Example - Mozilla Firefox

[ 121 | s fee_sbwslinguresfchal O ewnage bl 17|

T amn a new window! T e neswer than that old wandow that
opened me, so Tam special Ha, bal

B M | i o e

Figure 10-10 The new window in its initial position when it is opened

action. Figure 10-10 shows the initial position of the new window when it is opened from a
button on the main page.

Figure 10-11 shows the window after the Move Window button is clicked in the new
window. Notice it has moved to the right and down by 50 pixels in each direction.

The way this works, the viewer could continue clicking the button and moving the window
by another 50 pixels in both directions as long as the button is viewable. The window just
continues to move by the number of pixels it has been set to move by in the script. The next
method discussed will move the window to a particular location, so that it will not continue to
move on successive clicks like this one does.

The moveTo() Method

The moveTo() method is used to move a window to a specific destination on the screen based
on the parameters given in the method call. The following is the general syntax for using this
method:

window.moveTo (x-value, y-value) ;

Here, you replace x-value with the number of pixels from the left of the screen where you want
the window to be moved. For example, if you input 300, the window is moved 300 pixels from
the left of the screen. You then replace y-value with the number of pixels from the top of the
screen that you want the window to be moved.

263



264

JavaScript: A Beginner’s Guide

7 Example - Mozllla Firefox

Blo Edt yow Hatory Bockmarls Tocs e
on- C X tar (1Mot pham Ppage.himi w2 -] [Glefooge 7|

181 Most Visited 1 Gotting Started 5 | Latest Headines

& Disabie= [ Coolics= | €55~ ] Forms= M| Images= (@) Intormation= (5 Miscelancous= o/ Oubline= | & Resize= ¥ Tools= §2] View Source= ' Options= v D 9
Click the link below to open an arrogant new window

) Example - Muzilla Firefux

| 1] | FexyfEsjzz _phpitiguresi bl )

1 am a new windew! L am newer than that old windew that
opencd me, 3¢ I am special Ha, hal

[ Move Window! |

e M | | B [(Phmeamasamnaas| ~

Figure 10-11 The window in its new position after being moved

As an example, you could recode your Move Window button in your newpage.html page
to use moveTo() instead of moveBy(). The following is the example code:

<body>
I am a new window! I am newer than that old window
that opened me, so I am special. Ha, ha!

<form>

<input type="button" value="Move Window" onclick="window.moveTo (50,50) ;" />
<br /><br />

<input type="button" value="Close Window" onclick="window.close();" />

</form> </body>
The window will move to the coordinates (50,50) on the screen,
which is 50 pixels from the left and 50 pixels from the top
This time the window would be moved to the coordinates (50,50) on the screen when the
button is clicked. By using your main page code, you can open the window again to test
this out.
To see that this works differently than the moveBy() method, try clicking the button again.

Rather than making another move, it stays in the same place because it has already made it to
its destination.



Chapter 10:  Window Object

The resizeBy() Method

The resizeBy() method is used to resize a window by the number of pixels given in the
parameters sent in the method call. The syntax and usage are the same as for the moveBy()
method; resizeBy() just performs a resize instead. To make the window larger, use positive
numbers. To make it smaller, use negative numbers.

The resizeTo() Method

The resizeTo() method is used to resize a window to a specific dimension in pixels based
on the parameters sent in the method call. The syntax and usage are the same as for the
moveTo() method; resizeTo() just performs a resize instead. You input the new width and
height in place of the coordinates used in the moveTo() method.

The scrollBy() Method

The scrollBy() method is used to scroll a window by the number of pixels given in the
parameters sent in the method call. The syntax and usage are the same as for the moveBy()
method; scrollBy() just performs a scroll instead. To make the window larger, use positive
numbers. To make it smaller, use negative numbers.

The scrollTo() Method

The scrollTo() method is used to scroll a window to a specific destination in pixels based
on the parameters sent in the method call. The syntax and usage are the same as for the
moveTo() method; scrollTo() just performs a scroll to the specified point instead.

The setInterval() Method

The setInterval() method is used to execute a JavaScript function repeatedly at a set interval. The

following is the general syntax for using this method:

window.setInterval (" function ()", time) ;

You replace function() with the name of the function you wish to repeat. You then replace time

with the time (in milliseconds) you want to wait before each repetition of the function.

So, if you really wanted to annoy your viewers, you could use this method to pop up an
alert every 10 seconds (10,000 milliseconds) once the page is viewed. You could do this by
placing the following script inside the HTML of a document:

<body>
<script type="text/javascript's>
function annoy alert () {

window.alert ("Am I bothering you yet?");
}
window.setInterval ("annoy alert()",10000) ;
</scripts>
</body>

marks around the function call

An inferval is set; note the use of quote

265



266

JavaScript: A Beginner’s Guide

Notice that this is a special case in which the function must be called inside quote marks.
Normally, a function must be called outside quote marks. The reason for it here is to keep the
function from executing immediately rather than at the set interval. The function name is being
sent as a string parameter to the setInterval() method, where it is then called after the correct
time lapse.

This, of course, could become quite annoying. The less time set in the interval, the more
annoying it would become. Luckily, the ten-second interval gives you enough time to leave the
page before another alert pops up.

The clearInterval() Method

To end the barrage of alerts from the previous script, you could use the clearInterval() method.
The following is the general syntax for using this method:

window.clearInterval (name) ;

You must replace name with a variable name that has been assigned to the setInterval() method
call you want to clear. The problem is, you didn’t set your setlnterval() call to a variable name
in the previous example.

In order to clear it, you need to adjust your code. The following code is updated and
assigns the setInterval() call to a variable name:

<body>
<script type="text/javascript"> The method call is set to a
function annoy alert() ({ variable for later reference

window.alert ("Am I bothering you yet?");

}

var madness = window.setInterval ("annoy alert()",10000) ;
</scripts>

</body>

You now have a way to use the clearInterval() method, by calling it with the madness
variable as the parameter. So, offer the visitor a button that enables them to stop the madness.
As long as it is clicked between intervals, it will stop the interval from running any further. The
following code gives you a full page with the button for the viewer to click:

<body>
<script type="text/javascript"s The method call is set to a
function annoy alert () { variable for later reference

window.alert ("Am I bothering you yet?");

}

var madness = window.setInterval ("annoy alert()",10000) ;

</scripts>

Click the button below to end the endless barrage of alerts.<br />

<form>

<input type="button" value="Stop the Madness!"
onclick="window.clearInterval (madness);" />

</form>

< /body> This method refers to the first method through

the variable name to cancel its action



Chapter 10:  Window Object 267

Now the viewer can stop the alerts by clicking the Stop the Madness button.
Of course, there are better uses for this method. You will see in later chapters that it can be
handy for clocks and other things that need to be updated at regular intervals on the page.

The sefTimeout() Method

The setTimeout() method enables you to execute a JavaScript function after a certain amount
of time has passed. It differs from the setInterval() method because it is only executed once
(unless it is put inside a loop of some sort). The general syntax is the same as that of the
setInterval() method.

If you want to have only a single alert pop up after ten seconds and not repeat, you could
use the following code:

<body>
<script type="text/javascript"s>
function annoy alert() { The timeout is set, and also set fo a variable

window.alert ("Sign my guest book NOW!") ;

}

var theguest = window.setTimeout ("annoy alert()",10000) ;
</scripts>
</body>

This would send the viewer an alert after ten seconds, demanding that the guest book be signed
immediately.

The reason that you set the method to a variable is so that you could use the next method
in line, the clearTimeout() method.

The clearTimeout() Method

The clearTimeout() method enables you to cancel a setTimeout() call if you call the
clearTimeout() method before the time expires from the setTimeout() call. The general syntax
is the same as that of the clearInterval() method: you use a variable name as a parameter so
that it knows which setTimeout() call to cancel.

So, if you want to give viewers a chance to avoid getting an alert, you could add a button
for them to click within ten seconds. If it is clicked in time, the setTimeout() call is canceled
and no alert pops up. The following is the example code:

<body> . .
<script type="text/javascript"s The timeout is set, and set to
function annoy alert () { a variable for later reference

window.alert ("Sign my guest book NOW!") ;

}

var theguest = window.setTimeout ("annoy alert()",10000);

</script>

Click the button below within 10 seconds to avoid an alert message.<br />

<form>

<input type="button" value="No Alert for Me!"
onclick="window.clearTimeout (theguest) ;" />

£
:;bggzz This method refers to the first method through

the variable name to cancel its action



268  JavaScript: A Beginner's Guide

If the button is clicked in time, the viewer avoids receiving an alert about signing the
guest book.

For now, you have finally finished with the window object methods. In the chapters that

follow, you will use a number of these methods in various scripts.

Ask the Expert

Q:
A:

There are way too many properties and methods here! How am I ever going to
remember all of these?

As you begin using them with more frequency, they will be easier to remember. I remember
the ones I use more often better than those I don’t use much. If you do a lot of coding, it is
good to keep a reference handy, such as this book, in case you need to check the details of

a property or method now and then. I keep a bunch of books and bookmarks to reference
Web sites on hand.

Aren’t pop-up windows annoying to visitors? Should I use them frequently?

Pop-up windows are oftentimes used in a way that will annoy most viewers (such as
opening several new windows at once, requiring pop-up windows to navigate a site,
or opening every navigation link in a new window). Using pop-up windows without a
particularly good reason is not recommended, since these can cause confusion when
navigating a site or irritate viewers desiring to browse in one window or tab. (Note that if
you receive revenue from advertising on your site, you may need to use pop-up ads to earn
revenue. If you do have them, you will want to avoid opening your own pop-up windows in
addition to the ads.)

Most browsers now offer the viewer the option of opening links in new tabs or new
windows via the context menu, so it is best to let the viewer decide how the page should be
opened.

Will I be making window remote controls any time soon?

A new window that changes properties (like the location property) in the main window is a
“remote control.” Though remote controls are not discussed in this book, there are scripts
for these at free script sites on the Web. For now, you want to be sure to master the coding
that you need to create and manipulate a regular new window.

Will I be using the timed methods like setTimeout() and setInterval() often?

They may not come up very often, but you will have a use for them when you need to
build time-dependent scripts such as clocks, slide shows, or Dynamic HTML (DHTML)
animations.



Chapter 10:  Window Object 269

ALERIE] Use the sefTimeout() and confirm()
Methods

pr10 2.html ¢ This project enables you to practice using some of the window methods. You will
: pris1o ’ 2.9s i have the browser wait a certain number of seconds and then ask the viewer to
----------------- et confirm whether or not to stay at the page or move on to an Internet search site.

H

Step by Step

1. Create an HTML page, with the following code in the body section, and save it as pr10_

2.html:

<body>

<hl>Some Info. Here</hls>

<ul>

<li>An interesting point here...</li>

<li>A very interesting point here...</li>

<li>An incredibly interesting point here...</li>

</uls>

<script type="text/javascript" src="prjslO 2.js"></script>
</body>

2. Create a JavaScript file and save it as prjs10_2.js. Use it for steps 3—4.

3. After 20 seconds, have a confirm box display to the viewer asking them if they want to
continue using this Web page. If so, do nothing. If not, send them to the URL
http://www.google.com.

4. Save the JavaScript file and open the HTML file in a Web browser. After 20 seconds, you
should see a confirm box.

Try This Summary

In this project, you were able to use your knowledge of the properties and methods of the
window object to create a timed, interactive script. This allowed you to give the viewer a
choice as to whether to stay at the current Web page or move on to an Internet search site.

b Chapter 10 Self Test

1. A(n) object is created for each window that appears on the screen.

2. The closed property is used to check whether or not a window has been closed by the viewer.
A True
B False


http://www.google.com

270

JavaScript: A Beginner’s Guide

3. The property holds the value of the number of frames within a window.
4. The location property can cause instant redirection of the browser to a new page.

A True

B False

5. The property holds the name of the current window and also allows you to
give the window a name.

6. The calls to properties and methods of the window object can often be shortened because
A The window object is the default object in JavaScript.
B The window properties and methods are assumed to be part of the navigator object.
C There really is no window object.
D The browser assumes the window object is part of the document object.
7. The property is another way of saying “the current window” in JavaScript.
8. Why would this code not work:
onmouseover="window.status='Page 2'; return true;"
A 1t should work without a problem.
B The quote marks are not set correctly.

C Newer browsers do not allow the window status to be changed by default, so the user
would need to change security settings in order for it to work.

D A change in the status property in an onMouseOver event must return false afterward.
9. What is the difference between the parent and top properties?

A The parent property goes to the top of the current frame set, while the top property
goes to the top window of all frame sets on the page.

B The top property goes to the top of the current frame set, while the parent property
goes to the top window of all frame sets on the page.

C The parent property goes to the top of the current frame set, while the top property
goes to the top of the current frame.

D The parent property goes to the top of the outermost frame set, while the top property
goes to the top window of all frame sets on the page.

10. The method pops up a message to the viewer, and the viewer has to click an
OK button to continue.



11.

12.
13.
14.

15.

Chapter 10:  Window Object 271

What value is returned by the confirm() method if the viewer clicks the OK button?
A true
B false
C OK
D 25
The method enables the viewer to print the current window.
The prompt() method is used to the viewer to enter information.

When setting the toolbar attribute as part of the third parameter in the open() method, what
values may the attribute have?

A yes and no only
B 1 and 0 only
C yes, no, true, and untrue
D yes, no, 1, and 0
What is the difference between the setInterval() method and the setTimeout() method?

A The setTimeout() method is used when the viewer needs to take a break from reading,
while setInterval() is used when the viewer needs no breaks.

B The setlnterval() method is used to repeat a function at a set time interval, while
setTimeout() executes a function only once after a set time delay.

C The setInterval() method flashes an advertisement across the screen at a set interval by
default, while setTimeout() is ad-free.

D They both perform the same function.



This page intentional ly left blank



Chapter 11

JavaScript Arrays

273



274

JavaScript: A Beginner’s Guide

Key Skills & Concepts

Defining and Accessing Arrays
Understanding the Properties and Methods of the Array Object
Using Arrays with Loops

Using Associative Arrays

Previous chapters have discussed object properties for which, to use them, you need
knowledge of arrays. In this chapter, you are going to learn about those JavaScript arrays
and what they can do to help you improve your scripts.

You will begin with a basic overview of what arrays are and why they are useful to you.
Then you will learn how to define and access arrays in JavaScript. After that, you will learn
how to use loops to gain access to all the elements of an array during the course of a script.
Finally, you will take a look at associative arrays and how to use them.

What Is an Array?

An array is a way of storing data of similar types for easy access later in a script. In JavaScript,
an array is basically a user-defined object that is typically accessed in a different way than
other objects are accessed. It uses a single variable name to store multiple values (for example,
a list of favorite colors or favorite foods). In a regular array, access to an element is usually
through the use of an index number. An associative array allows access using a string in place
of the number. You will see how to use both of these later in the chapter.
To get an idea of how a regular array works, suppose you have a class full of students
and, with a script, want to be able to quickly print out the name of every student. You could
use regular variables to hold the name of each student, but typing each variable name into a
document.write() statement would take a long time. Instead, you could store each student’s name
in an array, which will allow you to access it more easily with a few lines of code using a loop.
The array would allow you to put together a number and a name, such as in the following
example:

Student 0: Thomas
Student 1: Roger
Student 2: Amber

Student 3: Jennifer

By storing it in a manner like this, you could use the numbers to get the name of each student.
This is where arrays become useful as a way to store information and access it later.



Chapter 11:  JavaScript Arrays

NOTE

Notice that the first student in the array is Student O rather than Student 1. This is
because arrays begin storing values with the number O rather than 1. This will be
discussed in more detail as you move through this chapter.

Why Arrays Are Useful

Why would the use of numbers make it easier for you to access the stored information?
Because, with the use of numbers, you are able to use a loop to cycle through the information,
instead of manually typing each entry. If the list of students in the example becomes long, the
loop would save you quite a bit of typing when you want to have all the names printed onto the
browser screen.

For instance, if you assigned the name of each student in your example list to a variable
and then wrote the names to the screen, you would need to rewrite each variable name in the
document.write() statements. The following code shows an example of this:

var studentO="Thomas";
var studentl="Roger";
var student2="Amber";
var student3="Jennifer";

—— The variables are given values

document .write (studentO+"<br />") ;—
document .write (studentl+"<br />");
document .write (student2+"<br />"
document .write (student3+"<br />"

") ; Each variable value is individucl"y

)
) [~ written on the page
)

7

If you were able to use a loop to repeat a single document.write() statement for each
student, you could avoid writing four separate document.write() statements. An array is a
handy way to store the values (student names), because you can cycle through the values with
a loop instead of writing out each value with a separate document.write() statement—even if
you don’t know the number of students beforehand (by using the length property of the array).

An array is basically a quick way to create an object (since it already has a constructor
function) with a list of properties. A regular object (like the objects you created in Chapter 8)
can be accessed like an array; but it is often easier to create an array, rather than an object,
since you do not need to deal with the constructor function.

Defining and Accessing Arrays

Now that you know what arrays are, you are ready to see how to name, define, and access
arrays in JavaScript.

Naming an Array

You can name an array using the same rules you learned in Chapters 3, 4, and 8 on naming
variables, functions, and objects. Basically, avoid numbers in the first character, avoid spaces,
and avoid using reserved words.

275



276

JavaScript: A Beginner’s Guide

Defining an Array
Defining an array is similar to creating an instance of an object. In fact, one method of defining
an array looks and acts just like the method of creating an instance of an object. That’s what
you are actually doing—creating an instance of the JavaScript Array object.

Since the creation of an instance of an object is already familiar to you, that method is
presented first. The following example shows the general syntax of an array definition in
JavaScript:

var arrayname = new Array(elementO,elementl) ;

You replace arrayname with the name you wish to give to the array, and replace element0
and elementl with the values that each element will have. You can use as many elements as
you like.

To see a real example, you are going to take the student names from the first section of this
chapter and use them as array elements. This array will have four elements, and each one will
be the value of a student’s name. The following example shows the definition of the array, with
the names as string values:

var s_list = new Array("Thomas", "Roger", "Amber", "Jennifer") ;

Now you have the values stored inside a four-element array named s_list. Because the values
are strings, quote marks are used (as with a regular object). The question is, how do you begin
to access the values now that they are in an array?

Accessing an Array’s Elements

To access the elements of an array, you use what is often called an “index number” that allows
you access to each element of the array by its position in the array. For instance, the syntax to
assign the first element of an array to a variable is shown in the following example:

var varname = arrayname[0];

You would replace varname with a variable name and arrayname with the name of the array
you wish to access. The 0 in brackets after arrayname is the index number for the first element
of the array. The index number is 0 because arrays begin counting at O instead of 1; thus, you
need to be careful that you do not get confused about the index number of an element in an
array. The first element has an index number of 0, the second has an index number of 1, the
third has an index number of 2, and so on.

Inside the square brackets immediately following the array name is where you place the
index number of the element you wish to access in the array. To see this in action, consider
again the example of the four students. The array for the name of each student was defined as
in the following code:

var s_list = new Array("Thomas", "Roger", "Amber", "Jennifer");

Now, suppose you want to assign the value of the first element in the array (Thomas,
in this case, since that is the first element in the list) to a variable named tall_student.



Chapter 11:  JavaScript Arrays

Remember that the first element has an index number of 0; so, to get the value of the first
element assigned to the variable, you would use the following code:

var tall student = s list[0];

To see that the value of the tall_student variable comes out as you planned, you could write a
short script to write it on the page. The following example writes the value on the page as part
of a sentence:

The array is defined with four elements

<body>

<script type="text/javascript"s>

var s_list = new Array("Thomas", "Roger", "Amber", "Jennifer");

var tall student = s list [0] ; «——The value of the first array element is assigned to a variable
document .write ("The tallest student in class is "+tall student);
</script>

</body> The value of the variable is printed on the page

You don’t really need to assign the array element to a variable in this case (it just makes
you type more). You could just write the array element into the document.write() statement to
save the extra line of code:

The array is defined with four elements

<body>
<script type="text/javascript">
var s_list = new Array("Thomas", "Roger", "Amber", "Jennifer") ;

document .write ("The tallest student in class is "+s_list[0]);
</script>
</body> The value of the first array element is written on the page

Now you are accessing the array element directly, and you save a little typing in the process.

Other Ways to Define Arrays

You have seen one way to define an array, but there are other methods of doing so that will
come in handy later in the chapter. The following methods of defining arrays will allow you to
use the method best suited for various situations.

Space Now, Assign Later

One method of defining an array is to assign a certain amount of space (elements) to an array,
and then allow the values to be assigned later in the script. This is done using a single number
inside the parentheses when defining the array:

var s_list = new Array(4);

This creates an array named s_list, which will initially have four elements (you can add
elements to an array later if you wish). Keep in mind the index numbers will be 0, 1, 2, and 3,
rather than 1, 2, 3, and 4. In this case, you will give the four elements of the array values later
in the script.

277



278

JavaScript: A Beginner’s Guide

To give an element a value, you just assign a value to it using the array name and the index
number to which you want the value assigned. So, if you want to assign a value of “Amber” to
the third position in the array (index number 2), you would use the following code:

s _list[2] = "Amber";

You can use a line such as this anywhere after the array has been defined. The technique used
in the preceding code also allows you to add elements to an array if you decide you need more
elements later in the script. You can also use a loop to assign all the elements of the array, but
that will be discussed later in the chapter when you work with arrays and loops.

So, suppose you would like to add a fifth element to your s_list array. By assigning it
a value (index number 4), you can add a new name to the array in the fifth position:

s _list[4] = "Pat";
This adds a fifth element to your s_list array with a value of Pat.

Space Now, Assign Numerically Now
Another way you can define an array is very similar to the one just covered. The only
difference is that some or all of the elements of the array are assigned right after the new
array is created.

To see an example, consider the s_list array again. The following code shows how you can
assign the elements of an array right after the line that creates the array space:

var s _list = new Array(4);
s _list[0]="Thomas";

s _list[1]="Roger";

s _list[2]="Amber";

s _list[3]="Jennifer";

This time all four elements are assigned as the array is created. This method is advantageous
if you want to assign each element but do not wish to use one long list of parameters on the
same line. It is also easier to look back and see what value is assigned to which element more
quickly, as there isn’t a need to count across. This can be quite advantageous in a long list of
elements.

As with the other methods, you can still add more elements later in the script by using the
next index number in the sequence.

Array Name, No Parameters
Another option for defining an array is to define it with no parameters. This creates an
array with no elements, but you can add elements later, as with the other options for
defining arrays.

To create an array with no elements, you create an array with no parameters:

var s_list = new Array();



Chapter 11:  JavaScript Arrays 279

This creates an array named s_list with no elements. You can still add more elements later in
the script by using the next index number in the sequence. So, if you decide later that you want
the array to contain one element, you could use the following code:

var s _list= new Array () ; «—— The array is defined
var x = 17;
var y = X+2;

var my message = "Hi!";——

This just fills space and shows that you
can assign values later in the script

s_list[0]="Thomas"; 4——— An assignment is made for the first
(and, so far, only) element of the array

If you assign a value to an element that has a higher index number, the array expands
to have a slot for any elements that come before it. For instance, take a look at the
following code:

var s_list = new Array () ;«—— The array is defined

var x = 17;
var y = x+2; —— Space-filling code
var my message = "Hi!";——

s list[29]="Thomas" ; «— This creates the 30th element in the array and
also causes the array to have 30 elements

The last line of this code assigns the string “Thomas” to the 30th element (index number 29)
in the array. This means that the array went from having 0 elements to having 30. By assigning
a value to this element, the array expands to have enough slots to compensate, and values for
those slots can be assigned later if you wish.

Now that you know how to define arrays in various ways, you need to look at some of the
properties and methods of an Array object in JavaScript.

Understanding the Properties and
Methods of the Array Object

As with other objects, an instance of the JavaScript Array object is able to use various properties
and methods of the Array object. As you will see as you read through the descriptions of the
individual properties and methods of the Array object, you access the properties by using the
array name followed by the property or method name you wish to use.

Properties
Table 11-1 lists the properties of the Array object and provides a short description of each.
Each property is discussed in more detail in the sections that follow.

The constructor Property
The constructor property contains the value of the function code that constructed an array:

function Array() { [native code] }



280

JavaScript: A Beginner’s Guide

Property Description

constructor Refers to the constructor function used fo create an instance of an object

index Used when an array is created by a regular expression match

input Used when an array is created by a regular expression match

length Contains a numeric value equal fo the number of elements in an array

prototype Allows the addition of properties and methods to objects such as the JavaScript
Array object

Table 11-1  Properties of the Array Object

The constructor property is mainly useful for informational purposes or for comparisons. To
access the property, you use the array name followed by the dot operator and the constructor
keyword. The following is the general syntax for using an Array object property:

arrayname.property

You replace arrayname with the name of the array you need to have use the property, and you
replace property with the property you wish to use.

So, to use the constructor property, you need to create an array so that you have an instance

of the Array object to use. Instead of creating a new array, the s_list array from earlier is used
here, allowing you to use the following code:

var s_list = new Array(4);
window.alert (s_list.constructor) ;

This would send an alert with the text function Array() { [native code] } (the constructor
function of the array).

The index and input Properties
To understand the index and input properties, you first need to understand regular expressions
(which are used to match text strings), which requires a lengthy explanation, as provided in
Chapter 13. Discussion of the index and input properties will be saved for this chapter.

The length Property

The length property returns a number that tells you how many elements are in an array.

NOTE

The length property is useful later when you begin using loops to cycle through arrays.
You may need to know the length of the array (in case you add elements after the array
is defined) to make the loop go through each element of the array.



Chapter 11:  JavaScript Arrays

To use the length property, you use the name of the array and then add the length property
afterward. The following code shows an example of the length property being used to tell the
viewer how many elements are in an array:

var s_list = new Array(4)

s _list [0]="Thomas";

s _list[1l]="Roger";

s _list[2]="Amber";

s_list[3]="Jennifer";

window.alert ("The array has "+s list.length+" elements");

This will send an alert that says “The array has 4 elements” to the viewer.

The prototype Property

The prototype property allows you to add properties and methods to an object that already

exists, such as the Array object. By using this property, you can add properties to the object

from outside the constructor function. Keep in mind, however, that a change made with the

prototype property affects each instance of an object that uses the same constructor function.
For example, if you decide that the Array object needs another property for one of your

pages, you could use the prototype property to assign a new property using the following syntax:

Array.prototype.new property=default value;

You would replace new_property with the name you wish to use for your new property and
then replace default_value with a default value for that property.

So, if you want to add a new property named attitude to the Array constructor function on
your page and give it a default value of “cool”, you could use code such as the following:

A new property is given to the Array object for this page A new array is created that
will have the new property

Array.prototype.attitude = "cool";

var s_list = newlArray() i _ . The value of the property
window.alert ("This place is "+s_list.attitude) ;<«——jssentin an alert

This will cause an alert to the viewer of the value of the new property. In this case, the default
value is used because you didn’t change it (more on that soon).

You need to remember that the addition of a property like this affects every array in the
document afterward. So, by adding the property in this way, every array on the page (or every
page that uses the script if it is external) now has this new property that you can access.

The following code shows the use of the prototype property with two arrays on the page.
The first array alerts the default value of your new property, while the second array alerts the
new value. The following example shows how you can use the prototype property using the
new attitude property:

The new property is added
Array.prototype.attitude = "cool";
var s list = new Array() ;= The first array has the new property
windo;. alert ("This place is " +S_1iSt .attitude) ; «—— The value of the property for
this array is sent in an alert

281



282

JavaScript: A Beginner’s Guide

var fish = new Array () ;—— The second array also has the new property
fish.attitude = "wide-eyed"; = The value of the property for
window.alert ("Fish are "+fish.attitude); the second array is changed

The new value of the property
for this array is sent in an alert

The first array and alert are the same as in the previous example. The second array is named
fish. The second array also has the new attitude property; but, rather than keep the default
value, it is changed by using the array name followed by the property and the new value.

The value of the changed property is then alerted to the viewer; thus, the viewer gets an
alert saying “Fish are wide-eyed” after clicking the OK button on the first alert.

Methods

Now that you know the properties of the Array object, this section presents the methods that
you can use to do different things with your arrays. Table 11-2 lists the methods and provides
a description of what each method does. Following the table, each method is described in
more detail.

Method Description

concat() Combines the elements of two or more arrays info one new array

join() Combines the elements of an array into a single string with a separator character

popl) Removes the last element from an array and then returns the removed element if needed

push() Adds elements to the end of an array and then returns the numeric value of the new
length of the array if needed

reverse() Reverses the direction of the elements in an array: the first element is moved to the last
slot and the last element is moved to the first s|of, and so on

shift() Removes the first element from an array and then returns that element if needed

unshift() Adds elements to the beginning of an array and returns the numeric value of the length
of the new array if needed

slice() Pulls out a specified section of an array and returns the section as a new array

splicel) Removes elements from an array or replaces elements in an array

sort() Sorts the elements of an array into alphabetical order based on the string values of the
elements

toString() Combines the elements of an array info a single string with a comma as a separator

character

Table 11-2  Methods of the Array Object



Chapter 11:  JavaScript Arrays

The concat() Method

The concat() method is used to combine (or concatenate) the elements of two or more arrays
and return a new array containing all of the elements. You use array names as parameters, and
set them in the order in which you want the array elements to be combined.

The first example combines the elements of two arrays. To do this, only one parameter
needs to be used—the name of the array to add to the end of the array used to call the method:

var fruits = new Array("oranges", "apples");
var veggies = new Array("corn", "peas") ;
var fruits_n veggies = fruits.concat (veggies) ;

This code creates an array named fruits with two elements, and an array named veggies with
two elements. Next, it defines a new array, fruits_n_veggies, based on the combination of the
previous two arrays. The value returned by the concat() method is assigned to this array name,
creating the new combined array.

The reason you use the fruits array to call the concat() method and send the veggies array
name as a parameter is so that you get the elements of the fruits array at the beginning of
the new array and the elements of the veggies array added to the end of the new array. The
previous code creates the new array fruits_n_veggies with the following elements:

oranges, apples, corn, peas

If you wanted to have the elements of the veggies array listed first, you would call the
method using the veggies array name and send the fruits array name as the parameter:

var fruits = new Array("oranges", "apples");
var veggies = new Array ("corn", "peas");
var fruits n veggies = veggies.concat (fruits) ;

Now the elements of the veggies array are listed first, and the new fruits_n_veggies array has
the following elements:

corn, peas, oranges, apples

When using this method, you want to be sure to set the order the way you want it by using
the techniques just described.

If you combine three arrays, the elements of the array with which you call the concat()
method will come first, and then the elements of each array name sent as a parameter will be
added in the order in which they are sent:

var fruits = new Array("oranges", "apples");

var veggies = new Array("corn", "peas");

var meats = new Array("fish", "chicken") ;

var three groups = fruits.concat (veggies, meats) ;

Now you are combining three arrays, and the following are the elements of the new
three_groups array:

oranges, apples, corn, peas, fish, chicken

283



284

JavaScript: A Beginner’s Guide

If you code it in the following way instead, you will get an array with the same elements,
but in a new order:

var fruits = new Array("oranges", "apples");

var veggies = new Array("corn", "peas");

var meats = new Array("fish", "chicken") ;

var three groups = meats.concat (veggies, fruits) ;

The following is the order of the elements in the new three_groups array when using
this code:

fish, chicken, corn, peas, oranges, apples

The join() Method
The join() method is used to combine the elements of an array into a single string, with each
element separated by a character sent as a parameter to the method. If no parameter is sent,
a comma is used as the default separator character when the method is called.

To see how this method works, take a look at a bit of code. The following example defines
an array and then calls the join() method using the array name:

var fruits = new Array("oranges", "apples", "pears");
var fruit string = fruits.join();

This code assigns to the variable fruit_string the result of the join() method when called
with the fruits array. Since a parameter was not sent, the elements of the array will be
separated by commas in the new string. The fruit_string variable will have the following
string value:

oranges, apples, pears

You can see this result by writing the string variable into a Web page. The following code will
do this for you:

<body>

<script type="text/javascript"> The array is created
var fruits = new Array("oranges", "apples", "pears") ; «—— with three elements
var fruit string = fruits.join() ;e

document .write ("The new string is "+fruit string); |

</scripts> - The _e|f—:‘men.fs of fh(_a array
</body> The string is printed to the screen  are joined info a single

string with commas
separating the elements

Now you can see the string that is returned from the join() method. Figure 11-1 shows what
this code produces when run in a browser.



Chapter 11:  JavaScript Arrays

3 Example - Muzilla Firafux =1
File Edit ‘ew History Bookmarks Toolk Help 1
@ = € X tar ([0 Meutest_phpifguresichalfout.himi oy | [Cle] sooge Pa
Wi Most Visited 1 Gotting Started 3 | Latest Headines
© isabler [ Coakest [ o5 £ Former M| Images+ (@) Informavons (7 Mscelanecust . outiner | & Heszer ¥ Took+ ] view Sourcer . Uptions® v 8 8

‘The new string is oranges.apples.pears

Dens M | B |(Pimeatsemsaro| ~

Figure 11-1 The new string is written on the page

If you want to separate the elements in the new string with something other than a comma,
you can send the character you want to use as a parameter. The following code sends a colon
as a string parameter to the join() method:

<b0d¥> . . The array is created with three elements
<script type="text/javascript">
var fruits = new Array("oranges", "apples", "pears") ;

. : y.< 9 PP P ) The elements of the
var fruit string = fruits.join(":"); array are ioined into a
document .write ("The new string is "+fruit string); singL string with colons
</script> separating the elements
</body> The string is printed to the screen

This time the string will be a little different from the previous one, because it has colons in
place of the commas in the previous example. Figure 11-2 shows how this string would print in
the browser window.

The pop() Method

The pop() method is used to remove the last element from an array. If you assign the result of

the method to a variable, the popped element will be returned and assigned to the variable.
To use the pop() method, take a look at some code that creates an array and then removes

the last element from the array using the pop() method:

var fruits = new Array("oranges", "apples", "pears");
fruits.pop() ;

This creates an array named fruits with three elements (oranges, apples, pears). Then, the last
element is removed using the pop() method, shortening the array to have only the first two
elements (oranges, apples).

285



286

JavaScript: A Beginner’s Guide

3 Example - Mozilla Firefox
Filc Edit Wiew History Boolmarks  Tools  Help

O - ¢ X @ (Olmimesoroemaimaenn
18U tost Visited 4 Getting Started 5. Latest Headines
) Disable~ B Coakdes= |1 €55+ 7| Forms= ) Imoges= 8 Intormation= (53 Miscellancous= o/ Outine= |, & Resize= 4% Tooks= {i] View Source= . Options= & 8 8

The new stning i3 oranges.applespoars

Dene M | B |(Pimenestmntner| ~

Figure 11-2 The new string is written on the page with colons as separators

If you want to remove an element but still use it in some way later, you can assign the
result of the method to a variable. The variable will be assigned the value of the element that
was removed. The following example removes the last element of an array and then sends the
removed element as an alert to the viewer:

var fruits = new Array("oranges", "apples", "pears");
var picked fruit = fruits.pop();
window.alert ("You picked my "+picked fruit);

This will pop up an alert that says “You picked my pears” to the viewer.

The push() Method

The push() method is used to add elements to the end of an array. The parameters sent to the
method are the new element or elements you wish to add to the array.

CAUTION

The value returned by the push() method in older browsers is the last element that has
been added to the array. In modern browsers that use newer versions of JavaScript (1.3
or |qter), it returns the numeric value of the new |ength of the array.

As an example, look at some code that adds one element to the end of an array:

var fruits = new Array("oranges", "apples");
fruits.push("pears") ;

This code creates an array named fruits with two elements (oranges, apples) and then uses the
push() method to add a third element, pears. The array now contains three elements (oranges,
apples, pears), with pears being the last element in the array.



Chapter 11:  JavaScript Arrays

You can add more than one element by sending more than one parameter. The elements
will be added in the order in which they are sent in the parameter list. The following code adds
two elements to the fruits array:

var fruits = new Array("oranges", "apples");
fruits.push("pears", "grapes") ;

This code takes an array with two elements (oranges, apples) and adds two more elements to it.

In the end, the array contains four elements (oranges, apples, pears, grapes).

If you want the value that is returned by the method, you can assign the result to a variable.

The following code does this and then alerts the viewer to the returned value:

var fruits = new Array("oranges", "apples");
var who knows = fruits.push("pears", "grapes") ;
window.alert ("The method returned "+who knows) ;

The value of the who_knows variable will be different depending on your browser. In older
browsers, the value should be the string grapes (the last element added to the array). If the
browser has JavaScript 1.3 or better, the value of the variable should be the numeric value of 4
(the new length of the array).

NOTE

For those who have programmed in other languages, push() and popl) treat an array
like a stack (last in, first out). The shift() and unshift() methods also do this, and mixing
the two sets treats an array like a queuve.

The reverse() Method
The reverse() method is used to reverse the order of the elements in an array. Since that is all it
does, there is no need to send any parameters or return a value.

To demonstrate how to use this method, the following code creates an array and then
reverses the order of the elements in the array:

var fruits = new Array("oranges", "apples", "pears");
fruits.reverse() ;

The initial order of the array is oranges, apples, pears. When the reverse() method is called for
this array, the order of the elements is reversed, and the array now is in the order pears, apples,
oranges.

The shift() Method

The shift () method is used to remove the first element of an array. It returns the value of the
element that was removed in case you need to use it later in the script.

So, if you want to remove the first element in an array, you could use something similar to
the following code:

var fruits = new Array("oranges", "apples", "pears");
fruits.shift () ;

287



288

JavaScript: A Beginner’s Guide

This code creates an array with three elements (oranges, apples, pears) and removes the first
element with the shift() method. This causes the array to have only two elements remaining
(apples, pears).

To use the value of the element that was removed, you can assign the result of the method
to a variable. The following code assigns the removed element to a variable and then alerts the
viewer about what was removed:

var fruits = new Array("oranges", "apples", "pears");
var picked fruit=fruits.shift();
window.alert ("You picked my "+picked fruit);

This code displays the alert “You picked my oranges” in the browser window.

The unshift() Method

The unshift() method is used to add elements to the beginning of an array. The elements
you wish to add to the array are sent as parameters to the method. The value returned by the
method is the numeric value of the new length of the array.

The following example adds one new element to the beginning of an array:

var fruits = new Array("apples", "pears") ;
fruits.unshift ("oranges") ;

This creates an array named fruits with two elements (apples, pears) and then adds an element
to the beginning of the array using the unshift() method. The array then contains three
elements (oranges, apples, pears).

If you want to add more than one element at a time, you send them all as parameters in
the order in which you wish to add them. The following example adds two elements to the
beginning of the array:

var fruits = new Array("apples", "pears") ;
fruits.unshift ("oranges", "grapes") ;

This takes the initial array of two elements (apples, pears) and adds two elements to the
beginning of the array. The array ends up containing four elements (oranges, grapes, apples,
pears) after the unshift() method is called.

The slice() Method
The slice() method is used to slice a specified section of an array and then to create a new
array using the elements from the sliced section of the old array.

The following is the general syntax for using this method:

arrayname.slice (start, stop)

You would replace arrayname with the name of the array from which you want to remove

a certain set of elements for a new array. You would replace start with the index number from
which to start the slice. You would replace stop with the index number that comes after the last
element you wish to slice.



Chapter 11:  JavaScript Arrays

For an example, the following code slices two elements from an array and creates a new
array with those elements:

var fruits = new Array("oranges", "apples", "pears", "grapes") ;
var somefruits = fruits.slice(1,3);

This slices the second element (index number 1) through the third element (index number 2)
of the array. It does not pull out the fourth element (index number 3) because 3 is the index
number after 2, which is the index number of the last element designated to be removed. The
new array named somefruits contains the sliced elements (apples, pears).

The splice() Method

The splice() method allows you to remove or replace elements within an array. The parameters
that can be sent include the index number at which to begin the splice, the number of elements
to remove, and the option to add new elements to the array.

If you want to remove a single element from an array, you could use code such as the
following:

var fruits = new Array("oranges", "apples", "pears", "grapes") ;
var somefruits = fruits.splice(2,1);

This begins removing elements at index number 2. The next parameter is 1, so only one
element will be removed; thus, only the element at index number 2 is removed here, which is
pears. The array after the splice contains only three elements (oranges, apples, grapes).

To remove more than one element, you increase the value of the second parameter. The
following code removes two elements, starting at index number 2:

var fruits = new Array("oranges", "apples", "pears", "grapes") ;
var somefruits = fruits.splice(2,2);

This time the array is cut down to two elements (oranges, apples), as the last two elements are
removed by the splice() method.

You can also use the splice() method to replace spliced elements in an array or to add
elements to an array. The following code replaces the spliced element at index number 2 with
a new element by sending an additional parameter:

var fruits = new Array("oranges", "apples", "pears", "grapes") ;
var somefruits = fruits.splice(2,1,"watermelons") ;

This time, the element at index number 2 is removed. Since the second parameter is 1, only
one element is removed. The next parameter tells the browser to add this value at the index
number specified in the first parameter (index number 2). This value replaces the value that
was removed (pears). The array will still have four elements, just different elements (oranges,
apples, watermelons, grapes).

If you want to use the splice() method to add one or more elements to an array but not
remove anything, you can set the second parameter to 0 (thus removing zero elements).

289



290

JavaScript: A Beginner’s Guide

You set the first parameter to the index number at which you wish to begin adding elements.
For example, take a look at the following code:

var fruits = new Array("oranges", "apples", "pears", "grapes") ;
var somefruits = fruits.splice(2,0,"watermelons", "plums") ;

This time the addition of elements begins at index number 2, as specified in the first parameter,
and nothing is removed, as specified in the second parameter. Two elements are added, after
which the array will have six elements (oranges, apples, watermelons, plums, pears, grapes).

The sort() Method

The sort() method sorts an array in alphabetical order (like a directory listing). This is not in
numerical order, however. As an example, consider the fruit array once again. If you want to change
the order of the elements so that they are in alphabetical order, you could use the following code:

var fruits = new Array("oranges", "apples", "pears", "grapes") ;
fruits.sort () ;

Ask the Expert

Q: Among all the properties, are there any that are specifically useful for arrays?

A: The length property will come in handy in a number of cases. The other properties
are useful in certain situations (such as when needing to reverse the order of the array
elements). You will likely find them useful in your own scripts as you progress.

Q: 1s there an easy way to remember all of these methods?

A: As with other lists, how well you remember them depends on how often you use the
methods. One helpful thing is to look for the pairs that complement each other, like pop()
and push(), or shift() and unshift().

Q: So, the reverse() method just turns everything around backward? Why would I want
to do that?

A: You probably won’t want to do it that often, but it can be helpful after using the sort()
method to place a list of strings in reverse alphabetical order. It can be helpful in a few
other ways as well; it just depends on the data in the array.

Q: So, the sort() method sorts the data in alphabetical order, but why does 70 come before
9 when this is sorted?

A: When the sort() method is used, it sorts using alphabetical order by default, meaning it converts
all values to string values and then compares them. In that case, anything that begins with 7
comes before anything that begins with 9, even if the numeric value of the former is higher.



Chapter 11:  JavaScript Arrays

This will reorder the array so that the elements will be in alphabetical order, changed from
oranges, apples, pears, grapes to apples, grapes, oranges, pears.

You may find this useful when you want to display the contents of an array on a page.
You will see later in this chapter how to use loops to make the display of array contents easy.

The toString Method

The toString() method combines the elements of an array into a single string with a comma as
a separator character. For example, you could use the following code:

var fruits = new Array("oranges", "apples", "pears", "grapes") ;
var fruit list = fruits.toString();
document .write (fruit_list);

This will write the string below to the document:
Oranges, apples, pears, grapes

Extended Array Methods

With JavaScript 1.6 or higher, there are some additional methods you can use. Since (at the time
of this writing) these are not currently cross-browser, these will only be listed and described in
Table 11-3. For more information on these methods, see https://developer.mozilla.org/En/Core_
JavaScript_1.5_Reference:Global_Objects:Array (clicking one of the methods will give a more

detailed description, often with code you can implement in order to use the same functionality
in browsers that do not directly support the method).

Method Description

filter() Returns a new array containing elements from an array that returned true based
on the function used to filter it

forEach() Calls a specified function for each element in the array

every() Returns true if all elements in the array return true for the specified function used to
test them

indexOf() Returns the lowest index number for an element that has a value equq| to the
specified value sent as a parameter

lastindexOF) Returns the highest index number for an element that has a value equal to the
specified value sent as a parameter

map() Returns a new array that results from calling a specified function on every element
in the array

reduce() Runs a function on two values in the array at a time, from left o right, until only
a single value is left

reduceRight() Runs a function on two values in the array at a time, from right to left, until on|y
a single value is left

some() Returns true if one or more elements return true for the specified function used to
test them

Table 11-3  Extended Array Object Methods

291


https://developer.mozilla.org/En/Core_JavaScript_1.5_Reference:Global_Objects:Array
https://developer.mozilla.org/En/Core_JavaScript_1.5_Reference:Global_Objects:Array

292

JavaScript: A Beginner’s Guide

Using Arrays with Loops

Loops allow you to move through array elements without the need to deal with each element
one at a time with new lines of code. Instead, you can use a loop to cycle through each element
of an array and cut down the number of lines you would need to write for a large array.

To begin, take a look at how you can create the elements of an array using a loop instead
of a straight assignment of values.

Creating Array Elements
A loop can be useful in the creation of the elements of an array. This is especially useful if you
need the viewer to enter the contents of the array for some reason, or if you wish to perform a
similar calculation in creating each element.

Suppose you want the viewer to be able to input the names of the four students from the
s_list array of student names introduced earlier in the chapter. Using a for loop, you could use
the following code to allow the viewer to enter each name:

A new array with four elements is created
var s_list = new Array(4);
for (var count=0;count<4;count++) {<€— The loop cycles through from 0 to 3
s_list[count] = window.prompt ("Enter a name","");

A prompt is iiven to the viewer each time through the loop,
and the text the viewer types in is assigned to the element

This code creates a new array with four elements. It then uses a for loop to assign each value.
The loop begins by setting the loop’s count variable to O and will run until the expression
count<4 is no longer true.

Since 1 is added to the value of count each time through (count++), this means that the
count variable will have the value of O the first time through, 1 the second time, 2 the third
time, and 3 the fourth time. It doesn’t go through another time because count would be equal
to 4, which is no longer less than 4.

NOTE

The advantage of starting the count variable at O is that you are less likely to become
confused when you use the loop. The count variable will represent the index number of
each array element, so you won't need to subtract 1 from its value as you would if you
had started count at 1 instead.

Inside the loop, a value is assigned to the element at the index number represented by the
count variable each time through. The value assigned is the result of what the viewer types in
when prompted for a name. The viewer will get four prompts in this case and will assign all
four of the elements’ values.



Chapter 11:  JavaScript Arrays

Another use for assigning element values with a loop would be to perform a similar
calculation that would affect each element. For instance, if you wanted an array of ten even
numbers, you could use the following code:

An array with ten elements is defined

var even_nums = new Array (10) "4_| A new variable to hold a count
var a_count = 0;-= incremented by 1 is declared
for (var count=0;count<20;count+=2) {
even_nums [a_count] = count+2;

a_count ++;
}

Th§ a_count variable The elements are dssigned here based on
is incremented the value of the count variable

The loop increments by 2, from O to 18

By increasing count by 2 each time through, you ensure that an even number is used for your
calculation. You then assign the value of the count value plus 2 to each array element while
going through the loop. The use of the a_count variable allows you to keep the array from
missing elements based on your count variable being incremented by 2. The a_count variable
is incremented by 1 to keep the array index numbers increasing by only 1 (instead of assigning
even_nums[0] and then even_nums[2], and skipping over even_nums[1]—which is what
would have happened if you had used the count variable for the index number slot, rather than
a_count, which increases by only 1 each time).

The first time through, count is 0, so even_nums[0] is assigned a value of 0+2, or 2. The
next time through, count is equal to 2, so even_nums[1] is given a value of 2+2, or 4. This
happens until you have ten array elements (index numbers 0-9) that are all even numbers.

Moving Through Arrays

You can also cycle through an array that has been created to change it, gain information from
it, or list its contents in a way you like. This is quite useful and can save you some time with
larger arrays.

If you go back to the old s_list array listing the names of students in a class, you can see
that a loop would save you a little typing when you decide to print the list of students on the
screen. You can also set the loop so that it will adjust itself if you decide to add to the array
later. First, take a look at how to print the list of names to the browser screen using a loop.
The HTML code would look like this (save it as s_names.html):

<body>

<hl>Student Names</hl>

<script type="text/javascript" src="s names.js"></scripts>
</body>

293



294

JavaScript: A Beginner’s Guide

Next, you can use the following JavaScript code (save the JavaScript file as s_names.js):

var s_list = new Array(4); —

S—I%St (0] ="Thomas"; An array is created and its
s_list[l]="Roger"; elements are assigned values
s _list[2]="Amber";
s_list[3]="Jennifer";

for (var count=0;count<4;count++) {—————— The elements of the array are
document .write(s_list [count]+ "<br />"); printed on the que using a loop
} to cycle through the array elements

You are basically using the same method in the loop as you did while creating an array. This
time, however, you use the loop to print the contents of the array to the screen. Figure 11-3
shows how this script looks when run in a browser.

Now, if you want to be sure the loop adjusts itself to show every element just in case you
add or take away students, you need to have the loop use the length of the array rather than a
plain number to find out when to stop itself. Recall that JavaScript can use the length property
to find out how many elements are in an array. So, instead of using the number 4 in your loop
for the comparison, use the length property of the array:

for (var count=0;count<s list.length;count++)

The array can have any number of elements, and the loop will cycle through until the full
array is used (until count<s_list.length is no longer true). The last element will have an index
number that is one less than the length of the array, which is what you want since arrays begin
counting at O instead of 1.

3 Example - Mozilla Firefox
File Edit View History Bookmarks Tools Help

O - c X @ (Dl sonacboiis s
L8 Most Visited M Getting Started 5| Latest Headines
) Disable= B Coakdes= |1 €55+ £ Forms= B Imoges= () Intormation= (53 Miscellancous= o/ Outine= | & Resize= 4% Tooks= {i] Yiew Source= . Options= & @ 8

Student Names

Thomas
Eoger
Amnber

Tenmnfer

Done M | i = e

Figure 11-3 The names from the array are written on the page



Chapter 11:  JavaScript Arrays

To put this all together, you can make a few changes to your array and then print the array
elements in the browser window. The following changes to the JavaScript code allow you to
make adjustments to the array later while still allowing the script to display all the names:

var s_list = new Array () ;—
s _list [0]="Thomas";

s _list[1l]="Roger";

s _list[2]="Amber";

s _list[3]="Jennifer";
S_liSt [4]="Pat™";

s list[5]="Kelly";

s _list[6]="Jerry";

An array is created and its elements are assigned values

The elements of the array are
printed on the page using
I a loop to cycle through the
for (var count=0;count<s list.length;count++) { array elements, and using
document .write(s_list[count]+ "<br />"); _’— the length property to know
} - when to stop the loop

You have now adjusted the array so that it initially has no direct number of elements, but
you define them as you go by assigning values to each element. This array has added three
names to the list, giving you an array with seven elements (index numbers 0—6). The list is
then written to the page. Figure 11-4 shows the result of this script when run in a browser.
Notice that the list now has all the new names.

You could take this one step further and use the sort() method to put the names of the
students in alphabetical order. To do this, you only need to add a single line calling the
sort() method for the s_list array before you print the elements to the screen. The order of

} Example - Mozilla Firefox
File Edit View History Bookmarks Tools Help

@ = @ X i [ L) |HeunEsz= phottiauesichal Lis names.Heml P
L8 Most isited P Getting Started 5 | Latest Headines
Disable= (B Coolics= |1 €55+ £ Forms= M| Images= €1 Intormation= (0 Miscelancous= o/ Oukine= | | Resize= & Tooks= ££] View Source= ' Options= & 0 &
L3 L

Student Names

Thomas
Eoger
Arber
Termnfer
Pat
Eclly
Jerry

Dens M | B |(Pimeamsensara| ~

Figure 11-4  All the names are listed on the page

295



296  JavoScript: A Beginner's Guide

the elements is adjusted, and the alphabetized list is printed. The following is the code for

alphabetizing:

var s_list = new Array();——
s _list [0]="Thomas";
s _list[1l]="Roger";

s list [2]="Amber"; An array is created and its
s list[3]="Jennifer"; elements are assigned values

S_liSt [4]="Pat™";

s list[5]="Kelly";
s _list[6]="Jerry";
s list.sort() ;=

for (count=0;count<s list.length;count++)

{_

document .write(s_list [count]+ "<br />");

}

The array is sorted into alphabetical order

The sorted elements of the
array are printed on the page
using a loop to cycle througi
the array er;ments, and using
the length property to know
when to stop the loop

Notice the addition of the s_list.sort() call. This sorts the array to give you alphabetized output.
Figure 11-5 shows the result of this script when it is run in a browser.

The for each in Loop
With later versions of JavaScript (1.6 and up), you can use the for each in loop to run through
the list of array elements. It allows you to use a variable for the value of the array element each
time through the loop (rather than using something like s_list[count], you could simply use

3 Example - Muzilla Firefux
File Edit ‘ew History Bookmarks Tools Help

Student Names

Amber
Jenniter
Jerry
Eclly
Pat
Eoger
Thomas

@ - c )( ut Ii_|‘1_;flls:,l’Hl-_:,i‘zz_pﬂ)iflgwesfcrfu,l’-:_nam.ﬂw ‘1 ': :—Clz aoghs \_
1] Most Visited 1 Gotting Started 3 | Latest Headines
Dicabler [ Cookiess [ Lsse 7 Former W Images () Infarmation (0 Mecelianecuss /' Outine® | & Hece 4% look+ {2 View Source® . Uptions® e €
LR -

Done M

| B |(Plmcatemsennivens| ~

Figure 11-5 The names are listed in alphabetical order



Chapter 11:  JavaScript Arays 297

a name such as student). The following code shows an example using the s_list array you have
been using in this chapter:

var s_list = new Array();

s list [0]="Thomas";

s list[1l]="Roger";

s list[2]="Amber";

s list[3]="Jennifer";

for each (student in s list) {
document .write (student + "<br />");

}

Notice that for and each are two separate reserved words, followed by the opening parenthesis,
followed by the variable name you want to use (student in this case), followed by the reserved
word in, followed by the array name, and ending with the closing parenthesis. Then, the
opening curly bracket allows you to write the loop code as usual, except you will use the
variable name (student in this case) instead of keeping a count variable and using s_list[count].

Since this does not yet (at the time of this writing) work cross-browser, it is best for now to
continue using a traditional for loop (which is backward-compatible) or to use a for in loop as
in the following code:

var s_list = new Array();

s list [0]="Thomas";

s list[1l]="Roger";

s list[2]="Amber";

s list[3]="Jennifer";

for (student in s list) {
document .write (s _list[student] + "<br />");

}

You can begin to use loops that become much more involved with the arrays, and use more
of the properties and methods as well. For now, this will get you started and build a foundation
from which you can build the more complex loops for your JavaScript arrays.

Use Loops with Arrays

................................. :

pril 1.html | This project allows you to practice using loops with arrays and to practice using
prisili 1.js some of the properties of arrays. You will create a list of computer parts that you
TR, i want to print to the screen.

Step by Step

1. Create an HTML page with a heading with the text “Computer Parts Needed”. Add script
tags that include an external JavaScript file named prjs11_1.js. Save the HTML file as
prll_1.html.

2. Create an external JavaScript file and save it as prjs11_1.js. Use it for steps 3—10.
(continued)



298

JavaScript: A Beginner’s Guide

3. Create a new array and assign the following list of parts as values for the elements in the array:

monitor

motherboard

chip

hard drive
4. Print out each computer part on its own line in the browser window (use a loop).
5. Save the JavaScript file and load the HTML file in a browser to view the results.

6. Reopen the JavaScript file in your text editor, and make the changes described in the next
three steps.

7. If you didn’t before, use the length property in the comparison instead of a number.

8. Add some elements to the array by coding them into the script. Add the following items
after the first four you already have:

CD-RW drive
power supply

9. Have the array sort itself so that it is in alphabetical order.

10. Save the JavaScript file and view the HTML file in your browser. The new elements should
show up in an alphabetical listing of the array elements.

Try This Summary
In this project, you used your knowledge of loops, arrays, and Array object properties to create
two different results. One result lists the elements of an array, while the other adds some
elements to the array and lists the elements in alphabetical order.

Using Associative Arrays

Associative arrays (also referred to as hash tables) allow you to use strings in place of index
numbers. Using an associative array is quite similar to using a property name with a regular
object; you just do it in an array format. Since numbers are not used, the use of associative
arrays is more limited, but they can still be useful to store information and make the elements
easier to remember when you want to access them. To begin, take a look at how to define an
associative array.



Chapter 11:  JavaScript Arrays 299

CAUTION

JavaScript does not use true associative arrays (what you see here to mimic them is
really a creation of property/value pairs within that Array object rather than being true
associative arrays). Also, certain properties such as length won’t work as expected with
this type of array. Thus, use caution, because this can at times cause unexpected values
to occur within your scripts. More often than not, it is better to simply use a numbered
array or to create a new object, depending on what you need the script to do.

Defining Associative Arrays

You can define an associative array in much the same way as you define a normal array, but
you will want to use the methods that allow you to assign each element individually. Here, you
will create a blank array and give it values by assigning values to elements.

To assign a value to an element, you need to give the element a string in place of its index
number. The value you would use for the string would be something you could associate with
the value you are going to assign to the element. For instance, if you wanted to change the
old s_list array into an associative array based on a trait of each student, you could use the
following code:

var s _list= new Array();

s list["tall"]="Thomas";

s _list["cool"]="Roger";

s _list["clever"]="Amber";

s _list["attentive"]="Jennifer";

The assignments here give an index string of a trait, and then a student’s name is assigned to
the element that has his or her trait.

This will make it easier to remember when you want to access an element of the array
later, since you can remember a trait instead of a number when you need an element. This
makes array declarations semantically richer, which can also be useful if you wish to query or
otherwise reference a certain element.

Accessing Associative Arrays
Accessing an associative array is done in the same way that you access a normal array, except
that you use an index string rather than an index number.

If you wanted to access the element that had the name of the tall student, for instance, you
could access it using the following syntax:

s list["tall"]



300

JavaScript: A Beginner’s Guide

Thus, you could print out a listing of the students by their traits by using the following
example code:

<body>

<hl>Student Names</hl>

<script type="text/javascript">
var s_list= new Array();
s _list["tall"]="Thomas";
s _list["cool"]="Roger";
s _list["clever"]="Amber";

s _list["attentive"]="Jennifer";

An array is created and its elements are assigned values

document .write ("The tall one is " +s_list(["tall"]+ "<br />");

document .write ("The cool one is " +s _list(["cool"]+ "<br />");

document .write ("The clever one is " +s list["clever"]+ "<br />");
document .write ("The attentive one is " +s_list["attentive"]+ "<br />");
</script»> The elements of the array are printed on the page

</body>

This will print out the list based on the traits. Figure 11-6 shows the results of this script when
run in a browser.

You will be using arrays in the next chapter to help you create scripts that use random
numbers.

3 Example - Muzilla Firefux
File Edit ‘ew Higtory Bookmarks Took Help

O ¢ X & ([Oleirmrmrosiommme o

15 Most Visited 8 Gotting Starked 3| Latest Headines

S isabler S Coakest [ o5 £ Formes M| Imagsse (@) Informavens (7 Mscelaneouss ./ Cutiner | & Haszer ¥ Took+ £ view Sourcer . Uptions® v 0 8

Student Names

The tall one 13 Thomas

The cool ane 15 Roger

“The clever one 15 Amber
The attentrre onc 15 Jennifer

Done M | | ) |(Phsmeamesmmanar| ~

Figure 11-6 The names are listed based on the traits of each student



Chapter 11:  JavaScript Arrays

DALY Use Associative Arrays

""""""""""""""""" This project allows you to practice using associative arrays. You will create

H prll 2. html
{prijsli 2.js i anarray of elements based on the qualities of various cars.

Step by Step

1. Create an HTML page with a heading with the text “List of Cars”. Add script tags to

include an external JavaScript file named prjs11_2.js. Save the HTML file as pr11_2.html.

2. Create an external JavaScript file and save it as prjs11_2.js. Use it for steps 3-6.
3. Create an associative array with the following index strings:

cool
small
long

4. Assign a value of “Mustang” to the element with the index string of “cool”. Assign a value
of “Bug” to the element with the index string of “small”. Assign a value of “Station Wagon”

to the element with the index string of “long”.
5. Print the value of each element to the browser window.

6. Save the JavaScript file and view the HTML file in your browser. You should see the list
of cars.

Try This Summary

In this project, you used your knowledge of associative arrays to create a page that displays the

elements of an associative array.

Chapter 11 Self Test

1. An array is a way of data of similar types for easy access later in a script.
2. In JavaScript, an array is basically a user-defined
3. In a regular array, access to an element is usually through the use of a(n)

A string

B index number

C random number

D random string

301



302  JavaScript: A Beginner's Guide

4. A(n) array allows access using a string in place of the number.
5. Which of the following is a valid name for an array?

A my array

B IstArray

C for

D soap

6. Which of the following does not correctly create an array?
A var myarray= new Array();

B var myarray= new Array(5);
C var myarray= new Array(“hello”,”hi”,”greetings”);
D varif=new Array[10];
7. Which of the following will correctly access the fifth element of an array named “cool”?
A cool[5];
B cool(5);
C cool[4];
D cool.array[4];
8. What does the following code do?
var s_list= new Array()
A Creates an empty array named s_list
B Creates an array named s_list with the default number of elements, 10
C Creates an empty array named list
D Creates an array that can never have any elements added to it
9. What property of the Array object will return the numeric value of the length of an array?
A The length property
B The getlength property
C The constructor property
D The lengthOf property

10. The property allows you to add properties and methods to an object that
already exists.



11.

12.

13.
14.

15.

Chapter 11:  JavaScript Arrays

The method is used to combine the elements of two or more arrays and return
a new array containing all of the elements.

The join() method is used to combine the elements of an array into a single
with each element separated by a specified character.

The method is used to remove the last element from an array.
By default, how does the sort() method sort the contents of an array?

A Tt reverses the contents of the array.

B It sorts the contents numerically.

C It sorts the contents alphabetically.

D It removes the last element from an array.
What is used in place of an index number in an associative array?

A A floating-point value

B A Boolean value

C A negative number

D A string value

303



This page intentional ly left blank



Chapter 12

Math, Number, and
Date Objects

305



306

JavaScript: A Beginner’s Guide

Key Skills & Concepts

Using the Math Object
Understanding the Number Object
Using the Date Object

The previous chapter presented JavaScript arrays and the Array object, including an overview
of the Array object’s various properties and methods. In this chapter, you will learn about the
JavaScript Math, Number, and Date objects, in that order. For each object, a short introduction
is provided along with a description of why the object can be useful to you. Following that is
a look at the various properties and methods that you can use for that object.

Using the Math Object

The Math object can be useful when you need to perform various calculations in your scripts.
To begin, take a look at what the Math object is.

What Is the Math Object?

The Math object is a predefined JavaScript object. Like the other predefined objects you have
studied in this book, the Math object gives you properties and methods to use. The Math object
is used for mathematical purposes to give you the values of certain mathematical constants or
to perform certain operations when you use a method function.

How the Math Object Is Useful

As mentioned, the Math object is useful when you need to make mathematical calculations in
your scripts. For instance, if you need the value of pi for a calculation, the Math object gives
you a property to use so you can get that value.

Also, if you need to find the square root of a number, a method of the Math object enables
you to do this. Another thing this object provides is a way to generate random numbers in
JavaScript, which you will find useful in certain scripts.

Properties
The Math object gives you a number of properties that can help you if you need to perform
certain mathematical calculations. Table 12-1 lists the properties of the Math object, with the
values of each.

As you can see in Table 12-1, all of the properties simply hold numeric values that can be
useful in mathematical calculations. Because these are irrational numbers, the values listed are
nonterminating and are thus approximations.



Chapter 12:  Math, Number, and Date Obijects

Property Value

E Value of Euler’s constant (E), which is about 2.71828...

LN10 Value of the natural logarithm of 10, which is about 2.302585...
LN2 Value of the natural logarithm of 2, which is about 0.693147...
LOG10E Value of the base 10 logarithm of E, which is about 0.43429. ..
LOG2E Value of the base 2 logarithm of E, which is about 1.442695...
PI Value of pi, often used with circles, which is about 3.14159...
SQRT2 Value of the square root of 2, which is about 1.4142...
SQRT1_2 Value of the square root of one half, which is about 0.7071...

Table 12-1  Properties of the Math Object

Using the Properties

The properties contain read-only values, which tend to be useful in particular types of

calculations. For instance, if you want to find the area of a circle, you use the formula Area =
pi*r’. Knowing that, you could write an application to determine the area of a circle based on
the radius input by a viewer. You could use the following code, starting with the HTML code:

<form>

To find the area of a circle, input a radius:<br />

<input type="text" id="radius" />

<input type="button" value="Get the Area!" id="getarea" />
</form>

Next, the JavaScript code:

var area button = document.getElementById("getarea") ;

area button.onclick = function . - g
- 0o is retrieved using its value property

var rad = document.getElementById("radius") .value;
if (rad.length < 1) {

window.alert ("Please enter a radius!");
return false;

}

else if (rad != (rad*1l))
window.alert ("Radius must be numeric!"); Checks to see if the data
return false; entered is not numeric

}

The input button element is retrieved by its id (getarea)

The value of the text box (with an id of radius)

L Checks to see if data is entered

307



308

JavaScript: A Beginner’s Guide

else {
var the area = Math.PI * (rad * rad);
window.alert ("The area is " + the area + " square units. ");

return false;

}

}i Performs the calculation and displays the answer

This code first grabs the input button element by its id (getarea) and assigns it to a variable
named get_area. When this element is clicked, an anonymous function is executed. It grabs the
value input in the text field for the radius using the value property of that element and assigns
it to a variable named rad.

Next, the code performs two checks. It checks that the length property of rad is not less
than 1, to ensure that the viewer entered data into the field. If it is less than 1, the code gives
an alert asking the viewer to enter the information. After that, it checks to see if the value of
rad is not numeric. This is done by testing whether or not the value can be multiplied by 1 and
returning a number equal to what was entered. (This check can also be done in other ways,
such as with regular expressions, which will be covered in Chapter 13.) If the data entered
contains a string, the calculation will return NaN (Not a Number), which will give the viewer
an alert saying that the radius must be numeric.

Finally, if the data entered passes those tests, the calculation of the area of the circle
is performed and assigned to a variable named the_area. Notice that for now you multiply
the radius by itself to get the radius squared. When you get to the math methods in the next
section, you will see that the method pow() may be used instead.

Once the calculation is complete and assigned to the variable, an alert is displayed to the
viewer with the area in generic “square units.” The script could of course be altered to suit
your needs or to offer options (centimeters, inches, or other units of measure).

NOTE

The script can be made more accessible by using the submit event rather than the click
event and providing a server-side backup. This will be discussed more in Chapter 14.

Figure 12-1 shows the result of running this script in a browser and entering 2 into the
text field.

Methods

The methods of the Math object enable you to perform certain calculations that can be helpful
in your scripts. Table 12-2 lists various methods of the Math object and briefly describes the
purpose of each. Each method is discussed in more detail in the following sections.



Chapter 12:  Math, Number, and Date Objects

"} Example - Mozilla Firefox

Fle Edt View Higtory Bockmarks Tocks Help

o = € Xt [ [ teupEyzz phop 1217101 bt vy -] [IGl]so0ge 2
[ Most Visited M Gotting Starked 5| Latest Headines
& Disable= [ Cookics= | €55= ] Forms= M| Images= ) Intormation= (5 Miscelancous= o/ Oubline= | & Resice= ¥ Tools= §&] View Source= . Options= v & 6

To Bind the arca of a circle, input a radius:

2

[ Getthe Areal |

[JavaScript Application]

: The area is 12.56607061 4159172 square units.

M | | B [(Phmeatasemnaia|

Figure 12-1 The area of the circle is displayed for the viewer

Method | Purpose

abs() Returns the absolute value of the number sent as a parameter

acos() Returns the arccosine of the number sent as a parameter, in radians

asin() Returns the arcsine of the number sent as a parameter, in radians

atan() Returns the arctangent of the number sent as a parameter, in radians

atan2() | Returns the arctangent of the quotient of two numbers sent as parameters, in radians
ceil() Returns the smallest integer greater than or equal to the number sent as a parameter
cos() Returns the cosine of the number sent as a parameter, in radians

expl) Returns the value of E to the power of the number sent to the method as a parameter
floor() Returns the largest integer less than or equal to the number sent as a parameter
log() Returns the natural logarithm of the number sent as a parameter

max() Returns the larger of the two numbers that are sent as parameters

min() Returns the smaller of the two numbers that are sent as parameters

pow() Returns the numeric value of the first parameter raised to the power of the second parameter
random() | Returns a random number between O and 1; does not require a parameter

round() | Returns the value of the number sent as a parameter rounded fo the nearest integer
sin() Returns the sine of the number sent as a parameter, in radians

sqrt() Returns the square root of the number sent as a parameter

tan() Returns the tangent of the number sent as a parameter, in radians

Table 12-2  Methods of the Math Object

309



310

JavaScript: A Beginner’s Guide

The Basic Methods

For the purpose of this book, “basic methods” are defined as the methods that take in a single
number, do a simple calculation with it, and return a value. Grouping the methods in this way
avoids the need to list each method with the same sort of example—it is not any sort of official
organization of the methods, just a way to expedite this discussion.

The following basic methods are the ones that work in generally the same way:

abs()

acos()
asin()
atan()

cos()

exp()
log()
sin()
sqrt()
tan()

Each of these basic methods takes in a numeric value and sends back another value. Since
the general usage is the same, this discussion uses sqrt() as an example of how the rest could
be used to get their various values. If you need to know what type of value is returned from
a different method, refer to Table 12-2 to see what each method does.

The easiest way to use the sqrt() method is to input a positive number as the parameter to
the method, as shown in the following example:

window.alert (Math.sqrt (4)) ;

This alerts the value of the positive square root of 4, which is 2.

Instead of calculating a static number, you could get the user to input a number, and then
send an alert to the user with the square root of the number input by the user. You could do this
using the following code, starting with the HTML code:

<body>

<form>

Enter a (positive) number or zero: <br />

<input type="text" id="sr num" />

<input type="button" value="Get a Square Root" id="getroot" />
</form>

</body>



Chapter 12:  Math, Number, and Date Obijects

Next, the JavaScript code:

If the number enfered is negative, the viewer has to try again
The value of the text box (with an id of sr_num) is retrieved

The anonymous function to perform the task begins

var root button = document.getElementById("getroot") ;
root button.onclick = function() {-
var thenum = document.getElementById("sr num") .value
if (thenum < 0) {
window.alert ("Hey! I said to enter a positive number! Try again.");
return false;

}
else if (thenum != (thenum*1)) { Checks to see if the
window.alert ("Input must be numeric!"); [ inputis not numeric
return false;
}
else {
var theroot = Math.sqgrt (thenum) ;
window.alert ("The square root of "+thenum+" is "+theroot) ;
return false;
}
}i

I the value is not ne?otive, the square root is
calculated and the alert shows the square root

The preceding code uses an anonymous function, which is called when the viewer clicks the
button in the HTML code. The function begins by assigning the value input into the text box to
the thenum variable.

Next, the function checks to see if the viewer entered a negative number. If so, an alert
appears, telling the viewer to try again. It then checks to see if the data entered was not
numeric (which gives another alert). Otherwise, the Math.sqrt() method is called using the
number entered by the viewer (thenum) as a parameter. This returns the number’s square root,
which is then assigned to the variable named theroot. Finally, an alert appears telling the user
the square root information.

NOTE

The script can be made more accessible using the submit event rather than the click
event and providing a server-side backup. This will be discussed more in Chapter 14.

The result of this script when the viewer enters the number 4 is shown in Figure 12-2.
The other methods in this section work in much the same way; they just return different
results such as absolute values, tangents, or logarithms.

311



312

JavaScript: A Beginner’s Guide

J Example - Mozilla Firefox

Bic Edit Yiew Higtory Boolmarks Tooks Help
o o € X tar (L) ez phpftiguresichal2itig2.tmi v -] [IiCl]sacge Al
18 Most Visited 8 Gotting Started 5 | Latest Headines
& Dicables [3 Cookies* | €55+ £ Forme= M| Images (@) Intormation= () Miscelansouss ./ Oubliner | | Resizas ¥ Tools= £5) View Sources . Options= v 8 9
Enter a (pesttive) number or Zero!

q | Getatguare oot |

|JavaScript Application]
!-. The srpare rook of 45 7
Done M | | B |(Rlmcntmnstomevn|

Figure 12-2 The square root is displayed for the viewer

The Two-Parameter Methods
This section discusses the methods that take in two parameters instead of just one. These

methods include the following:

atan2()
max()
min()
pow()

The max() and min() methods are very similar, while the pow() method does something a
bit different.

The max() and min() Methods The max() method takes two numbers and returns the larger
number. The min() method also takes two parameters, but returns the smaller number. You
could use these methods in a script that enables the viewer to enter two numbers and then
alerts the user which number is larger.

The following example code uses both of these methods and gives the viewer the results in
an alert. First, the HTML code:

<body>

<form>

<input type="button" value="Which Number is Bigger?" id="getmax" />
</form>

</body>



Chapter 12:  Math, Number, and Date Obijects

Next, the JavaScript code:

var max_button = document.getElementById("getmax") ; The prompts get two
max_button.onclick = function() { numbers from the viewer
var numl = window.prompt ("Enter a number.",""); —————
var num2 = window.prompt ("Enter another number","");

var largenum = Math.max (numl,num2) ; :|_The results of the maximum and
var smallnum = Math.min (numl,num2) ; minimum are assigned to variables

if (largenum == smallnum) { .
A A check in case the
window.alert ("Those two numbers are equall"); ___'numbasomequd
}
else {

window.alert (largenum+" is larger than "+smallnum) ;

}
}i

The dlert to display if the numbers are not equal

This script prompts the viewer for two numbers and assigns them to variables. It then takes
the maximum and minimum from both numbers and assigns the values returned to variables.
Those variables are then used to check whether they are equal. If so, an alert comes up saying
they are; otherwise, an alert pops up with the results.

The following illustration shows the results of this script in a browser if the viewer enters 2
as the first number and 54 as the second number.

[JavaScript Application]

I 54 is larger than 2

The pow() Method The pow() method takes two parameters and calculates the value of the
first parameter to the power of the second parameter. For instance, the following code would
return the value of 2 to the 3% power:

Math.pow(2,3) ;

Other than its difference in calculations, you can use it in the same general way that you
used the other two-parameter methods by assigning the result to a variable and then using the

variable in a script. As an example, you could use the following script, starting with the HTML
code:

<body>
<form>
<input type="button" value="Find a Power" id="getpow" />
</form>
</body>

313



314

JavaScript: A Beginner’s Guide

Next, the JavaScript code:

var pow button = document.getElementById("getpow") ;

pow_button.onclick = function() {
var numl = window.prompt ("Enter a base number.","");
var num2 = window.prompt ("What power should we set it to (a

number) ?","") ;
var theresult = Math.pow(numl,num2) ;
window.alert (numl+" to the power of "+num2+" is "+theresult) ;

}i

Using this code, if the viewer enters 2 as the first number and 3 when asked for a power, the
script will compute the result of 2 to the 3rd power. The viewer then is given an alert showing
the answer. Clicking the button in the HTML code is how the viewer starts the function. The
result of this script when the numbers 2 and 3 are input is shown here:

[JavaScript Application]

Z tothe power of 3is &

b

A

Now that you know about the two-parameter methods, take a look at some other methods
that haven’t been covered yet.

The Other Methods

These methods take in a single parameter, but what each does with that parameter warrants a
closer look. The individual methods include the following:

ceil()
floor()

round()

The ceil() Method The ceil() method stands for ceiling and returns the smallest integer that
is greater than or equal to the number sent as the parameter. This method is used mainly when
there are likely to be numbers after the decimal point in a number. It rounds the number up to
the next highest integer, unless the number is an integer already. In that case, the same number
is returned (because it can be equal). For instance, Math.ceil(12.23); would return 13, but
Math.ceil(12); would return 12.

The following script shows an example of how the ceil() method can be used to return
different values, starting with the HTML code:

<body>
<form>



Chapter 12:  Math, Number, and Date Obijects

<input type="button" value="Find a Ceiling" id="getceiling" />
</form>
</body>

Next, the JavaScript code:

var ceil button = document.getElementById("getceiling") ;
ceil button.onclick = function() {

var numl= window.prompt ("Enter a number.","");

var theceil= Math.ceil (numl) ;

window.alert ("The ceiling of "+numl+ " is "+theceil);

}i

This script displays an alert that states the ceiling of the number entered by the viewer. The
following illustration shows the result of this in the browser when the viewer enters 4.55 at
the prompt:

[JavaScript Application]

! The ceiling of 4.55is5 5

The floor() Method  The floor() method is like the ceil() method, but it goes the opposite
way. The floor() method returns the largest integer less than or equal to the parameter sent to
the method. This rounds down to the next lowest integer, unless the parameter is an integer
already. In that case, it returns the same integer since it is already equal to an integer. Basically,
this method just removes the decimal part of a number and leaves the integer as the result.

For instance, Math.floor(12.23); will return 12 and Math.floor(12); will also return 12.
You can use the floor() method in the same way the ceil() method was used in the preceding
section—by assigning the result to a variable.

The round() Method The round() method works like the previous two methods, but instead
rounds the number entered as the parameter to the nearest integer whether it is greater or
less than the number. Any number having the decimal portion’s value at .5 or greater will be
rounded up, while any decimal portion with a value less than .5 is rounded down.

The .5 cutoff is strict, so Math.round(12.49999999); would return 12 even though your
tendency may be to round it up.

The random() Method The random() method is very useful for creating scripts that require
random integers. It returns a random number between 0 and 1. This means that you get a
number with a decimal that can be quite long and not useful on its own. For instance, it might
return something like 0.36511165498095293.

To get a random integer that you can use, you need to do some things to get the type of
value that you want to use.

315



316

JavaScript: A Beginner’s Guide

Random Integers To get a random integer, the first thing you will want to do is to make
the result have a greater range of values so that you are not stuck between 0 and 1. To get a
greater range of values, you can multiply the result of the random() method by an integer to
create a larger range. Like an array, the range would begin counting from 0; so, to get a range
of five possible integers, you would multiply the result by 5. The following code shows how
you can do this:

var rand _num= Math.random() *5;

This gets the result between 0 and 4, but does not give you an integer yet. The number could
still come out as a long decimal number.

To get an integer between 0 and 4, you need to find a way to make all of these decimal
numbers convert to integers. Recall that earlier you ran through three methods, floor(), ceil(),
and round(), that converted numbers to integers in various ways. The floor() method is the one
you will choose here because it simply removes the decimal places after the integer and gives
you the integer portion of the number.

To use the floor() method, you could write the following code:

var rand _num = Math.random() *5;
var rand int = Math.floor (rand num) ;

The floor() method takes in the value of the rand_num variable as a parameter and then gives
you an integer from it.

If you want to save a line of code, you could get a little fancy. You could just insert the
random() method and calculation as the parameter to the floor() method. You can do this
because the result of the calculation, Math.random*5, is a number, and the floor() method can
take a number as a parameter. The following code shows how you can code this on a single line:

var rand_int = Math.floor (Math.random()*5) ;

Now the variable rand_int will have the value of a random integer between 0 and 4. As you
might have noticed, this sort of number range could be quite useful with arrays. This is how
you can begin to code some fun scripts with random numbers.

Random Numbers for Scripts Now you can have a little fun with the Math object by using
the random() method. By setting up some arrays, you can create a script that provides random
quotes or shows a random image each time the page is loaded.

Random Quotes for Fun  If you have thought about adding a quote to your page but don’t
want to deal with changing the quote all the time to have something different, a random-quotes
script could be just the thing for you.

To make such a script, you first need some quotes to use. Suppose you want to set up ten
different quotes that will be displayed in random order each time the page is loaded. Since
you have a number of values that are similar (and so that you can use them with the random
integer later), you should use an array so that you can store all of these values and retrieve
them easily.



Chapter 12:  Math, Number, and Date Obijects

So, you need to set up an array with ten elements similar to the following example, in which
each element is a random (and perhaps peculiar) quote that I have thrown into the mix for you:

var quotes= new Array(10);
quotes [0] ="Look in the mirror. Are you looking at me?";

quotes[1]="It is time for a rhyme, I guess.";

quotes [2] ="Where is my JavaScript book?";

quotes [3]="If I had a buck for every dollar I spent--Oops, never mind.";
quotes [4]="1 suppose you were expecting a real quote here.";

quotes [5] ="Quotes are great, but don't quote me on that.";
quotes [6] ="What should I write here?";

quotes [7] ="Wut hapns iff eye miss spel ohn purpas?";
quotes [8] ="Mark my words, I will mark my words.";

quotes [9]="This spot reserved for a better quote.";

Now that you have this odd list of quotes in an array, you can use them by generating a random
integer.

You need a random integer between 0 and 9 (ten numbers), so you can use the following
code to assign a random integer between O and 9 to a variable:

var rand int = Math.floor (Math.random()*10) ;

Now the value of the variable rand_int will be a random integer between 0 and 9. You can use
it to access the element of the array whose index number matches the random integer in the
rand_int variable. You just need to access the array element using the variable as the index
number, as in the following example:

quotes [rand int]

You can write this value in the body of the page in a document.write() statement, or you can
reassign the innerHTML property of an element. An example using innerHTML is provided
next. The HTML document is saved as random_quotes.html and the JavaScript file is saved as
random_quotes.js. The HTML code:

<body>

<h1>My Random Quote for You:</hl>

<div id="my quote'>

Look in the mirror. Are you looking at me?

</divs>

<script type="text/javascript" src="random quotes.js"></script>
</body>

The JavaScript code:

var quotes= new Array(10) ;
quotes[0] ="Look in the mirror. Are you looking at me?";
quotes[1]="It is time for a rhyme, I guess.";

317



318

JavaScript: A Beginner’s Guide

quotes [2] ="Where is my JavaScript book?";

quotes [3]="If I had a buck for every dollar I spent--Oops, never
mind.";

quotes [4]="1 suppose you were expecting a real quote here.";
quotes [5]="Quotes are great, but don't quote me on that.";
quotes [6]="What should I write here?";

quotes [7]="Wut hapns iff eye miss spel ohn purpas?";

quotes [8]="Mark my words, I will mark my words.";

quotes [9]="This spot reserved for a better quote.";

var g _div = document.getElementById("my quote") ;
var rand_int = Math.floor (Math.random()*10) ;
g _div.innerHTML = quotes[rand int];

The code writes one of the random quotes on the page based on the random integer value
in the rand_int variable. A default quote (the first one in the array data) is provided for those
without JavaScript, which is then overwritten with the random quote if JavaScript is available.
Reloading the page enables the random number to be reset and will probably (though not
necessarily, because it is random) show a different quote.

Figure 12-3 shows one of the possible results of this script when run in a browser.

Figure 12-4 shows another one of the possible results of this script when run in a browser.
You can keep getting different (or sometimes the same) results by refreshing the page.

Now that you can write random quotes into a page, how about displaying a random image?
It is very similar to the last script; you just need to make some small adjustments.

Random Images for the Updated Look A random-image script can give your page the feel
of being updated without requiring you to change an image all the time. Of course, the images
all need to fit the content where you decide to place the randomly chosen image. A random-
image script could be useful, for example, for an art gallery to display its collection.

3 Example - Mozilla Firefox
Fle Edit View History Bookmarks Tools Help

@ = @ 3 e (1) HeEszz_phpftiguicsichal 2jrandom _quotes bt ve - | IGle] cooge -
181 Most Visited 8 Getting Started 3 | Latest Headines
() Disable= B Coakdes= |1 €55+ £ Forms= B Imoges= (€8 Intormation= (53 Miscellancous= o Outine= | & Resice= 4% Tooks= {&] Yiew Source= . Options= v @ 8

My Random Quote for You:

Look in the mirror. Are you looking at me?

Dane M | B |(lmentemstmniiind| ~

Figure 12-3 A possible result of using the random-quote script



Chapter 12:  Math, Number, and Date Obijects

3 Example - Muzilla Firefux
FBilc Edit ‘iew History Boolmarks Tools Help

6 v ™ X & | | ] hls,rHE ,rzz_phpangue«fchalz,rrm.n qocbes, il q .tl' P
1851 Most Visited # Gotting Started 5| Latest Headines

@ Dicabler [ Cookiess | €55+ 7] Forme+ M| Imagss+ ) Intormation~ (1 Miscelaneoust ./ Outiner |  Recizer 4 Took+ {5 View Sourcer | Options® v 8 8
My Random Quote for You:

Wut hapns iff eye miss spel ohn purpas?

B M | B |(Pimeamastmnaer| ~

Figure 12-4 Another possible result of using the random-quote script

The first thing you need is an array of image Universal Resource Locator (URL) addresses
(which can be local or absolute—local addresses are used here). The array used for this script
is shown in the following example code:

var r_image= new Array(10);
r image[0]="imageO.gif";
r image[l]="imagel.gif";
r_ image[2]="image2.gif";
r image[3]="image3.gif";
r_ image[4]="image4.gif";
r_ image[5]="image5.gif";
r image[6]="image6.gif";
[
[
[

r image[7]="image7.gif";
r_ image[8]="image8.gif";
r_ image[9]="imageS.gif";

This array sets up the addresses of images that can be displayed at random each time the page
is loaded.

Next, you need a way to get a random integer between 0 and 9. This is the same as in the
previous random-quote script:

var rand_int= Math.floor (Math.random()*10) ;

The next step is to access the array in the body section of the document to show a random
image from the array when the page is loaded in the browser.

The following code enables you to display the random image using the innerHTML
property of a div element to write the img tag for a random image if JavaScript is available.

319



320

JavaScript: A Beginner’s Guide

The HTML file is saved as random_images.html and the JavaScript file is saved as random_
images.js. First, the HTML code:

<body>

<h1>My Random Image for You:</hl>

<div id="my image">

<img src="imageO.gif" alt="Random Image" />

</divs>

<script type="text/javascript" src="random images.js"></script>
</body>

Next, the JavaScript code:

var r_ image= new Array(10);
r image[0]="imageO.gif";
r image[l]="imagel.gif";
r image[2]="image2.gif";
r image[3]="image3.gif";
r image[4]="image4.gif";
r image[5]="image5.gif";
r image[6]="image6.gif";
r image[7]="image7.gif";
r image[8]="image8.gif";
r image[9]="image9.gif";

var i div = document.getElementById("my image") ;
var rand int = Math.floor (Math.random()*10) ;
i div.innerHTML = '<img src="'+r image[rand int]+'" alt="Random Image"

/>

As you can see, this is quite similar to the random-quote script. You just needed to change the
contents of the array and the statement to replace the contents of the innerHTML property to
make the script display an image rather than a quote.

NOTE

For this example, the images are saved as image0.gif, image1.gif, and so on; however,
you could save your image files under any name you like.

This discussion of the random() method could go on for some time because there are
numerous things that you could randomize. However, you now know the basics of how this
feature works, so it’s time to move on.



Chapter 12:  Math, Number, and Date Objects 321

Ask the Expert

Q: Will I ever have any use for any of the properties of the Math object? They are all
numbers that I don’t even use!

A: This depends on how often you perform different types of calculations. It would be unlikely
for you to use any of them as a beginner, but there are some scripts out there that use them
for various advanced purposes, such as JavaScript calculators.

Q: 1 have no interest in writing a calculator. Do I really have to bother memorizing all the
properties of the Math object?

A: Well, probably not, since a situation to use them probably won’t come up all that often. It is
good to have a reference on hand just in case, though, and to know generally what they are
since they appear in scripts on the Web from time to time.

Q: Some of these properties and methods could be handy if I don’t have a calculator
around. I could write a little script to calculate some things for myself, couldn’t I?

A: Of course! Just be sure to double-check the numbers with something you know the answer
to first to be sure that there are no mistakes in your code.

Q: The random() method is fun so far, but I can’t think of anything else I could use it for.
Could you give me some ideas for using it to do other things?

A: There are a number of other things you could use it for. You can randomize pretty much
anything that can be displayed with an HTML tag or plain text, so try out some ideas and see
if they work for you. Here are some thoughts off the top of my head for you, though: random
links, random linked images, random tasks for a JavaScript game of some sort (like rolling dice
or drawing a card), random page greetings, random alerts...and I’m sure there are plenty more.

Display a Random Link on a Page

prl2 "] htmi: This script enables you to work with the random() method a little more by
H prisi2 1.js enabling you to create a script to display a random link on a page.

Step by Step

1. Create an HTML page with script tags that point to an external JavaScript file named
prjs12_1.js. Add a heading that says “Random Link™ and add a div element with an id of
random_link. Inside the div element, insert a default link for those without JavaScript. Save

the HTML fil 12_1.html. .
€ reasprie_tam (continued)



322

JavaScript: A Beginner’s Guide

2. Create an external JavaScript file and save it as prjs12_1.js. Use it for steps 3—6.

3. Create a set of five Web addresses in an array. Use the following addresses or some of your
own choosing:

http://www.pageresource.com
http://www.javascriptcity.com
http://www.mydemos.com
http://www.yahoo.com
http://www.google.com

4. Use the random() method to create a random integer you can use to access the array with
the integer as an index number.

5. Display a random link on the page in the format shown next by changing the innerHTML
property of the div element with the id of random_link:

<a href="random address here">Random Site!</a>

6. Save the JavaScript file and open the HTML file in your Web browser. Try reloading a few
times to see how the random addresses show up for the link.

Try This Summary

In this project, you were able to use your knowledge of the Math object. Using the random()
method, you created a Web page that displays a link that goes to a random Web address.

Understanding the Number Object

The Number object is another predefined JavaScript object that offers several useful properties
and methods for use with numbers. Its most common use is to access some of its helpful
properties that represent certain values that can aid you when creating scripts.

Properties
Table 12-3 lists the properties of the Number object and briefly describes the purpose of each.
Each property is described in more detail in this section.

The constructor Property

The constructor property holds the value of the constructor function of the object, much like
the use of this property in the Array object (refer to Chapter 11). The property returns a value
similar to what you get with the Array object: the name of the constructor function and any
public code in the function. Since the function code is private, you get the [native code] text in
place of the actual function code.


http://www.pageresource.com
http://www.javascriptcity.com
http://www.mydemos.com
http://www.yahoo.com
http://www.google.com

Chapter 12:  Math, Number, and Date Obijects

Property Purpose

constructor Holds the value of the constructor function that created the object

MAX_VALUE Holds a constant number value, representing the largest value before
JavaScript inferprets a number as infinity

MIN_VALUE Holds a constant number value, reEresenting the smallest value
before JavaScript interprets a number as negative infinity

NaN Represents the value of “Not a Number”

NEGATIVE_INFINITY

Represents the value of negative infinity

POSITIVE_INFINITY

Represents the value of infinity

prototype

Enables you to add properties to the object if you wish

Table 12-3  Properties of the Number Object

The MAX_VALUE Property

The MAX_VALUE property is a constant number value, approximately 1.79E+308. The reason
this property is helpful is that any number greater than its value is represented as infinity in
JavaScript. Thus, using it in a comparison could provide a way to avoid calculations that are too
large to display a numerical value. The following code is an example of how this works:

var big num =

numl*num2*num3 ;

if (big num > Number.MAX VALUE) ({
window.alert ("The number is too large, try smaller numbers.");

}

else {

window.alert (big num) ;

}

Assuming numl, num?2, and num3 were entered by the viewer, the alert, instead of displaying
the word “infinity” as the answer, informs the viewer to try entering smaller numbers for the
calculation if the value of big_num is greater than the value of the MAX_VALUE property.

The MIN_VALUE Property

The MIN_VALUE property is a constant number value, approximately Se —324. The reason
this property is helpful is that any number less than its value is represented as negative infinity
in JavaScript. Thus, using it in a comparison could provide a way to avoid calculations that are
too small to display a numerical value. The following code is an example of how this works:

var small num

numl*num2*num3 ;

if (small num < Number.MIN VALUE) {
window.alert ("The number is too small, try larger numbers.");

}

else {

window.alert (small num) ;

}

323



324

JavaScript: A Beginner’s Guide

Assuming numl, num?2, and num3 were entered by the viewer, the alert informs the viewer to
try entering larger numbers for the calculation if the result of the calculation is less than the
value of the MIN_VALUE property.

The NaN Property
The NaN property is a value that represents “Not a Number.” It is displayed by the browser as
a string value of NaN and is not equal to any number or another instance of NaN.

The NEGATIVE_INFINITY Property

The NEGATIVE_INFINITY property is a constant value that represents negative infinity. It
can be used in a similar fashion to the way MIN_NUMBER and MAX_NUMBER are used.

The POSITIVE_INFINITY Property

The POSITIVE_INFINITY property is a constant value that represents positive infinity. It can
be used in a similar fashion to the way MIN_NUMBER and MAX_NUMBER are used.

The prototype Property
The prototype property enables you to add a property or method to the Number object, much
like you did with the Array object in Chapter 11.

Methods

Table 12-4 lists the methods of the Number object and briefly describes the purpose of each.
The following sections discuss each method in more detail.

The toExponential(), toFixed(), toPrecision(), and toString() Methods

These methods return a string value representing what the Number object would look like
formatted in a particular way. Note that these methods cannot be used with a number itself
(a numeric value), as in the following code:

document .write (10.toExponential ()) ;

Method Purpose

toExponential() Returns a string value that represents the number in exponential notation

toFixed|() Returns a string value that represents the number rounded to the specified
number of digits after the decimal

toPrecision() Returns a string value that represents the number rounded to the specified
number of significant digits

toSource|) Returns a string value that represents the source code of the object

toString() Returns a string value for a Number object

valueOK() Used by JavaScript internally most offen

Table 12-4 Methods of the Number Object



Chapter 12:  Math, Number, and Date Objects 325

This will cause a JavaScript error because it expects a Number object. To avoid this, use the
methods by assigning numeric values to variables (which will make them Number objects), as
in the following code:

var the num = 10;
document .write (the num.toExponential()) ;

NOTE

You could also use the syntax of var the_num = new Number(10); (which you may be
used to from previous objects) and it would also be valid.

The toExponential() Method

The toExponential() method returns a string representing a Number object in the form of
exponential notation. Thus, the following code would write the result of 1.0e+1 (or a similar
notation, depending on your browser) on the screen:

var the num = 10;
document .write (the num.toExponential()) ;

The toFixed() Method

The toFixed() method returns a string representing a Number object rounded to the specified
number of places after the decimal. For instance, if you need to format the results of
calculations to appear as monetary values, you could use this method to get the result of
your calculation rounded at the second digit after the decimal and displayed in your currency
format. For example, this code uses dollars and cents:

var mymoney = 2000;

var mykids = 7;

var one_share = mymoney/mykids;

document .write ("One share of my money is $"+ one share.toFixed(2)) ;

The result of the calculation for one share is 285.7142857142857, but since it is displayed
using the toFixed() method on it with 2 as the parameter, the sentence displays as follows:

One share of my money is $285.71

The toPrecision() Method

The toPrecision() method returns a string representing a Number object rounded to the specified
number of significant digits. This is for all digits before and after the decimal. Thus, if you wanted
a number like 45.57689349 rounded to five significant digits, you could use the following code:

var the _num = 45.57689349;
document .write (the num.toPrecision(5)) ;

The browser will display the string 45.577, which is the number rounded to five significant
digits (two before and three after the decimal place in this case).



326

JavaScript: A Beginner’s Guide

The toString() Method

The toString() method returns the string value of a Number object (or a numerical variable
value). This can be useful if you want to convert a numerical value to its corresponding string
value (for example, change 10 to “10”).

The toSource() Method

The toSource() method returns a string value that represents the source code of the object.
With the predefined Number object, this method returns the value of the constructor property.
This method is most often called by JavaScript internally and is less likely to be used in code.

The valueOf{) Method

This is another method that is mainly used by JavaScript internally. For now, you just need to
know that it is a valid method of the Number object.

Using the Date Obiject

The Date object is another predefined JavaScript object. It enables you to set certain time
values and to get certain time values that you can use in your scripts. To use this object, you
need to create an instance of the object to which you can refer.

To create an instance of the Date object, you use the new keyword (as you have with
a number of other objects), as shown in the following example:

var instance name = new Date();

You would replace instance_name with a name that you want to use for the instance of the
Date object. So, if you wanted an instance named rightnow, you could use the following code:

var rightnow = new Date() ;

Now you have an instance of the object named rightnow.

Once you have an instance of the object, you can use the properties and methods of the
Date object to perform various tasks (such as create JavaScript clocks). These properties and
methods are described in the following sections.

Properties

The Date object has only two properties. Table 12-5 lists the properties and their purposes
(these may look familiar, because the Array and Number objects have these same properties).
Each property is described in more detail in the following sections.

Property Purpose
constructor Holds the value of the constructor function that created the obiject
prototype Enables you to add properties to the object if you wish

Table 12-5 Properties of the Date Object



Chapter 12:  Math, Number, and Date Obijects

The constructor Property

The constructor property holds the value of the constructor function of the object, much like
the use of this property in the Array and Number objects. To see what the value is, you could
write it to the page, as shown in the following code:

<body>

<script type="text/javascript"s>

var rightnow= new Date() ;

document .write (rightnow.constructor) ;
</scripts>

</body>

If you run the code, you will probably see something similar to the following line written
on the page:

function Date() { [native code] }

This is pretty much what you get using this property with the Array object: the name of the
constructor function and any public code in the function. Since the function code is private,
you get the [native code] text in place of the actual function code.

The prototype Property

The prototype property enables you to add a property or method to the Date object,
much like you did with the Array object in Chapter 11. For instance, if you want to add
a new property named attitude for each instance of the Date object, you could use the
following code:

Date.prototype.morning="a.m.";
var rightnow= new Date () ;
window.alert ("This date is "+rightnow.morning) ;

This code creates the new property, creates an instance of the Date object, and then alerts the
value of the new property to the screen.

Now that you know the properties of the Date object, take a look at the methods you
can use.

Methods

The Date object doesn’t give you many properties, but it does have quite a large number of
methods you can use. Table 12-6 lists various methods of the Date object and the purpose of
each method. Each method is discussed in more detail in the sections that follow.

Now that you have the long list of methods, take a look at them in a little more detail,
beginning with the methods used to get date values in an instance of the Date object.

327



328

JavaScript: A Beginner’s Guide

Method Purpose

getDate() Returns the day of the month based on the viewer’s local time

getDay() Returns the number of days info the week based on the viewer’s local time (0-6)
getHours() Returns the number of hours into the day based on the viewer’s local time (0-23)

getMilliseconds()

Returns the number of milliseconds info the second based on the viewer’s local
time (0-999)

getMinutes() Returns the number of minutes into the hour based on the viewer’s local
time (0-59)
getMonth() Returns the number of months into the year based on the viewer’s local
time (0-11)
getSeconds() Returns the seconds into the minute based on the viewer’s local time (0-59)
gefTime() Returns the number of milliseconds since 1/1/1970 for the Date object
getTimezoneOffset() | Returns the time-zone offset (from Greenwich Mean Time) in minutes based on
the viewer’s local time zone
getYear() Returns the year based on the viewer’s local time (two digits)

getFullYear()

Returns the full year based on the viewer’s local time (four digits)

getUTCDate() Returns the day of the month in Coordinated Universal Time

getUTCDay/() Returns the number of days info the week in Coordinated Universal Time (0-6)
getUTCFullYear() Returns the full year in Coordinated Universal Time (four digits)

getUTCHours() Returns the number of hours into the day in Coordinated Universal Time (0-23)

getUTCMilliseconds()

Returns the number of milliseconds into the current second in Coordinated
Universal Time (0-999)

getUTCMinutes() Returns the number of minutes into the hours in Coordinated Universal
Time (0-59)

getUTCMonth() Returns the number of months into the current year in Coordinated Universal
Time (0-11)

getUTCSeconds() Returns the number of seconds info the current minute in Coordinated Universal
Time (0-59)

parse() Returns the number of milliseconds since 1/1/1970 of a date sent as
a parameter based on the viewer’s local time

setDate() Sets the day of the month for an instance of the Date object

setHours() Sets the hours for an instance of the Date object

setMilliseconds()

Sets the milliseconds for an instance of the Date object

setMinutes()

Sets the minutes for an instance of the Date object

setMonth()

Sets the month for an instance of the Date object

Table 12-6 Methods of the Date Object



Chapter 12:  Math, Number, and Date Objects 329

Method Purpose

setSeconds() Sets the seconds for an instance of the Date object

setTime() Sets the time (in milliseconds since January 1, 1970, at midnight) for an
instance of the Date object

setYear() Sets the year for an instance of the Date object (two digits)

setFullYear() Sets the full year for an instance of the Date object (four digits)

setUTCDate() Sets the day of the month in Coordinated Universal Time

setUTCFullYear() Sets the full year in Coordinated Universal Time (four digits)

setUTCHours() Sets the number of hours into the day in Coordinated Universal Time (0-23)

setUTCMilliseconds()

Sets the number of milliseconds into the current second in Coordinated
Universal Time (0-999)

setUTCMinutes() Sets the number of minutes into the hours in Coordinated Universal Time (0-59)
setUTCMonth() Sets the number of months into the current year in Coordinated Universal

Time (0-11)
setUTCSeconds() Sets the number of seconds info the current minute in Coordinated Universal

Time (0-59)

toDateString()

Returns the date portion of the Date object as a string in American English

toGMTString()

Returns a string that is the date in Greenwich Mean Time (GMT) format
(toUTCString() is now used instead)

toLocaleString()

Returns a string that is the date in a format based on the locale

toLocaleDateString()

Returns the date portion of the Date object as a string based on the locale

toLocaleTimeString()

Returns the time portion of the Date object as a string based on the locale

toString()

Returns a string that is the date in American English

toTimeString()

Returns the time portion of the Date object as a string in American English

Table 12-6 Methods of the Date Obiject (continued)

Methods That Get Values

Methods that get values enable you to get various time and date values that you can use in your
scripts. The methods that enable you to get values for an instance of the Date object include

the following:

getDate()

getDay()
getHours()

getMilliseconds()



330

JavaScript: A Beginner’s Guide

getMinutes()
getMonth()
getSeconds()
getTime()
getTimezoneOffset()
getYear()
getFullYear()
getUTCDate()
getUTCDay()
getUTCFullYear()
getUTCHours()
getUTCM illiseconds()
getUTCMinutes()
getUTCMonth()
getUTCSeconds()

To use these methods, you need an instance of the Date object. Once you have that, you
can call any of the methods by using the instance name. The following is the syntax for
doing this:

instance name.method() ;

You would replace instance_name with the name of your instance of the Date object, and you
would replace method with the method function you wish to use.

So, if you wanted to use the getDate() method with an instance of the Date object named
rightnow, you would use the following code:

var rightnow= new Date() ;
var theday= rightnow.getDate() ;

This assigns the value returned from the getDate() method to a variable named theday.
Because the values returned from the Date methods are often numeric, the methods need to
be explained a bit further; thus, the following sections take a look at these methods more closely.

The getDate() Method

The getDate() method enables you to get the day of the month for use in a script. The value
returned is a number that represents the day of the month. So, if it is the S5th of the month, the
getDate() method would return 5. If it is the 22nd, the getDate() method would return 22. This
method is nice because it is fairly straightforward.



Chapter 12:  Math, Number, and Date Objects 331

The getDay() Method

The getDay() method enables you to get the day of the week; however, rather than returning
a name such as Monday or Friday, it returns a number. The number represents the number of
days into the week (0-6) rather than the day of the week you would commonly have in mind
(1-7). So, if it is Sunday, the method returns 0; and if it is Wednesday, the method returns 3.
You have to remember that it counts from 0 when you begin using it in your scripts. Many of
the methods that follow will count beginning at 0.

The getHours() Method

The getHours() method enables you to get the number of hours into the day (0-23). The count
begins at 0. So, when it is midnight, the method returns O; and when it is 2:00 p.m., it returns 14.

The getMilliseconds() Method

The getMilliseconds() method enables you to get the number of milliseconds stored in the
instance of the Date object (0-999).

The getMinutes() Method

The getMinutes() method enables you to get the number of minutes stored in the instance

of the Date object (0-59). Again, the counting begins at 0. So, if it is 2:00 (either A.m. or P.M.,
or any hour) on the dot, the method returns O; and if it is 2:23, the method returns 23.

The getMonth() Method

The getMonth() method enables you to get the number of months stored in the instance

of the Date object (0—11). This method also begins counting at 0, which makes the result a
little tricky. For instance, if it is January (the month people tend to think of as 1), the method
returns 0; and if it is October (the month people tend to think of as 10), the method returns 9.
This is one you have to watch a little more closely when you use it in scripts, because you will
need to remember to make an adjustment if you want to use numeric dates (like 10/24/2000).

The getSeconds() Method

The getSeconds() method enables you to get the number of seconds stored in the instance of
the Date object (0-59). So, if the time is 2:42:23, the method returns 23; and if the time is
2:23:00, the method returns 0.

The getTime() Method

The getTime() method gets the time (in milliseconds since January 1, 1970, at midnight) for an
instance of the Date object. So, if you wanted to know the number of milliseconds since that
date at your current time, you could use the following code:

var rightnow= new Date() ;
var theday= rightnow.getTime () ;

This assigns the result of the method to a variable so that you can use it later if you need it in
your script.



332

JavaScript: A Beginner’s Guide

The getTimezoneOffset() Method

The getTimezoneOffset() method gives you the number of minutes that separate the local time
from GMT. So, if you are 6 hours apart from GMT, the method would return 360 (6 x 60); and
if you are only 1 hour apart, the method returns 60.

The getYear() Method

This method returns the last two digits of the year (at least if the year is between 1900 and
1999). For instance, if the year is 1988, the method returns 88. After the year 2000, some
browsers will return a three-digit year and others will return a four-digit year. To avoid this,
you can use the getFull Year() method, which is supported by the newer browsers and returns
a four-digit year.

The getFullYear() Method

The getFullYear() method is very similar to the getYear() method, except it returns a four-digit
year consistently to avoid the year 2000 problem.

The getFullYear() method works like the getYear() method, but you do not need to run any
extra checks to be sure the year is correct:

var rightnow= new Date() ;
var theyear= rightnow.getFullYear() ;

This assigns the value returned by the method to the theyear variable. This time, the value is
already four digits and won’t need any adjusting.

The UTC Methods

These methods work the same as their counterparts (for example, getDate() and getUTCDate()
work the same), but return the information in terms of Universal Time rather than the viewer’s
local time.

Now that you have seen the methods that get values, take a look at the methods that enable
you to set values for an instance of the Date object.

Methods That Set Values

The methods that set values work with the same types of values as the methods that get values.
The methods that enable you to set values for an instance of the Date object include the
following:

setDate()
setHours()
setMilliseconds
setMinutes()
setMonth()

setSeconds()



Chapter 12:  Math, Number, and Date Objects 333

setTime()

setYear()

setFull Year()
setUTCDate()
setUTCFull Year()
setUTCHours()
setUTCMilliseconds()
setUTCMinutes()
setUTCMonth()
setUTCSeconds()

To set these, you send them a numeric parameter based on the time or date you want to

use. For instance, if you wanted to set the day of the month for an instance of the Date object,
you could use the following code:

var rightnow= new Date() ;
rightnow.setDate (22) ;

This would set the day of the month to the 22nd for the rightnow instance of the Date object.

The other methods work in the same way. In order to know what value needs to be sent
to one of these methods, take a look at what type of value is returned by its counterpart in the
methods that get values. The parameter the method will expect will be a value like the one
returned by the method.

Other Methods

The remaining methods perform various tasks that the other methods don’t cover in some way.

The parse() Method

The parse() method is used to find out the number of milliseconds since January 1, 1970, at
midnight for a date string (such as Dec 12, 1999) input as a parameter. This is often used with
the setTime() method since it needs a parameter in milliseconds to set the time. You could

use the parse() method to find the number of milliseconds since January 1, 1970, for the date
Dec 12, 1999 at midnight (the rightnow instance of the Date object will use this as the date that
all of the methods will use to return values), as shown in the following code:

var rightnow= new Date() ;
var thenum= Date.parse("Dec 12, 1999")=
rightnow.setTime (thenum) ;

This method can be used
directly from the Date object

This code parses the date into a number of milliseconds, and then sends it to the setTime()
method used with the rightnow instance of the Date object.



334

JavaScript: A Beginner’s Guide

The toString(), toDateString(), toTimeString(), toLocaleDateString,

and tolocaleTimeString() Methods

These methods return a string representing the date and time, or a portion thereof. For instance,
the toString() method returns a date in string format. You can use it to get a formatted date for
an instance of the Date object, as shown in the following code:

var rightnow= new Date() ;
var thedate= rightnow.toString() ;

This will assign a date string value to the variable thedate. The value of the string depends on
what browser the viewer is using to view the page. It can then be written to the page or used
with other methods of the Date object in a script.

The toGMTString() Method

The toGMTString() method returns a date string in GMT format. You can use it to get the
GMT format for an instance of the Date object, as shown in the following code:

var rightnow= new Date () ;
var thedate= rightnow.toGMTString() ;

This will assign a value, such as Wed, 21 Dec 2003 11:12:44 GMT, to the variable thedate.
It can then be written to the page or used with other methods of the Date object in a script.

The toLocaleString() Method

The toLocaleString() method returns a date string in the format of the viewer’s locale. You can
use it to get the locale format for an instance of the Date object, as shown in the following code:

var rightnow= new Date() ;
var thedate= rightnow.toLocaleString() ;

This will assign a date string value to the variable thedate. The value of the string depends on
what browser the viewer is using to view the page. It can then be written to the page or used
with other methods of the Date object in a script.

Now that you have the methods down, see if you can have a little fun with the Date object.

How About Some Date Scripts?

With the technical overview out of the way, you are ready to create some scripts that use the
methods of the Date object. First you will write a script to display the date on the page, and
then you will create a script for a simple status bar clock.

Write the Date on the Page

To write the date on the page, you need to use some of the Date object methods to get the
values you need. Suppose you want to write a date with the format of Tuesday, M/D/Y
(month, day, year). To do this, you need to find out the day of the week, the month, the day
of the month, and the year. You can do this using the getDay(), getMonth(), getDate(), and
getFull Year() methods.



Chapter 12:  Math, Number, and Date Obijects

The following script will write the date to the page. First, the HTML code (save as write_
date.html):

<body>

<hl>Today's Date</hl>

<div id="write date">

<!-- call to a server-side script for backup could go here -->
</divs>

<script type="text/javascript" src="write date.js"></script>
</body>

Note the comment within the div element. If you want to make this accessible to browsers
that do not support JavaScript, you can place a call to a PHP (or other server-side technology)
script here for those lacking JavaScript. For example, if you had the page set up to parse PHP,
you could use the following to display the date much like the JavaScript code will:

<body>

<hl>Today's Date</hl>

<div id="write date">

<?PHP

Sthe date = date(l, n/j/Y);

echo "$date";

?>

</divs>

<script type="text/javascript" src="write date.js"></script>
</body>

You will see that the PHP script is much shorter than the JavaScript script due to its built-in
date-formatting capability. The date displayed may differ from the viewer’s date as it displays
the date on the Web server. An in-depth discussion of server-side technology is beyond the
scope of this book, but this serves as an example of a way to provide the same basic feature for
those without JavaScript.

Next, the JavaScript code (save as write_date.js):

A new instance of the

var rightnow = new Date() ;< Date object is created

var weekday = rightnow.getDay () ;

var themonth = rightnow.getMonth() ; The methods of the Date object are
var thedate = rightnow.getDate() ; used fo obtain the needed values
var theyear = rightnow.getFullYear() ;——

// Set the Days of the Week
var someday= new Array(7);
someday [0] ="Sunday";

someday [1] = "Monday .I. An array is created to hold the name of each day
someday [2] ="Tuesday" ; of the week, with the index values corresponding to
someday [3] ="Wednesday"; what will be returned by the getDay() method
someday [4] ="Thursday";

someday [5] ="Friday";
someday [6] ="Saturday";

335



336

JavaScript: A Beginner’s Guide

//Set the Month Numbers to Be Recognizable The month value is incremented
themonth++; in order to look like its standard
numerical month value

var date_div = document.getElementById("write date");
date div.innerHTML = someday[weekdayl+ ", "+themonth+"/"+thedate+"/
"+theyear;

The div element is obtained by its id and has its innerHTML
property changed to display the formatted date

This script sets the results of the methods to variables. It then creates an array to hold the days
of the week, which are later accessed using the number returned from the getDay() method as
the index number. The script then makes an adjustment, adding 1 to the number returned
by the getMonth() method, so that the month will show up the way you would expect it (recall
that it counts months starting at 0 instead of 1, so this ensures that January is represented
by the number 1 rather than 0, for example).

The formatted output is written onto the page for the viewer to see. The result of this script
when run in a browser is shown in Figure 12-5.

Create a Simple Clock
To create a simple clock, you need the hours, minutes, and seconds of the current time. To get
these, you can use the getHours(), getMinutes(), and getSeconds() methods.

3 Example - Muzilla Firefox E”EE |
File Edit ‘ew History Bookmarks Tools Help Fa

@ = € X tar ([ [P phpinguesichatzimte_dere. i B vy | [Cle] sooge 3l

1] Most Visited 1 Gotting Started 3 | Latest Headines

@ vicabler B Cookess (] Cos 7] rormer W] imagese () Informationt (7 mccalansoust ' outiner § & Recizer ¥ 1ok~ [5] View sourcer . Uptions® v 2 86
'

Today's Date

Monday, 32200%

Done M | B |(hmentemstmniiinc| ~

Figure 12-5 The date is shown on the page



Chapter 12:  Math, Number, and Date Obijects

The following code will create a clock that is displayed on the page. First, the HTML code
(save as clock.html):

<body>

<hls>Current Time:</hl>

<div id="my clock">

<!-- call to a server-side script for backup could go here -->
</divs>

<script type="text/javascript" src="clock.js"></script>
</body>

CAUTION

If you use a server-side script as a backup to the JavaScript clock, you almost surely
do not want it o update every second because this could put undue strain on the Web
server. In such a case, it is often best to simply display the time without updating it.

Next, the JavaScript code (save as clock.js):

function startclock() ({

var thetime = new Date() ;
var hours = thetime.getHours () ;— The methods of the Date object are used to
var mins = thetime.getMinutes() ; obtain the hours, minutes, and seconds

var secn = thetime.getSeconds() ;

var ap = (hours >= 12) ? "p.m." : "a.m."; e— Avariab|eissefsothata.m.orp.m.

may be displayed after the time
if (hours >= 13) {

hours -= 12;
}
if (hours < 1) {
hours = 12;
} The hours, minutes, and seconds are ocﬂusfed so that
if (mins < 10) { they will display like a typical 12-hour digital clock
mins = "0" + mins;
}
if (secn < 10) {
secn = "0" + secn; The div element is obtained so that the innerHTML
} property can be adjusted to display the clock

var clock div = document.getElementById("my clock");
clock div.innerHTML = hours + ":" + mins + ":" + secn + " " + ap;
setTimeout ("startclock ()", 1000) ;

The hours, minutes, seconds, and ap

} -
The scr}:pr s .f..q”ed every shecgnd variables are combined and di5|i:|oyeo| as
startclock () ; using the setTimeout() metho the new innerHTML for the div element

Calling the function here starts the process

337



338

JavaScript: A Beginner’s Guide

3 Example - Muzilla Firefux

File Edit ‘iew History Bookmarks Toolk  Help

@ = @ X dar (17 [ phpinguesichatzicack.himi v | [IC]s] sooqs J

ﬁ Most Visited ’ Gothing Started (& | Latest Headines

S isabler 5 Coakiest [ Cobe :j Forms B Images= ) Informabant (T Mscelansoust o/ Dutine~ | o Resizas /P Took+ {5 view sourcer Y Uptions* v & O
1 3

Current Time:

101003 pm

Done M | B |l ~

Figure 12-6 A clock is displayed on the page

The script creates a function that sets the results of the methods to variables. It takes the
hours variable and sets the ap variable to p.m. if hours is greater than or equal to 12 and sets it
to a.m. if hours is less than 12 (at this point the hours variable still holds 13 for 1 p.m., 14 for
2 p.m., and so on). Once this is done, the hours variable is adjusted so that it will display the
expected value for a 12-hour clock.

The script then adjusts the values of the variables that show the minutes and seconds by
adding a leading O when the number is less than 10. This way the clock will show 12:02:34
for 12:02:34, instead of leaving out the 0 and displaying 12:2:34 (this can also be done for the
hours variable if you would like it to have a leading zero).

At the end, the function displays the output on the page. The function is initially called
right after it is defined. The function is repeated at intervals of 1000 milliseconds, or 1 second.
This enables the clock to stay current. The results of this script when run in a browser are
shown in Figure 12-6.

Create a JavaScript Clock

: pr 12 2.html This project enables you to work more with the methods of the Date object, as

prisiz 2.9s | well as learn how to adjust the values that are returned so they can be used in

ceresennend vVarious ways. This creates a JavaScript clock with a few more options than your

simple clock in the previous section.

Step by Step

1. Create an HTML page with script tags that point to an external JavaScript file named
prijs12_2.js. Add a heading that says “Current Time” and add a div element with an id of
my_clock. Save the HTML file as pr12_1.html.

2. Create an external JavaScript file and save it as prjs12_2.js. Use it for steps 3—6.



Chapter 12:  Math, Number, and Date Obijects

3. Write some code that will display a clock. In this clock, include the following information:

The time with hours, minutes, and seconds
Whether it is A.M. or P.M.
The date in the form mm/dd/yyyy

4. This will be a 12-hour clock, so be sure to adjust the value of the hours so that they stay between
1 and 12. Also, note the format of the date and adjust the month and day values accordingly.

5. Begin the clock, and have it update every second.

6. Save the JavaScript file and open the HTML file in your browser. The time and date should
appear on the page.

Try This Summary

In this project, you used your knowledge of the Date object. Using the methods of the Date
object, you created a clock that appears on the Web page.

Chapter 12 Self Test

1. What do the properties and methods of the Math object enable you to do?
A Take the square roots and other such values of strings and return a number
B Perform mathematical calculations
C Go to math class to learn new theorems
D Nothing, they are useless
2. The property holds the value of Euler’s constant.
3. The LN10 property holds the value of the natural of 10.
4. The LOGI0E property holds the value of the logarithm of 10*E.
A True
B False
5. Which of the following would correctly write the value of pi on a Web page?
A document.write(Math.Pi);
B document.write(Math.pi);
C document.write(Math.PI);
D document.write(Date.PI);

6. The property holds the value of the square root of 2.

339



340  JavaScript: A Beginner's Guide

7. The abs() method returns the value of a number sent to it as a parameter.
A absent
B absurd
C absolute

D absolute square root

8. The method returns the arcsine of a number sent to it as a parameter.
9. The pow() method returns the numeric value of the parameter raised to the
power of the parameter.

10. Which of the following would correctly generate a random number between 0 and 77
A var rand_int= Math.floor(Math.random()*7);
B var rand_int= Math.floor(Math.random()*6);
C var rand_int= Math.floor(Math.random()*8);
D var rand_int= Math.sqrt(Math.random());
11. The method returns the square root of a number sent to it as a parameter.

12. What must be created in most cases before the Date object’s properties and methods
can be used?

A Nights string
B A number for reference to the date
C A time for the date to be set
D An instance of the Date object
13. The method returns the number of days into the week.

14. The getMonth() method returns the same number as the number that represents the current
month (for example, returns 1 if the current month is January).

A True
B False

15. Which of the following correctly assigns the day of the week for an instance of the Date
object named rightnow to a variable named weekday?

A var weekday= rightnow.getDate();
B var weekday= rightnow.getDay();
C var weekday= right now.getDay();

D var weekly= rightlater.getMinutes();



Chapter 13

Handling Strings

341



342  JavaScript: A Beginner's Guide

Key Skills & Concepts

Using the Properties of the String Object
Using the Methods of the String Object

Using Regular Expressions

To work with strings in JavaScript, you need to learn about the various methods that handle
them. The methods come from the JavaScript String object.

This chapter first explains what the String object is and how to create strings that use its
properties and methods. Then, the String object’s properties and methods are discussed in
more detail so you can see how they work. Finally, you’ll code a script that uses some of the
properties and methods you’ve learned.

Introduction to the String Obiject

The String object provides properties and methods to get information about strings or

to modify strings. A String object is created in either of two ways: a programmer creates
one by using the new keyword with the constructor function, or JavaScript creates one
temporarily when one of the methods is called from a string literal. What makes a String
object and what makes a string literal? To find out, take a look at how to create a String
object in JavaScript.

The String Object

As just explained, one way to create a String object is to use the new keyword, as you’ve done
with other objects previously. The syntax is shown here:

var instance name = new String("string value here");

You replace instance_name with the name you want to use for the instance of the String
object. You then replace string value here with the string of characters to use as the new
String object.

So, if you want to create an instance of the String object named guitar_string, you could
use the following code:

var guitar string = new String("G");

This script creates an instance of the String object for the string “G”.
Although creating a String object with the new keyword can be useful for things such as
comparing String objects, string literals are used more often.



Chapter 13:  Handling Strings 343

The String Literal

You can create a string literal just by assigning a string value to a variable. This technique is a
bit shorter than creating a String object using the new keyword and still allows you to use all
the methods of the String object (as well as one of the properties).

A string literal is created in the code that follows. Notice that the code assigns a string
value to a variable.

var guitar string = "G";

This makes the string “G” a string literal, which you know as a regular text string. With text
strings, you’re also allowed to use the properties and methods of the String object.

What's the Difference?

The difference between a String object and a string literal is that a regular text string has
the value of the string itself, and it can be compared against another string easily, as in the
following code:

1 1 — n n.
var guJ‘_tar_strJ‘_ngl = "BY; } Both variables have the same string value
var guitar string2 = "E";
if (guitar_ stringl == guitar string2) ({

window.alert ("The strings are the same!");

} L The strings are compared
else {

window.alert ("The strings are not the same!");

Because this code uses regular string literals, the result is what you’d expect. An alert says that
the strings are the same.

However, if you used String objects to run through the same if block, you would see
something unexpected. The code that follows uses String objects instead:

var guitar_stringl = new String("E") ;:l_ The String objects are given
var guitar string2 = new String("E"); the same string values
if (guitar_ stringl == guitar string2) ({

window.alert ("The strings are the same!"); Th | d
e values are compared,

} L but an unexpected
else { answer is the result
window.alert ("The strings are not the same!");

This time the alert would tell you that the strings are not the same, even though the string
values are both “E”—because a String object is an object value and not a literal value. Objects
aren’t going to be equal to one another in the same way regular text strings would be. To find
out if two objects are equal, you would have to write extra code to determine that. For most
purposes, you wouldn’t want to go to all that trouble. Instead, you would probably use string
literals and let them use the String object’s methods.




344  jovaScript: A Beginner's Guide

A regular text string is able to use the String object’s methods because JavaScript takes
the string literal and turns it into a temporary String object. Once the method’s execution is
complete, it returns a string literal. This allows you to use the String object’s methods without
having to create String objects.

Using the Properties of the String Obiject

The String object has only three properties, so this section is relatively short. Table 13-1
provides a brief description of these properties, each of which is discussed in turn in the
sections that follow.

The constructor Property

This property performs the same task as it does in the other objects that have it (like the Date
and Array objects). It sends back the value of the constructor function. To use the constructor
property, you have to use a String object rather than a literal.

NOTE

You can use a string literal for the length property and all of the methods of the String
object, but the constructor and prototype properties require String objects.

The following code writes the value of the constructor property onto a Web page:

<body>

<script type="text/javascript">

var guitar string = new String("G") ;e—— A new String object is created
document .write (guitar string.constructor) ;<e—— The value of the constructor
</script> property is printed on the page
</body>

This code produces text similar to the following:
function String() { [native code] }
The length Property

This property returns the length of the string, which is the number of characters contained in
the string. You can use it with both String objects and string literals. You’ve seen this property

Property Purpose

constructor Holds the value of the constructor function for an instance of the object
length Holds the numeric value of the length of the string (its number of characters)
prototype Allows you to add properties to the object

Table 13-1 Properties of the String Object



Chapter 13:  Handling Strings 345

with other objects as well, such as the Array object. (In that case, the value was the number of
elements in an array.)

The following code uses a regular text string. It writes the length of the string variable onto
the page.

<body>

<script type="text/javascript"s>

var myname="John"; « A string literal is created

document .write ("The name has "+myname.length+" characters.");
</script>

</body> The |engfh of the name in characters

is written on the page

Notice how the name of the variable is used like an object name here. This is how to get
JavaScript to create a temporary String object to use the property. The script writes the result to
the page. Because the name has four characters, the length property has a value of 4 here.

The length property will be quite useful when you want to break strings apart to get
information or make changes to them, especially if the viewer enters the string and you don’t
know its length beforehand.

The prototype Property
As with the other objects that have the prototype property, you can use it to add properties or
methods to String objects on the page. The following code shows an example:

The prototype value adds a
property to the String object

String.prototype.attitude="cool"; A new instance of the
var rightnow= new String("Joe") ;- String obiject is created
window.alert ("This string is "+rightnow.attitude); +——

The new property is used with the
instance of the String object

Now the String object “Joe” has an attitude property of “cool”!

Using the Methods of the String Object

The String object has a lot of methods, as shown in Table 13-2.
Yes, this list is quite long! The following sections take a look at the methods of the String
object.

Methods That Add HTML Tags

Many of the methods in Table 13-2 are used to create HTML tags around a string (or create
HTML tags with attribute values sent to them as parameters). Many of these effects can be
done using the more up-to-date method of accessing an element’s style and/or innerHTML
properties; however, these methods may be helpful to know in different situations.



346

JavaScript: A Beginner’s Guide

Method Purpose

anchor() Creates an HTML anchor tag with a target on a page

big() Adds <big> and </big> tags around a string value

blink() Adds <blink> and </blink> tags around a string value

bold() Adds <b> and </b> tags around a string value

charAf() Finds out which character is at a given position in a string

charCodeAt{() Finds the character code of a character at a given position in a string

concat() Adds two or more strings together and returns the new combined string value

fixed() Adds <tt> and </tt> tags around a string value

fontcolor() Adds <font color="color”> and </font> tags around a string value, which change
the color of the string to a specified color

fontsizel() Adds <font size="number”> and </font> tags around a string value, which change
the size of the string to a specified size given as a number

fromCharCode() | Uses character codes sent as parameters to create a new string

indexOf() Searches for a character sent as a parameter in a string: if it’s found, the position of
the first instance of the character is returned; otherwise, it returns —1

italics() Adds <i> and </i> tags around a string value

lastindexOf{) Searches for a character sent as a parameter in a string: if it's found, the position of
the last instance of the character is returned; otherwise, it returns —1

link() Creates HTML links using the string as the link text and linking to the URL sent as
a parameter

match() Compares a regular expression and a string to see if they match

replace() Finds out if a regular expression matches a string and then replaces a matched
string with a new string

search() Executes the search for a match between a regular expression and a specified string

slice() Pulls out a specified section of a string value and refurns a new string

small() Adds <small> and </small> tags around a string value

split() Separates a string into an array of strings based on a character sent as a parameter
to the method

strike() Adds <strike> and </strike> tags around a string value

subl() Adds <sub> and </sub> tags around a string value

substr() Allows a portion of the string specified with a starting position and ending after a
certain number of characters to be returned

substring() Allows a portion of the string specified with a starting position and an ending
position to be returned

supl) Adds <sup> and </sup> tags around a string value

toString() Returns the string literal value of a String object

toLowerCase()

Converts a string to all lowercase letters and returns the result

toUpperCase()

Converts a string to all uppercase letters and returns the result

Table 13-2  Methods of the String Object



Chapter 13:  Handling Strings

The basic methods (big(), blink(), bold(), fixed(), italics(), small(), strike(), sub(), and
sup()) simply add the basic HTML tags around the string. For example, to create some small
text, you could use the small() method:

var little bit = "I only want a little bit of cake.";
var tagged phrase = little bit.small();
document .write (tagged phrase) ;

This code would then write the following into the HTML code:

<small>I only want a little bit of cake.</smalls>

When viewed in the browser, this text would appear smaller than it would normally have
appeared without the <small> and </small> tags.

NOTE

The HTML tags may be created in lowercase or uppercase, depending on the browser.
Since tags built with JavaScript after the page has loaded aren’t typically a problem
with page validation, the case of the tags likely won’t cause any issues with your HTML
code. However, the case of a tag is helpful to know if you decide to use that element
later in the script, as its tag name could, for example, be small or SMALL.

The remaining HTML tag methods (anchor(), fontcolor(), fontsize(), and link()) take in
parameters and build the tags based on the string value and the parameter(s) sent to them.
These are discussed in more detail in the following sections.

The anchor() method

This method places a text string as the text for a named anchor. The anchor() method takes a
parameter that will be the name attribute for the named anchor. Basically, it creates an HTML
tag set with the following syntax:

<a name="parameter string">text string</a>

The parameter_string is a string you send as a parameter in the method call. The fext_string is
the value of the string from which you call the method.
For example, take a look at this code:

A string literal is created

var anchor text = "Part 1"; The result of the anchor() method
var full anchor = anchor text.anchor ("partl") ; <— is assigned to a variable

document .write (full anchor) ;

The value of the variable
is written on the page

Here, you assign a string literal to the variable anchor_text. You then call the anchor() method
with a parameter of “part]l” from the string literal. The result is assigned to the full_anchor

347



348

JavaScript: A Beginner’s Guide

variable. The value of the full_anchor variable is then written on the page. The code writes the
following link into the code for the page:

<a name="partl"s>Part 1</a>

Figure 13-1 shows what this code looks like when viewed in the browser. Notice that the
viewer sees only the anchor text for the section.

The fontcolor() Method
The fontcolor() method adds font color to the text string that is used to call it. It takes in a
string parameter that indicates what color the text should be. The color can be sent using either
the color name or its red-green-blue (RGB) value.

This method formats some code around the text much like the example syntax:

<font color="color value">text string</font>

Here, color_value would be replaced with the color name or RGB value sent as a parameter to
the method. The text_string part would be replaced with the text string used to call the method.
For an example, this code creates some red text on the page:

<body>

<script type="text/javascript"s>

var the text = "I am so mad I am red!"; The text is given a font color
document .write (the text.fontcolor ("red")) ;<—— based on the color name
</script> seMosmepammekr
</body>

This script places the following code into the page source:

<font color="red">I am so mad I am red!</font>

— T

3 Example - Muzilla Firefux

Bic Edit Wiew Higtory Boolmarks Tooks Help

@ = € X ar (1) [meunE phomawssihasmoor i vy v [Gle]so0ge A
148 Mast Visited M Gotting Started & | Latest Headines

© Licabler S Cookiess (] Cose Z7] rormer W] imagas+ ) Informavans (1 mecelansoust ' Outiner | & Reczer ¥ Took+ {3 view Sourcer ¥ Uptione® v 8 86
Part 1

pene M | B |(dmensenssmii| ~

Figure 13-1 A named anchor is placed on the page



Chapter 13:  Handling Strings

You can also use the RGB value in place of the color name. In this code, the RGB value is
used instead:

<body>

<script type="text/javascript"s>

var the text = "I am so mad I am red!"; The text is given a font color
document .write (the text.fontcolor("#FFOOOO"));<————bawdonﬁeRGchk
</font> - sent as the parameter

This time, the code produced would be changed to include the RGB value in place of the color
name in the previous example, as shown here:

<font color= "#FF0000">I am so mad I am red!</fonts>

The fontsize() Method
The fontsize() method adjusts the font size of the text string that calls the method. It takes in
a numeric value to represent the size of the text (between 1 and 7).

The method formats the code so that it uses a syntax like the example here:

<font size="number"stext string</fonts

The number gets replaced with the number sent as the parameter in the method call, and
text_string gets replaced by the text string that is used to call the method.
The example that follows shows this method in action:

<body>

<script type="text/javascript"s>

var the text = "I am pretty small!"; The text is given a font size
document .write (the text.fontsize(2)); «—— bxedonﬁenumberwnr
</scripts> qsmepamnwmr
</body>

This script provides the code that follows in the page source:

<font size="2">I am pretty small!</font>

The link() Method
The link() method works like the anchor() method, but instead it creates a typical hyperlink
on the page. It takes in a string parameter that is the value of the URL for the link, while the
text for the link will be the text string that called the method.

The method creates a link with the general syntax as shown here:

<a href="url"stext string</a>

The url is replaced with the URL sent as the parameter in the method call, while text_string is
replaced with the text string that made the call.

349



350

JavaScript: A Beginner’s Guide

Look at this example that uses the link() method:

<body> The link is created based on the URL
<script type="text/javascript"s sent as the parameter and the string
var link text = "A Web Site";

var full link = link text.link("http://www.pageresource.com") ;
document .write (full 1link);

</script>

</body>

This code creates the link shown here in the page source code:

<a href="http://www.pageresource.com">A Web Site</a>

The technique in the preceding code example could also be used as the other side of the
anchor() method to create a link to the named anchor on the page. For example, take a look at
this code:

<body>

<p>

<script type="text/javascript"s>
var anchor text = "Part 1";

var full anchor = anchor text.anchor ("partl"); |—— Ananchor is created
document .write (full anchor) ;
</script>
</p>

<p>

Part 1 is about this, that and the other thing.<br />
<br /><br /><br /><br />

This is irrelevant text in this case used for filler.
</p>

<p>

<script type="text/javascript"s>
var link text="Back to Beginning of Part 1";
var full link= link text.link ("#partl"); —— A link to the anchor is created
document .write (full 1link);
</script>
</p>
</body>

This code creates an anchor that can be referenced elsewhere on the page to get to the Part 1
text by clicking a link. You can substitute some text for whatever might be under the Part 1
section of the page. After that, a link is created that points back to the named anchor, offering
the viewer a chance to go back to the beginning of the Part 1 section of the page.

Figure 13-2 shows the result of this script when run in a browser. You get the named
anchor, the extra text, and the link back to the anchor.



Chapter 13:  Handling Strings

<} Example - Mozilla Firefox
Fic Edit Miew History Boolmarks Tools Help

@B- C X e (1) Moz photiguresichatsjranz.rim

18 Most Visited 8 Gotting Started 5 | Latest Headines

Dicabla~ Cookjesr €55+ =] Former M Images® Intarmation* [ Miscalansouss o Cudiner | | Pecize~ Tooke= x| View Sourcer ./ Options+ <1
e p -
Part 1

Part 115 about thes, that and the other tong,

‘This iz irrelevant text in this case used for filler.

Back to Beminnung of Part 1

Done M i = e

Figure 13-2 A named anchor and a link back to the location of the named anchor

The Other Methods

The remaining methods of the String object—charAt(), charCodeAt(), concat(), fromCharCode(),
indexOf(), lastIndexOf(), match(), replace(), search(), slice(), split(), substr(), substring(),
toString(), toLowerCase(), and toUpperCase()—allow you to obtain information about or alter
a string. All of these are quite useful when working with strings and are discussed in more
detail in the following sections.

The charAt() Method

This method determines which character resides at a particular position in a string. You can
find out what the first or last character is, or you can find any character in between. The
charAt() method takes in a number representing the position where you want to know the
character.

Finding a Character When you want to find a character, remember that the position count
begins at 0 (as with arrays) rather than 1, so the first character is at position 0. The following
code shows how to get the first character in a string by using the charAt() method:

var the_text = "Character"; The charAt() method finds the character at
var first char = the text.charAt (0) ;<—— position O (the first character) in the string

window.alert ("The first character is "+first char);

This code assigns the result of the charAt() method call to a variable named first_char,
which is then used in an alert. The alert will tell the viewer the first character in the text string
that called the method. In this case, the alert would say “The first character is C”.

351



352

JavaScript: A Beginner’s Guide

Finding the Last Character with the length Property If you want to find the last character,
either you need to know how many characters are in the string before you use the method,

or you can use the length property to determine the number of characters in the string. When
using the length property, remember that it returns the number of characters, not the position of
the last character.

The length property begins counting at 1, while you must begin counting at O using the
charAt() method. Thus, the last character in a string will be at a position one less than the
number of characters it contains. In other words, if the string has 10 characters (1-10), the
last position (0-9) is at 9. If the string has 23 characters (1-23), the last position (0-22) is at
23-1=22.

Look at an example of this to see how it works. The code finds the last character in a
string:

Subtract 1 from the length property to find the
last position available in the string

— n n.
var theft?Xt = "Character"; The charAt() method uses that
var position = the_text.length-1; value to find out which character

var last_char = the_text.charAt (position) ;«————isin the last position in the string
window.alert ("The last character is "+last char);

This code assigns the value of the length of the string minus1 to a variable named position.
The position variable now holds the position of the last character in the string. The result of
calling the charAt() method with the value of position sent as the parameter is assigned to a
variable named last_char. Finally, an alert provides the last character in the string, which is r.
Thus, the viewer gets an alert saying “The last character is r”".

The charCodeAt{) Method
The charCodeAt() method works the same way as the charAt() method, but it returns the
character code for the character at the positions sent as the parameter.

The character code is a numeric code that can be substituted for characters in HTML. In
HTML, you can write an angle bracket (<) to show code on a Web page—without the angle
bracket converting to HTML itself—by using a special character code. In place of a regular
angle bracket, for example, you could use &#60. The charCodeAt() method returns the
numeric part of that code, the 60.

The charCodeAt() method can be useful if you want to find out the character code for a
certain character. This script allows you to do this:

The charCodeAt() method finds the character code for the

var the text = "Hello": character at position O (the first character) in the string

var char code = the text.charCodeAt (0) ;<—|
window.alert ("The character code is &#"+char code+";");

An alert would then tell you the character code at position 0 in the string (the letter H), which
is 72. The alert will add the string “&#” on the front and the string “;” to the back end of the
character code for you and say “The character code is &#72;”.



Chapter 13:  Handling Strings 353

The concat() Method

This method works much like the Array object’s concat() method. It combines the text
string that calls the method with any number of other text strings sent as parameters and
returns the combined value. The text string calling the method comes first in the order, while
the strings sent as parameters are added in order after it.

The following code shows an example that combines three strings using the concat() method:

var stringl = "I went to the store ";
var string2 = "then ";
var string3 = "I played a video game"; The three strings are combined

window.alert (stringl.concat (string2, string3)) ; «—— inorder from left fo right

This code combines the strings in the order stringl, string2, and then string3. The result is an
alert that says “I went to the store then I played a video game”.

If you want it in a different order, you can adjust which string calls the method and the
order of the parameters, as this code shows:

var stringl = "I went to the store ";
var string2 = " then ";
var string3 = "I played a video game"; The three strings are combined in

window.alert (string3.concat (string2, stringl)) ; «— order from left to right (again)

This time, string3 calls the method, so it comes first in the new string. The values of string2
and string3 are added in order after that. The result in this case is an alert that says “I played
a video game then I went to the store”.

The fromCharCode() Method
The fromCharCode() method creates a string from a series of character codes sent as
parameters to the method. The charCodeAt() method returns a numeric code for the character
at a given position. This is the type of value you must send to the fromCharCode() method.
Also, fromCharCode() is called directly from the String object rather than from an existing
string, because it is piecing together a string on-the-fly and doesn’t require one to run. Instead,
it uses the parameters sent to it to return a string.

So, if you want to alert the text string “HI” to the viewer, you could use the example code
shown here:

window.alert (String.fromCharCode (72,73)) ;

This code takes in the first parameter (the character code 72) and converts it to an H. It then takes
in the second parameter (the character code 73) and converts it to an /. The two are combined in
the order they were sent to form the string “HI”, which is sent as an alert to the viewer.

The indexOf() Method

The indexOf() method finds out where a certain character or string begins in a string. It
returns the position of only the first occurrence of the character or string that is sent as the
parameter. If the character or string isn’t found in the string value, a value of —1 is returned.



354

JavaScript: A Beginner’s Guide

The following code looks for the letter C in the string “Cool”:

var the text = "Cool";
var position = the text.indexOf ("C");
window.alert ("Your character is at position "+position) ;

Remember that the position count begins at 0, so when it finds C as the first character in the
string, it returns 0. Thus, the alert will say “Your character is at position 0.

Note that the method is case sensitive, so C and c are two different characters to JavaScript
in this case. Thus, the code that follows returns —1 (telling you the character isn’t in the string),
even though an uppercase C is in the string.

var the text = "Cool";
var position = the text.indexOf ("c");
window.alert ("Your character is at position "+position) ;

The alert would now say “Your character is at position —1”.
If you want to check for that —1 to keep from getting it as a position, you could use this
code to send a different alert in case the character you want to find isn’t in the string:

var the text = "Cool";
var position = the text.indexOf ("c");
if (position == -1) {

window.alert ("Your character is not in the string!");

}

else {
window.alert ("Your character is at position "+position) ;

}

This time, the if statement checks to see whether the method returns —1 to the position
variable. If so, the alert says “Your character is not in the string!” Otherwise, the regular alert
will tell you the position. In the previous code, the lowercase ¢ isn’t in the string, so the “Your
character is not in the string!” alert appears.

The indexOf() method returns the position number only for the first occurrence of the
character you send as the parameter. So, if you use the code that follows, you will be alerted
that your character is at position 1, even though it’s also at position 2:

var the text = "Cool";
var position = the text.indexOf ("o");
if (position == -1) {

window.alert ("Your character is not in the string!");

}

else {
window.alert ("Your character is at position "+position) ;

}

The lowercase o is in the string twice, but indexOf() locates only the first occurrence of the
character. To locate the next occurrence, you would need to have the method look for “00”



Chapter 13:  Handling Strings

113 13

instead of “0” (which will tell you the position of the first “o0” but give you the knowledge
that the next position also contains an “0”) or you could have the method start looking from a
different starting point using a second parameter.

If you add an integer as the second parameter to the indexOf() method, the search for your
character or string will begin at that position rather than from the 0 position. Thus, one way
to find that second “o” would be to skip past the first one at position 1 and start looking at
position 2.

var the text = "Cool";
var position = the text.indexOf ("o",2);
if (position == -1) {

window.alert ("Your character is not in the string!");

}

else {
window.alert ("Your character is at position "+position) ;

}

This time, the method returns 2 as the result, since it finds it right at the specified starting position.

Oftentimes, this method is used to ensure that a particular character or string either is or is
not present within a string. For instance, if you want a string to contain “fruit” somewhere in it,
and do not want it to contain “candy”, you could write the following code:

var the text = "I like fruit!";
if ((the text.indexOf ("fruit") != -1) && (the text.indexOf ("candy") ==
-1)) |

window.alert ("Yes, fruit is good for you!");

}

else {
window.alert ("Please consider fruit rather than candy.");

}

This requires the string to contain “fruit” but not contain “candy”. If it passes the test, an alert
is sent praising fruit. If not, an alert is sent that offers fruit as an alternative to candy.

The lastindexOf() Method
The lastIndexOf() method finds out where the last instance of a certain character or string is
located in the string. It returns the position of only the last occurrence of the character or string
that is sent as the parameter. If the character or string isn’t found in the string value, a value of
—1 is returned.

The following code looks for the letter C in the string “Cool Cruising Car’:

var the text = "Cool Cruising Car";
var position = the text.indexOf ("C");
window.alert ("Your character is at position "+position) ;

This code will display an alert that tells the viewer “Your character is at position 14.” This
method can be a handy way to find the last instance of a character or string within a string value.

355



356

JavaScript: A Beginner’s Guide

The match() Method

The match() method compares a regular expression and a string to see whether they match.
Because it deals with regular expressions, I won’t go into detail about this method now, but regular
expressions will be covered later in this chapter in the section “Using Regular Expressions.”

The replace() Method

The replace() method finds out if a regular expression matches a string and then replaces

a matched string with a new string. Because it deals with regular expressions, I won’t go into
detail about this method until later in this chapter.

The search() Method

The search() method executes the search for a match between a regular expression and a
specified string. Because it deals with regular expressions, I won’t go into detail about this
method until later in this chapter.

The slice() Method

This method pulls out a portion of a string and returns a new string, which is the text string that
was sliced. The slice() method takes in two numeric parameters to tell it where to begin and
end the portion of the string to be pulled.

This method works much like the slice() method of an array. The first parameter tells it the
position at which to start slicing, while the second parameter is one greater than the position
where it will stop. For instance, take a look at the code that follows:

var the text = "Do not cut this short!";
var shorter string = the text.slice(0,7);
window.alert (shorter string) ;

This code slices the string from position O through position 6. Position 7 is where the c is in
“cut”; but it isn’t sliced because the parameter to end is not included as a position to slice, but
is one greater. Thus, the alert will say “Do not ”.

The split{) Method

The split() method creates an array of string elements based on the string it splits (the opposite
of the join() method). The string is split based on a character sent as a parameter that acts as
a separator.

For instance, the code that follows has a string with a bunch of colons in it:

var the text = "orange:apple:pear:grape";
var split text = the text.split(":");
var end count = split text.length;

for (var count=0; count<end count; count++) {
document .write (split_text [count]+"<br />");

}

The string assigned to the the_text variable has a bunch of fruits separated by colons.
The next line creates an array named split_text by using the split() method on the text string
the_text. The parameter sent is a colon, which is what is used to separate the string into array
elements. In this case, the array ends up with four elements.



Chapter 13:  Handling Strings

NOTE

The separator character that is sent as a parameter won’t end up in the array: it serves
only as a divider between the text so that the method knows where to begin and end
each element.

The next line gets the length of the split_text array and places that value in the variable
end_count. This information is then used to loop through the new array and print the elements
on the page.

Figure 13-3 shows the result of this script in a browser, which is a listing of fruit names.

The substr() Method

This method pulls out a portion of a string and returns the portion that is removed as a new
string. It takes two numeric parameters. The first parameter specifies the beginning of the
removal, and the second parameter specifies how many characters to remove.

For instance, the following code removes a portion of a string beginning at position 0 and
continues until seven characters are removed:

var the text = "Do not cut this short!";
var shorter string = the text.substr(0,7);
window.alert (shorter string) ;

This code removes everything up to the beginning of the word cut in the string. The string returned
is the portion of the string that has been removed. Thus, the alert will say “Do not ”. Notice
that the space character after “not” is included because it was the seventh character removed.

The substring() Method

This method works much like the substr() method, but it allows you to send parameters for the
beginning position and the ending position of the portion of the string you want to remove. It
then returns the removed portion as a new string.

3 Example - Muzilla Firefux =1
File Edit ‘iew History Bookmarks Tools  Help

@ = € Xt (17| Atz phofhguresfchatsfous.him v - | [IClz]cacge P
_IENDSI Visited ‘ Gotting Started (2, | Latest Headines

© isabler [ Coakest [ o5 £ Former M| Imagest () Informavons (7 Mscelanecuss o outiner | & Reszer ¥ Took+ ] view Sourcer . Options® v 2 86
arange

apple

pear

grape

bane M | ) |(Rmcntoestamivn|

Figure 13-3 The array elements created using the split() method are printed on the page

357



358

JavaScript: A Beginner’s Guide

For example, take a look at the code that follows. Rather than specifying the number of
characters to remove, you give an ending position. The characters are removed beginning at the
starting position and ending at one less than the ending position. (Remember the slice() method.)

var the text = "Do not cut this short!";
var shorter string = the text.substring(3,7);
window.alert (shorter string) ;

You remove everything between the beginning of the string and the beginning of the word “cut”.
The alert will say “not .

The toString() Method

The toString() method returns a string literal value for a String object that calls it. Here’s an
example of how you can use this method:

var string obj = new String("Cool") ;
var string lit = string obj.toString() ;

This code takes the String object and uses the toString() method to get its string literal value. It
then assigns that value to the string_lit variable.

The toLowerCase() Method

This method returns in lowercase letters the value of the string that called it. Take a look at
this code:

<body>

<script type="text/javascript's>

var the text = "I FEEL CALM, REALLY.";
document .write (the text.toLowerCase()) ;
</scripts>

</body>

This code writes the string in all lowercase letters on the page, like this sample text:

i feel calm, really.

The toUpperCase() Method

This method returns in uppercase letters the value of the string that called it. Here’s an example:

<body>

<script type="text/javascript"s>

var the text = "I am yelling!";
document .write (the text.toUpperCase()) ;
</script>

</body>

This code writes the string in all uppercase letters on the page, like this sample text:

I AM YELLING!

That’s the last of the methods! Now you are ready to test what you’ve learned.



Chapter 13:  Handling Strings 359

Ask the Expert

e So the length property returns the number of characters in the string, but the string
methods start counting at 0. This is a little confusing, just like it is with arrays. Is there
an easy way to remember this?

« The easiest way is probably to remember that the length property begins counting at 1,

while the methods count positions beginning at 0. Thus, the length property ends up one
greater than the last position in a string. So, if the string has a length of 5, that means the
last position in the string is position 4.

« Yes, but it’s also confusing because the second parameter in the slice() and substring()
methods is a position higher than the point where the methods stop removing
characters. Why is this?

« It is confusing in the beginning. You just have to get used to how each method works.

The slice() and substring() methods are a bit confusing. But if you use them often enough,
you’ll remember which numbers to use in which situations.

e Why do I need the split() method? Couldn’t I just make my own array and be done
with it?

« Yes. However, once you learn about JavaScript cookies, the split() method will be useful

because you’ll be able to split up the information stored in the cookie to make use of it.
Cookies store information in long text strings, usually with some character as a separator.
This is just one example of when the split() method can be useful to you.

« A lot of those methods just add tags around a text string. Couldn’t I just write out the
HTML for that? It seems easier.

« You could, if you feel more comfortable using HTML, although with a String object, these

methods might be more useful.

Use charAt() to Find a First Letter

gpr13_l.htm1
prjsl3_1.js

H

In this project, you practice using the charAt() method by creating a script that
will determine whether the first character in a viewer’s entry is valid.

Step by Step

1. Create an HTML page that includes a “Welcome” heading and calls a JavaScript file named

prjs13_1.js. Save the HTML file as pr13_1.html. (continue d)



360  JavaScript: A Beginner's Guide

2. Create an external JavaScript file and save it as prjs13_1.js. Use it for steps 3—6.

3. Write code that gets the result of a prompt that asks for a name, and assign the result of the
prompt to a variable named the_name.

4. Use the charAt() method to find out what is entered as the first character of the name in the
prompt, and assign the result to a variable named first_char.

5. Set it up so that the page will display the name the viewer entered, but only if it started with
an uppercase S. Otherwise, display a message saying the viewer needs a name that starts
with an uppercase S to have it displayed.

6. Save the JavaScript file and open the HTML file in your browser to see what it does.

Try This Summary

In this project, you used your knowledge of the charAt() method to create a script that
determines whether the first character in a viewer’s entry is a valid character. If the entry starts
with an uppercase S, then the viewer’s entry is displayed on the page. Otherwise, a message is
displayed to the viewer.

Putting Methods Together

Now that you know how to use the script object’s properties and methods individually, you are
ready to create a script that uses several of them to see how they can work together. You’ll do
this by creating a script that will mess with the viewer’s name (in good humor, of course).

You want the script to get the viewer’s first and last name, change the first letter of each
name, and then alert the result to the viewer. The following script does this:

The prompt allows the This line tests to see if prtgce;etﬁenaole”
<body> viewer fo input a name there is a space in the tells the viewer

<hl>Welcome!</hl> entry by the viewer

<script type="text/javascript"s>
function getname () {
var the text=window.prompt ("Enter your first and last name","");
if (the text.indexOf (" ") == -1) {4
window.alert ("Put a space between your first and last name. Try again.");

t i . . . .
getname () ;4———)  The function starts over if the viewer has fo try again

to try again

}
var split text= the text.split(" ");
if ((split_text[0].charAt(0) != "2") || (split_text[0].charAt(0) != "z")) {
var shorter fn string = split text[0].substring(l,split text[0].length);
new_fn name = "Z"+shorter fn string;
/ |
The entry by the viewer is This is a fest to see whether the first name started with

split on the space character a Zor a zand if not, the first letter is replaced with a Z



Chapter 13:  Handling Strings 361

If the first name starts with a Z or z, the first
letter is taken out and replaced with W

else {
var shorter fn string = split text[0].substring(l,split text[0].length);
new_fn name = "W"+shorter fn_string;
—
if ((split text[1l].charAt(0)!= "2Z") || (split text[1l].charAt(0)!= "z")) {

var shorter 1ln string= split text[1l].substring(l,split text[1].length) ;
new_1ln name="Z"+shorter ln_string;

else {
var shorter 1ln string= split text[1l].substring(l,split text[1].length) ;
new_1ln name="W"+shorter_ ln_string;

I
window.alert ("Now your name is "+new_fn name+" "+new_ln name+"!");
}
getname () ; «— The function is called to begin the The result of the name change
</script> process while the page is loading is alerted to the viewer
</body>

The same tests and tasks are
executed on the last name

Notice that a function named getname() is what gets things going. The first task the function
performs is to prompt the viewer for a first and last name. The idea is that the viewer will enter
a first name, a space, and a last name (although other entries are certainly possible and can be
better dealt with using regular expressions).

Once the name has been obtained, the script uses the indexOf() method to see if the entry
has a space in it. If no space exists, there will be only a single name, and that isn’t what you
want. Thus, if there is no space, the script alerts the viewer to try again and then restarts the
function from the beginning. If there is a space, then the script proceeds to the next line after
the if block.

The script then uses the split() method to create an array of any data separated by spaces.
In theory, a single space should be between the first and last names. If the viewer uses more
than one space, then only the first two elements of the resulting array will be used. (They
are specifically called later in the script.) So, if the viewer enters John Doe, the elements of
the resulting array are John and Doe. However, if the viewer enters John J Doe, the first two
elements are John and J, and the Doe won’t be used. (With more advanced validation, this
problem could alert the viewer to try again.)

Once the string is split into an array, the script uses charAt() to test the first letter of the
first element in the array (the first name). If it isn’t Z or z, then the code in the if block is
executed. The if block uses the substring() method to get all the letters in the name except the
first one, and then assigns that value to the shorter_fn_string variable. Thus, if the first name
is John, the variable would have a value of “John.” Once that’s accomplished, a string value
of Z is added to the front of that variable and the result is assigned to a variable name new_
fn_name. This basically replaces the first letter in the original name with Z. Thus, John would
become Zohn and Mary would become Zary.



362  JavaScript: A Beginner's Guide

F Examphe - Muzilla Firefox I
Fic Edit Yiew Higtory Boolmarks Tools Help ¥
e o= € X et [ |tz _phptiguresichal 3tigns.htmi w | [Q:]= P
I8 Most Visited e Gotting Started 3| Latest Headines
& Deabler S Cookess (3 Cose 5] Former ] Images+ ) Information= 1 mcelanecuss ' Dutiner | & Reczer 4¥ Took+ (3] view Sourcer Y Options+ v 8 86

Welcome!

|JavaScript Application]
{  Mow your name i< Zig Zagl
e [ 1M | | B |(Rscammsneter| ~

Figure 13-4 The viewer gets a new name in an alert

If the original name did start with Z or z, the else block is executed instead. Rather than
replacing the first letter with Z, it is replaced with W. The next if/else segment performs the
same tasks on the second entry in the array, which, if entered correctly, will be the last name.
The viewer is then alerted to the result, telling the user the new name. Figure 13-4 shows the
result of this script in a browser when the viewer enters Big Mag.

Use indexOf() to Test an Address

prl3 T htmy i Inthis project, you practice using the indexOf() method by creating a script that
H 7 i performs a very basic test on an e-mail address that the viewer enters.

iprjsl3_2.3s
Step by Step

1. Create an HTML page that points to a JavaScript file named prjs13_2.js. Create a button the
viewer can click with an id of “email”. Label it “Click to enter an e-mail address.” Save the
HTML file as pr13_2.js.

2. Create an external JavaScript file and save it as prjs13_2.js. Use it for steps 3—7.

3. Create a function named get_add(). In it, assign the results of a prompt asking for an e-mail
address to a variable named email_add.

4. Also in the function, use indexOf() to see if the address has an at (@) character in it.



Chapter 13:  Handling Strings 363

5. Also in the function, use indexOf() to see if the address has a dot (.) character in it.

6. Also in the function, if the address has both an at (@) character and a dot (.) character, send
an alert thanking the viewer. If not, send an alert to the viewer saying that he or she needs
these characters and to try again.

7. Save the JavaScript file and open the HTML file in your browser to see what you can do
with it.

Try This Summary

In this project, you used your knowledge of the indexOf() method to test an e-mail address
entered by the viewer for certain characters. If one of the characters is missing, an error alert is
sent to the viewer. Otherwise, an alert is sent thanking the viewer.

Using Regular Expressions

Regular expressions give you much more power to handle strings in a script. They allow
you to form patterns that can be matched against strings, rather than trying to use the String
object’s methods, which may make it more difficult to be precise.

For example, you may want to know whether the value entered in a text box for an
e-mail address included at least one character at the beginning, followed by an at (@) symbol,
followed by at least one character, followed by a dot (.), followed by at least two more
characters (matching a traditional e-mail address like jon@jon.com or the shortest type of
email address j@j.jj). Section 13-2 Try This provides a similar but simpler test for you to
try out.

The String object’s methods don’t provide a neat and clean way to perform this task
(although with enough tinkering, it may be possible). However, a regular expression can
shorten the task or even turn a match that seemed impossible with the String object’s methods
into one that can be completed.

Creating Regular Expressions

To create regular expressions, you must create an instance of the JavaScript RegExp object.
You can do this almost the same way as you would create a string literal. To create a RegExp
literal, you just assign the regular expression to a variable. Instead of using quotation marks to
surround the expression, you use forward (/) slashes, as shown here:

var varname = /your pattern/flags;

You replace varname with the name you want to use for a variable and replace your_pattern
with the regular expression pattern of your choice. You can follow the last slash with one or
more flags (which are discussed in the upcoming section “Adding Flags™).



364

JavaScript: A Beginner’s Guide

NOTE

JavaScript uses forward slashes to let the browser know that a regular expression is
between them, the same way quote marks are used to set off strings. Thus, if a forward
slash is used within the regular expression, it must be escaped with a backslash in order
to work properly. For instance, instead of writing /02/03/2009/, you would need to
write /02\/03\/2009/.

The easiest regular expression pattern to create is one that looks for an exact match of
characters. For instance, if you wanted to see if the sequence our is present in a string, you
could create the following regular expression pattern:

var tomatch = /our/;

The preceding code creates a RegExp literal named tomatch. Now you need a string against
which to test the pattern. If you test the word our against the expression, it’s a match.

If you test your, sour, pour, or pouring against it, then it’s a match. If you test cool, Our,
oUR, OUR, or souR, then it won’t be a match. So how do you perform this test?

Testing Strings Against Regular Expressions
To test a regular expression against a string, you can use the test() method of the RegExp
object. The basic syntax is as follows:

regex name.test (string to test);

This syntax is similar to using a string method. You replace regex_name with the name of
the regular expression and replace string_to_test with a string or a string variable name. For
instance, look at the following example:

var tomatch = /our/;
tomatch.test ("pour") ;

This code will test the “pour” string against the regular expression named “tomatch.” It doesn’t
use the result, though.

The test() method returns a Boolean value of true or false. It returns true when any portion
of the string matches the regular expression pattern. Using the test() method, you can already
write a short script, as shown here:

The prompt gets a name A regular expression is
from the viewer J set up fo see if the name

entered will match it
var thename = window.prompt ("Enter your name","");

var tomatch = /John/; -
var is_a match = tomatch.test (thename) ; «—

A variable is used to hold the

if (is a match) { result of the test() method
window.alert ("Wow, we have the same name!") ; €——— If !he result is true,

} this alert appears

else { If the result is not true,

window.alert ("Not my name, but it will work!"); <—— this glert appears

}



Chapter 13:  Handling Strings

The prompt gathers a name and holds the value in a variable. The pattern to match is John, and
it is case sensitive. Thus, only an entry containing John with a capital J followed by lowercase
0, h, and n will create a match and return true when it is tested (though it could contain more
than just John, so entries such as Johnny or John Doe would also return true—if you want only
a specific set of characters, you need to use some additional special characters, which will be
discussed later in this section).

The result of the test() method is assigned to a variable named is_a_match. The variable
is then used as the condition for the if statement. If the variable holds a value of true, then the
viewer gets the “Wow, we have the same name!” alert. If it holds a value of false, the viewer
gets the “Not my name, but it will work!” alert instead.

If you want to shorten the script, you can just make the result of the test() method the
condition for the if statement (rather than create another variable), as in the following code:

var thename = window.prompt ("Enter your name","");

var tomatch = /John/;

if (tomatch.test (thename)) {< ﬂw’EW"°“heb#0"Bm°d
window.alert ("Wow, we have the same name!") ; is used as the condition

}

else {
window.alert ("Not my name, but it will work!");

}

Because the method returns true or false, it can be placed as the condition for the if statement
on its own. (You could make it (tomatch.test(thename)==true) if you wanted to, though.)

Adding Flags
Flags allow you to make the match case insensitive or to look for every match in the string
rather than just the first one (a global test). To add a flag, place it after the last slash in the
regular expression. You can use three options, as shown in Table 13-3.

If you wanted to adjust the name script used previously to be case insensitive, you could
add an i flag to the regular expression, as shown in the following code:

var thename= window.prompt ("Enter your name","");
var tomatch=/John/i;-s The i flag makes this regular
if (tomatch.test (thename)) | expression case insensitive

window.alert ("Wow, we have the same name!") ;

}

else {
window.alert ("Not my name, but it will work!");

}

Flag(s) Purpose

i Makes the match case insensitive

g Makes the match global

m Makes the match work in multiline mode

Table 13-3  Regular Expression Flags

365



366

JavaScript: A Beginner’s Guide

The test() method will now return true as long as the pattern of John is in the string. It can
be in any case, so now John, JOHN, john, and even JoHn are all matches and will cause the
test() method to return true.

You can also use more than one flag or all three flags at once. For example, if you want
to have the match be both case insensitive and global (where it grabs each match in the entire
string), you could use the following:

var tomatch=/John/ig;

Creating Powerful Patterns

Although it’s nice to be able to create such an exact pattern, you won’t always be looking for

a match that is so precise. In many cases, you will be looking to match a more general pattern,
such as an entry that needs to have at least three characters or that needs to have two characters
of any type followed by a special character.

By using special characters in your expressions, you can create the type of patterns you need
to match a given sequence you want. JavaScript regular expressions use the syntax of Perl regular
expressions as a model. Thus, if you’ve used regular expressions in Perl, much of this material
will be familiar. Table 13-4 lists a number of the characters to help you create your patterns.

As you can see, extensive options exist for creating the pattern you need. Now you could
easily verify strings according to the standards you decide to set.

Now, if you want to make sure a text field contains one or more digits, you could use the
/d and + characters from Table 13-4 with the following HTML and JavaScript code, starting
with the HTML code:

<body>

<form>

Enter some text: <input type="text" id="has digits" />
<input type="button" id="t_btn" value="Test" />
</form>

</body>

Next, the JavaScript code:

var t button = document.getElementById("t btn");
t button.onclick = function() {
var has num = document.getElementById("has digits") .value;
var tomatch = /\d+/;
if (tomatch.test (has num)) {
window.alert ("Your entry contained one or more numbers!") ;
}

else {
window.alert ("Your entry did not contain any numbers!");

}



Character

Purpose

Chapter 13:

Handling Strings

Example

N

Matches only from the beginning of a line

/"\c/ matches cin corn
/"c/ does not match ¢ in acorn

$ Matches only at the end of the line /r$/ matches rin Car
/r$/ does not match tin Cat
* Matches the character preceding it if the /co*/ matches co or ¢
character occurs zero or more times /co*/ does not match pi
+ Matches the character preceding it if it occurs | /co+/ matches co or cooooo
one or more times /co+/ does not match ca
e Matches the character preceding it if it occurs | /02l/ matches style or column
zero or one time /co?l/ does not match cool
Matches any individual character, excluding | /.1/ matches ol or @/
the newline character / .1/ does not match \nlor /
(x) By replacing x with characters, matches that | /(a)/ matches a
sequence and keeps it in memory to be used | /(cool)/ matches cool
later; used for grouping of expressions /(cool)/ does not match coal
Used as a logical OR symbol to allow a /cool lbad/ matches cool
match of what is on the left of the symbol OR | /cool |bad/ matches bad
what is on its right /cool lbad/ does not match car
{x} Using a number to replace x, matches /n{1}/ matches n
when there are exactly x occurrences of the /nn{2}/ matches nnn
character preceding it /nn{1}/ does not match nnn
{x} Using a number to replace x, matches when | /n{1,}/ matches n
there are x or more occurrences of the /n{1,}/ matches nnnnn
character preceding it /n{3,}/ does not match nn
{x.v} Using numbers to replace x and y, matches | /n{1,2}/ matches n
when there are at least x occurrences of the | /n{1,2}/ matches nn
character preceding it but no more than y /n{2,3}/ does not match n
occurrences of it /n{4,7}/ does not match nnn
1 Matches a character set of your choice; will /[abc]/ matches a
match when any one of the characters in /[abc]/ matches b
the brackets (such as [abc]) or any one of a /[abc]/ matches ¢
range of characters (such as [a-k]) is present | /[a-k]/ matches |
/[a-k]/ does not match n
™ Matches when the characters in your /["abc]/ matches d

character set are not present; may be a set
(such as [abc]) or a range (such as [a-k])

Table 13-4 Regular Expression Codes (continued)

/["abc]/ does not match b
/["a-k]/ matches n
/[*a-k]/ does not match |

367



368

JavaScript: A Beginner’s Guide

Character

Purpose

Example

\

Used to escape special characters or to make
a normal character special

\@ escapes the @ character
\n represents a newline character

[\b] Matches a Backspace keystroke /[\b]/ matches a backspace
\b Matches when the character before or after it | /\bc/ matches c in my car
is located at a word boundary, such as before | /\bm/ matches m in my car
or after a space character; to match the /\bc/ does not match c in ace
beginning of a word, place the character to | /\bm/ does not match m in Sam
the right of the symbo(p(\bc); to match the end | /m\b/ matches m in Sam
of a word, place the character to the left (c\b) | /c\b/ matches ¢ in Mac W
/m\b/ does not match m in emu
/c\b/ does not match ¢ in my car
\B Matches a character that is not located ata | /\Ba/ matches a in car
word boundary /\Bc/ does not match c in car
\eX Using a letter character to replace X, matches | /\cX/ matches Crri-X
when the user presses the CtrL key followed | /\cV/ matches Crri-V
by typing the letter X /\cS/ does not match Crri-Z
\d Matches if the character is a single numeric | /\d/ matches 4
character /\d/ does not match s
\D Matches a single character if it is not a /\D/ matches s
numeric character /\D/ does not match 4
\f Matches if there is a form feed /\t/ matches a form feed
\n Matches if there is a new line /\n/ matches a new line
\r Matches if there is a carriage return /\r/ matches a carriage return
\s Matches a single character if it represents /\s/ matches the space in b ¢
white space (such as a space or a new line) | /\s/ matches thetabinb ¢
/\s/ does not match bc
\S Matches a single character if it does not /\S/ matches d
represent white space /\S/ does not match a blank space
\t Matches if there is a tab /\t/ matches the tabin b ¢
\v Matches if there is a vertical tab /\v/ matches a vertical tab
\w Matches any single character that is a letter, | /\w/ matches 4
number, or underscore /\w/ does not match @
\W Matches any single character that is not a /\W/ matches @

|eﬂer, number, or Underscore

Table 13-4 Regular Expression Codes (continued)

/\W/ does not match g



Chapter 13:  Handling Strings 369

This code simply checks to see whether any digits are in the string. If you want to ensure that
the viewer typed in only digits without any other types of characters, you need to be sure the
regular expression is written to test from the beginning to the end of the string. Using the * and
$ symbols from Table 13-4, you can ensure that the string is tested for the match starting at the
beginning of the string and ending at the end of the string. Thus, the following patterns would
allow only digits:

var tomatch = /"\d+$/;

Since the only valid characters from the beginning to the end of the string are digits, this will
return true only for entries containing digits without other characters present in the string. This
is especially helpful for validating forms and other types of user input to ensure that it is the
type of input you expect.

NOTE

Regular expressions can be quite powerful for validation because they allow less
erroneous information to be accepted.

Client-side validation of form submissions with data such as e-mail addresses or phone
numbers can save unnecessary trips to the server. However, users may disable JavaScript
support and make form submissions directly. Therefore, client-side validation should support
server-side validation (by a CGI script or a Java servlet, for example), but should never replace
it (it could cause a great security risk to store or display data from a viewer that has not been
validated).

Grouping Expressions

You will notice in Table 13-4 that an expression surrounded by parentheses indicates a group
that can be stored for later use in the expression (or using a method such as the match() method
where it will store each match of a group along with the overall match in an array).

For example, you might decide to use a particular sequence of numbers and to have that
sequence repeat a particular number of times. To match the number of times something is
repeated, you can use curly brackets ({ }) along with a number or number range. For instance,
if you want to match five instances of the number 3, you could use the following expression:

/3{5}/

If you wanted this to be a match if the number 3 occurs at least five times but no more than ten
times, you could use the following expression:

/3{5,10}/

Now, suppose you wanted the match to start with a 3 and have any digit as the next
character, and wanted to match that entire sequence five times (thus, something like
3234353637 would be a match). You might write the following:

/3\d{s}/



370

JavaScript: A Beginner’s Guide

The trouble with this is that it gets the 3 correct, but matches five digits afterward without

the need to repeat the 3. Thus, a number like 387643 would match even though you wanted to
have five sets of two numbers with each set beginning with a 3. To fix this, you can

group the 3 and the \d together with parentheses, and follow that with the number of times it
should repeat:

/(3\d) {5}/

This time, the 3 and the second digit are grouped together, and that sequence must be repeated
five times.

Grouping is a helpful way to get more out of your use of regular expressions, and you will
see more of this when you get to form validation in the next chapter.

The replace(), match(), and search() Methods

These methods of the String object were mentioned earlier in the chapter, and will make more
sense now that regular expressions have been introduced.

The replace() Method

To replace information in a string, you can use regular expressions and the replace() method of
the String object. The syntax for using the replace() method is as follows:

varname= stringname.replace (regex,newstring) ;

You replace varname with the name of the variable that will hold the new string value once the
information has been replaced. You replace stringname with the name of the string variable
that will undergo the replacement. You replace regex with the name of the regular expression
to be used to match against the string. Finally, you replace newstring with the string or string
variable to replace any matched values in the string.

As an example, the following code replaces the first instance of “car” in mystring with
“skunk’:

A string literal is created

var mystring= "I like the way a new car smells, and cars are fun.";
var toreplace=/car/; «————— The pattern to replace is set as a regular expression
var newstring= mystring.replace (toreplace, "skunk") ;

window.alert (newstring) ; .. . .
( 9) The first instance of a match is replaced in the

The dlert shows the updated string string, and the result is assigned to a variable

The preceding code replaces only the first instance of car, giving the alert “I like the way a
new skunk smells, and cars are fun.” If you want to change every instance of “car” instead, the
g flag is helpful at the end of the regular expression, as shown in the following code:

var mystring= "I like the way a new car smells, and cars are fun.";
var toreplace=/car/g; Adding the E flag causes dll
var newstring= mystring.replace (toreplace, "skunk"); matches of the pattern to be

window.alert (newstring) ; replaced when the replace()
method is run



Chapter 13:  Handling Strings 371

The g flag will match every instance of the regular expression it finds in the string. Thus, when
the replace() method is run, all instances of “car” will be replaced with “skunk.” The viewer
will see this alert: “I like the way a new skunk smells, and skunks are fun.”

You could also use the replace() method to make a name-changing script that is shorter and
somewhat less complex than the one earlier in this chapter. By using the replace() method with
a regular expression, the first letter of the first and last name can be changed more easily. The
following code shows how:

function getname () {
var tomatch=/"[A-Za-z]+\s[A-Za-z]+$/;
var toreplace=/\b[A-Za-z]/gi;
var thename=window.prompt ("Enter your first and last name","");
if (tomatch.test (thename))
newname=thename.replace (toreplace, "Z") ;
window.alert ("Now your name is "+newname) ;
}
else {
window.alert ("Name invalid. Please Try Again") ;
getname () ;
}
}

getname () ;

Regular expressions are used to validate and change the viewer’s entry

This script changes the first letter of the first and last name to Z regardless of what it was
before. The regular expression for the replacement simply looks for a letter at the beginning of
a word using the word boundary (\b) code. Each time a letter is at the beginning of a word, it is
replaced.

The validation of the input keeps the script from getting more than two names and one
space, and it also ensures that at least one letter is in each name, with no numbers or special
characters. The illustration shows the result of the script if the viewer enters Debra Loo at the
prompt: the viewer’s name is changed.

[JavaScript Application]

The match() Method

The match() method compares a regular expression and a string to see whether they match. It
returns an array containing one or more matches, depending on how it is used. If no match is
found, it returns —1.



372

JavaScript: A Beginner’s Guide

The basic use of the match() method is as follows:

string.match (regex) ;

The string will be your string literal, and regex will be your regular expression literal. Note the
difference in the order between this method and the test() method. You could use it in this way:

var mystring = "I am Ironman!";
var tomatch = /Iron/;
if (mystring.match(tomatch))

window.alert ("Your string contains Iron!");

}

else {
window.alert ("Sorry, no Iron in your string.");

}

If this is used with the g flag or with grouping using (), it will remember each match made
(including matches on groups or nested groups) and return each match as an array element.

The search() Method

The search() method executes the search for a match between a regular expression and a
specified string. If a match is found, it returns the position in the string where the beginning of
the match was found. Otherwise, it returns —1. Here is an example of this method in action:

var mystring = "I am Ironman!";
var tomatch = /Iron/;
if (mystring.search (tomatch))
window.alert ("Iron found at position "+mystring.search(tomatch)+"!");

}

else {
window.alert ("Sorry, no Iron in your string.");

}

As you can see, the syntax is much like that of the match() method.

More Information
For more information on regular expressions and how to create more complex patterns, you
can look at the following online resources:

www.regular-expressions.info/
www.regular-expressions.info/javascript.html (includes specifics on the JavaScript engine)

https://developer.mozilla.org/en/Core_JavaScript_1.5_Guide/Regular_Expressions

With these techniques down, you are ready to move on to working with forms in
JavaScript and working on the validation of form contents.


www.regular-expressions.info/
www.regular-expressions.info/javascript.html
https://developer.mozilla.org/en/Core_JavaScript_1.5_Guide/Regular_Expressions

Chapter 13:  Handling Strings

b Chapter 13 Self Test

. The object provides properties and methods to get information about strings or

to modify strings.

. What are the two ways in which you created String objects?

A Creating an instance of the String object and creating a string literal
B Creating an instance of the Array object and creating a string literal
C Creating a numeric variable and creating a numeric object

D Creating a string and adding numbers

3. You can create a string by assigning a string value to a variable.

. Aregular text string is able to use the String object’s methods because:

A Tt is already a String object
B It can use other methods as well, so it can use the methods of the String object
C JavaScript takes the string literal and turns it into a temporary String object

D The String object uses the string literal as-is

. Which property of the String object can you use with both String objects and string literals?

A prototype
B constructor
C length

D color

. The property returns the length of a string.

. Which of the following correctly creates a string literal?

A var the_text= “Look at me!;
B var the_text= “Look at me!”;
C var the_text= Look at me!;

D var the_text= new String(“Look at me!”);

. Which method of the String object can you use to find which character is at a given position

in a string?
A indexOf()
B charAt()

373



374

JavaScript: A Beginner’s Guide

C charlsAt()
D indexOfThePosition()

9. The method adds <big> and </big> tags around a string value.

10. The concat() method two or more strings together and returns the new

11.

12.
13.
14.

15.

combined string value.
Which one of the following statements is true?

A The charAt() method returns a numeric value that is the position of a character sent as
a parameter.

B The split() method creates a new string by removing a portion of the string and
returning the string minus the portion removed.

C The length property allows you to add longer properties and methods to the String object.

D The indexOf() method returns a numeric value that is the position of a character sent as
a parameter, but only the position of the first occurrence of that character.

The method adds <i> and </i> tags around a string value.
The method returns the string literal value of a String object.
To replace information in a string, you can use regular expressions and the method of the

String object.

The method compares a regular expression and a string to see whether
they match.



Chapter 14

JavaScript and Forms

375



376  JavaScript: A Beginner's Guide

Key Skills & Concepts

Accessing Forms

Using the Properties and Methods of the Form Object
Ensuring the Accessibility of Forms

Validating Forms

Using Forms for Navigation

When you use JavaScript to access forms, you can create new scripts for your Web pages.

This chapter begins by explaining how to access a form with JavaScript. Then you’ll
learn about the various properties and methods to use with forms and form elements. You’ll
also learn about forms and accessibility, how to validate form elements, and how to use
<select></select> elements as navigational tools.

Accessing Forms

Each time you add a set of <form> and </form> tags to an HTML document, a form object
is created. To access one of the forms using JavaScript, you can use any one of the following
options:

Use the forms array of the document object

Name the form in the opening form tag and use that name to access the form

Give the form an id in the opening form tag and access it using the document.getElementBylId()
method

Using the forms Array

The forms array allows you to access a form using an index number in the array. Each set of
<form> and </form> tags on the page will create an additional element in the forms array, in
the order in which they appear in the document. Thus, you can reference the first form in a
document like this:

document . forms [0]

As you will recall, arrays begin counting at 0, so the previous example will access the first
form in the document. If you want to access the second form, you could use the following:

document . forms [1]



Chapter 14:  JavaScript and Forms 377

This will work for the rest of the forms on the page in the same way. Just remember to
begin counting at O rather than 1 to access the correct form.

Accessing the form doesn’t do anything on its own. The form that you access is an object.
To use it, you need a property or method of the object. The properties and methods of the form
object are listed in a later section, “Using the Properties and Methods of the Form Object,” but
for now, take a look at the length property to see what it does.

A Property Value

The examples in this section use the form object’s length property. This property allows you to
find out how many elements exist (such as input boxes, select boxes, radio buttons, and others)
in an HTML form. For example, take a look at this code:

<body> The first element is this text box

<form>

Name: <input type="text" />

E-mail: <input type="text" /> The second element is this text box
<input type="submit" value="Submit" />

</form>

</body> The third element is this submit button

The code creates a short form that contains three elements: two text boxes and the submit
button. Because it’s the only form on the page, it will be the first form, allowing you to access
it using document.forms[0]. To use the length property, add it to the end like this:

document . forms [0] . length

Using the preceding code, you can create a short script to tell the viewer how many elements
are in the form. (You wouldn’t typically use the length property this way, but it’s good for an
example.) The code that follows will write the information on the page after the form:

<body>

<form>

Name: <input type="text" /> <br />
E-mail: <input type="text" /> <br />
<input type="submit" value="Submit" />
</form>

<p>

<script type="text/javascript's>
document .write ("The form has "+document.forms[0].length+" elements.");
</script>

</p> The number of elements in the
</body> form is printed on the page

The elements of the form are here

This code informs the viewer that the form has three elements. Figure 14-1 shows this script’s
results when run in a browser.



378

JavaScript: A Beginner’s Guide

&3 Example - Muzilla Firefux

File Edit ‘ew History Bookmarks Tools  Help

O - ¢ X o ([ % ) [l
151 Most Visited 8 Gotting Starked 3| Latest Headines

& tieabler [ Cookess ] Css+ =] Former | Imagas+ ) Informatian= (7 Mscelanecuss o outines | & Reszer 4P Took+ {3 view Sourcer Y Uptions= v e 8
Mame: |

E-mail: |

The form has 3 clements.

o M | | B |(Pimeatstmanar| ~

Figure 14-1 The number of elements in the form is displayed to the viewer

Covering Two Length Properties

If you want to try to show the number of elements in the forms on a page when there is more
than one form, you can use a more complex script that prints a message for each form on the
page. Recall that because forms are an array, you can find the length of the array.

The length of the array is the number of forms on the page (much like the length property
of a particular form is the number of elements in the form). To find the number of forms on
the page rather than the length of a form, remember not to specify a form by leaving off the
brackets and the index number, as in the following example:

document . forms.length
This syntax finds the number of forms on the page. Thus, you must remember this:

document.forms.length finds the number of forms on the page.
document.forms[x].length finds the number of elements in a specific form on the page,

where x is the index number of the form to be accessed.

This syntax might look a bit confusing, but just remember that one length property is for the
array in general, while the other length property is used on a specific form.

CAUTION

Remember the difference between document.forms.length and document.forms[x]
Jength. The former finds the number of forms on the page, while the latter finds the
number of elements in a specific form (by replacing x with a number).



Chapter 14:  JavaScript and Forms 379

The following script uses both of the length properties and a loop to cycle through each
form. The code displays the number of elements in each form on the page. First, the HTML
code (save as lengths.html):

<body>
<hl>Form Lengths</hl>

<h2>Form 1</h2>

<form>

Name: <input type="text" /><br />
E-mail: <input type="text" /><br />
<input type="submit" value="Submit" />
</form>

The elements of the first form

<h2>Form 2</h2>

<form>

Favorite Color: <input type="text" /><br />
Favorite Food: <input type="text" /><br />
<input type="reset" value="Reset" />&nbsp;
<input type="submit" value="Submit" />
</form>

The elements of the second form

<h2>Results</h2>
<script type="text/javascript" src="lengths.js"></script>

</body>

Next, the JavaScript code (save as lengths.js):

A variable is created to hold the form
number (one more than its index number)

The loop to cycle through all the forms on the page begins

for (var count=0;count<document.forms.length;count++) { -
var formnum = count+l; =
document .write ("Form "+formnum+" has "+document.forms[count].length);—1
document .write (" elements.<br />"); |

}

The results are written on the page

The code creates two forms in the HTML document. The script then opens a loop
beginning at 0 (where arrays begin counting) and ending before it gets to the value of
document.forms.length, which is the number of forms on the page. Because there are two
forms (which will make 2 the value of document.forms.length), the count runs from O to 1 and
then stops. The count allows you to access the forms array at positions 0 and 1, which will turn
out to be Form 1 and Form 2 in the HTML code.

The formnum variable has the value of the position number in the array plus one, which
is the number of the form as seen in the HTML code. The script then writes the number of
elements in each form on the page using the document.write() statements.



380  JavaScript: A Beginner's Guide

3 Example - Muzilla Firefux

File Edit Wiew History Boolmarks Tools
@ = @ 3 gar [ |7 |HeysEstz=_phpjtiguresichal4flengthe. htmi
1] Most Visited 1 Gotting Started 5 | Latest Headines

Dicabler [ Cookiess [ Lse 7 Former W) Images+ () Informations £ Mscelianecuss /' Outiner | & Heczes 4% look+ {2 view Source® . Uptions® e €
LR G

Form Lengths

Form 1

Mame: |
E-mail: |

Form 2

Favonte Celor: | |

Favontc Food:

Results

Form 1 has 3 elements.
Form 2 has 4 elements,

Dane M | B |(imentemsemniiinc| ~

Figure 14-2 The number of elements in each form is displayed

The forms array is used with the value of the count variable as the index number, which
finds the number of elements in the specified form each time through the loop. Figure 14-2
shows the results of this code when run in a browser.

Using Form Names
Using form names allows you to name the forms on the page that you want to access later.
This option can help eliminate any confusion between document.forms.length and document
forms[x].length because you won’t need to use the latter unless you’re trying to loop through
each element in each form on the page.

To use a form name, you must add a name="yourname” attribute to the opening form tag
on the form you want to access. Replace yourname with a name you want to use for the form,
as in the following code:

<form name="info_ form">

Name: <input type="text" /><br />
<input type="submit" />

</form>



Chapter 14:  JavaScript and Forms 381

The name of the form is now info_form, and you can use this name to access the form in
your script.

The name of the form allows it to become an instance of the form object that you can
access through its name. To use JavaScript to access a form that uses a form name, you can use
the syntax shown here:

document . yourname

Replace yourname with the name given to the form in the name="yourname” attribute in its
opening form tag. Thus, if you wanted to write a script to find the number of elements in
a named form, you could use the following code:

<body>

<form name="info form"> - The form is given a name

Name: <input type="text" /><br />

<input type="submit" />

</form>

<p>

<script type="text/javascript"s>
document .write ("The form has "+document.info form.length+" elements.");

</scripts>

</p>

</body>

The number of elements in the
named form is written on the page

Notice how the form is accessed in the document.write() statement. Instead of the forms array,
the name of the form is in its place. It can now access the properties of the form object and
does so by accessing the length property.

Using an ID

The third way to access a form is to use an id attribute and to then use document.getElementByld()
to access the form element. This is often the clearest way to access a form and its elements,
because you can access each element by using its individual id, whereas the previous two
access methods require you to know which array index the form is at or the form name and the
element’s name.

If you wanted to write the script from the previous section using the id method, you could
use the following code:

<body>
<form id="info form"s> < The form is given an id
Name: <input type="text" /><br />
<input type="submit" />
</form>
<p>
<script type="text/javascript"s>
var £ length = document.getElementById("info form") .length;
document .write ("The form has "+f length+" elements.");
</scripts> <F_1

</p> The number of elements in the
</body> named form is written on the page



382

JavaScript: A Beginner’s Guide

Since you are familiar with using document.getElementByld() from previous chapters, this
should be a straightforward method for you.

The method you use to access a form and its elements will depend on the types of scripts
you are writing. If you are using multiple forms on a page, then the forms array can be a handy
way to cycle through each form. If you are trying to get as much backward compatibility
with older browsers as possible, using the name method may be the way to go. On the other
hand, trying to validate in XHTML 1.0 strict will require you to use an id to name each form
element, so using the id method would be more appropriate in that case.

Using the Properties and

Methods of the Form Object

The JavaScript form object will help you when you need to access certain elements or
attributes of the form in a script. The form object has only a few properties and methods. The
properties are described first.

Properties
The form object’s properties provide information you might need when working with forms in
your scripts. Table 14-1 lists the properties of the form object and their values.

Most of these properties just hold values corresponding to the various attributes in an
HTML form tag. A few of them have different types of values, though, as explained next.

The action Property
This property allows you to access the value of the action="ur/” attribute in the opening
form tag. This attribute is used to send the form to a server-side script for processing (such

Property Value
action The value of the action attribute in the HTML form tag
elements An array that includes an array element for each form element in an HTML form
encoding The value of the enctype attribute, which varies with different browsers
length The value of the total number of elements in an HTML form
method The value of the method attribute in an HTML form tag
name The value of the name attribute in an HTML form tag
target The value of the target attribute in an HTML form tag
Table 14-1  Properties of the Form Object



Chapter 14:  JavaScript and Forms

as a Perl or PHP script). The following example shows how to access the property with
a named form:

An action attribute is defined

<body>

<form name="info form" action="http://someplace.com/php/form.php">
Name: <input type="text" /><br />

<input type="submit" />

</form> The value of the action property

<p> is written on the page

<script type="text/javascript"s> <_J
document .write ("The form goes to "+document.info form.action);

</scripts>

</p>

</body>

This script writes the URL on the page given in the action attribute. Figure 14-3 shows the
result of this script when run in a browser.

The elements Property (Array)
The elements property is an array that allows you to access each element within a specific
form in the same order it appears in the code, starting from 0. It works much like the forms
array but has an entry for each element in a given form.

To use the elements array to access an element in a form, use the index number for the
element you want to access. For instance, the following form has two elements:

<form name="info form">

Name: <input type="text" /><br />
<input type="submit" />

</form>

3 Example - Mozilla Firefox
Fie Edit ‘iew History Boolmarks Tools Help

6 = € Xt (1) HeuEsis photiguesfchal 4t ntmi
[ Most visited M Getting Starked 5| Latest Headines
&) Disable= [ Coaldes= | €55+ -] Forms= ) Imoges= () Intormation= (5 Miscellancous= o/ Outine= | & Resice= 4% Toobs= 1] View Source= . Options= v B 8

Mame: | |
Subimil Cuery

‘The form goes to hitpfzomeplace comfphpform phy

pore M | | B |t ~

Figure 14-3 The value of the action attribute in the form is printed on the page

383



384

JavaScript: A Beginner’s Guide

To access the first element (the text box), you can use the syntax shown here:

document .info form.elements[0]

Alternatively, if you want to use the forms array (assume this is the first form on the page),
you could use this syntax:

document .forms [0] .elements[0]

Yet another option to access the text box is to name it (like with the form) and access it
using its name. You can do this with each element, as well as the form itself; you can choose
which method is best for accessing a form and its elements in each situation.

The following code gives the form and the text box a name, and allows you to access them
using those names:

<form name="info form"s>

Name: <input type="text" name="yourname"s><br />
<input type="submit"s>

</form>

In this case, you could access the text box using the form name and the text box name, as in
the syntax shown here:

document .info form.yourname

Also, you can of course use the id method:

<form>

Name: <input type="text" id="yourname"s><br />
<input type="submit"s>

</form>

Then, you can access the input element using document.getElementByld():

document .getElementByID ("yourname") ;

To create scripts that use the elements of a form, you must be able to access a property
for a form element. Each form element is an instance of an object with its own properties and
methods, as shown in Table 14-2.

The form elements all have their own selection of properties and methods, but many of
them are used with most or all of the form elements. The following sections look in more
detail at the properties and methods listed in Table 14-2 and how they are used with the
form elements.

The checked Property

This property is used with check boxes and radio buttons. It has a Boolean value, which is true
if the box or button is checked and false if it isn’t. For instance, use the following code to try it
out with a check box:



Chapter 14:  JavaScript and Forms

<body>
<form>
Check box to say Yes: <input type="checkbox" id="yes no"> 4—,
<br /><br />

The check box is given an id

<input type="button" value= "See the Answer" onclick="is_it_checked();" />

</form> 4-‘

<script type="text/javascript"s The button starts the function to
function is_it_checked () { check the state of the check box

var y n = document.getElementById("yes no") ;
if (y_n.checked) { -
window.alert ("Yes! The box is checked!") ;
} The condition of the check box is
else { checked using the checked property
window.alert ("No, the box is not checked!");
}
}
</script>
</body>

The HTML body has the form with a check box with the id of yes_no. A button will call the
function is_it_checked() when it is clicked. The function then checks whether the check box is
currently checked using an if/else statement. The if condition uses a shortcut that allows you to

shorten it from

if (y n.checked==true)

to this:

if (y_n.checked)

Element Type | Object Name | Properties Methods

Button button form, name, type, value blur(), click(), focus|()

Check box checkbox checked, defaultChecked, form, name, | blur{(), click(), focus()
type, value

Hidden field hidden form, name, type, value None

Radio button radio checked, defaultChecked, form, name, blur(), click(), focus()
type, value

Reset button reset form, name, type, value blur(), click(), focus()

Select box select form, name, options, selectedindex, type | blur(), focus()

Submit button submit form, name, type, value blur(), click(), focus()

Text box text defaultValue, form, name, type, value blur(), focus(), select()

Text area textarea defaultValue, form, name, type, value blur(), focus(), select()

Table 14-2  Form Elements with Their Objects and Methods

385



386

JavaScript: A Beginner’s Guide

The checked property will return true or false without needing to test the value of the checked
property against anything. The checked property already has a value, so the value doesn’t need
to be compared to anything (unless you prefer to do it that way, which is also okay).

The defaultChecked Property
This property is also a Boolean value of true or false. The value depends on whether the
check box or radio button has the checked attribute in its HTML (which sets the element to be
checked by default on the page). If the element has the checked attribute, the value is true. If
not, the value is false.

For instance, the following HTML code uses the checked attribute:

<form>

Do you want us to send you e-mail updates and offers?<br />
Yes <input type="checkbox" id="yes" checked="checked" />
No <input type="checkbox" id="no" />

</form>

Because the first check box has the checked attribute set to checked, the checked property for
that element would return true. For the second check box element, the property would return
false.

The defaultValue Property

You use this property with text boxes and text areas. It holds the value of the default value
set in the value attribute of the element’s tag. This capability can be useful if you set a default
value in a text box, the user deletes it, and then the user decides it would be nice to have the
default value back. You could code a button to return that value if clicked by the viewer, as
shown in the following code:

<body>
<forms The text box is assigned a default value

Favorite URL:<br />
<input type="text" id="favurl" value="http://www.yahoo.com">
<br /><br />

<input type="button" value="Reset Default" onclick="back to default();">

</form>

<script type="text/javascript"s The button calls the function
function back to_default () { that resets the default value

var url box = document.getElementById("favurl") ;
url box.value = url_box.default\/'alue;<—|

}

</scripts> The current value of the check box is
</body> chcmged back to the default value

In the HTML code, the value attribute in the input tag for the text box is set to http://www
.yahoo.com. This gives it a default value. When the function is called, it assigns this default
value back to the text box by changing its current value (url_box.value) to the default value
(url_box.defaultValue).


http://www.yahoo.com
http://www.yahoo.com

Chapter 14:  JavaScript and Forms 387

NOTE

This technique is useful if you desire to switch specific values back to their defaults. If
you want to change everything back to default values, you can simply use a reset button
in your HTML code (that is, <input type="reset” value="Reset” />).

The form Property

This property is often used with the keyword “this” to refer to the form that contains the
element that uses it. For instance, if you want to change the value of a text box by clicking a
button, you could refer to the form by using this.form rather than needing the name or id of
the form:

<form>

Favorite URL:<br />

<input type="text" name="favurl" value=http://www.yahoo.com />
<br /><br />

<input type="button" wvalue="Change"
onclick="this.form.favurl.value="http://www.lycos.com';" />
</form>

This code changes the current value of the text box to http://www.lycos.com when the button
is clicked. Using this.form.favurl.value allows you to access the same form from an element
within it without having to go back and use a form name or id, which is a bit longer.

The name Property
This property holds the value of the name attribute of an element. For instance, the following
code prints the value of the name of the first element (the text box) on the page:

<body>
<form name="info_ form">
Name: <input type="text" name="yourname" /><br />
<input type="submit" value="Submit" />
</form>
<p>
<script type="text/javascript"s>
document .write ("The first element is "+document.info_ form.
elements [0] .name) ;
</script>
</p>
</body>

This is a handy way to find an element name without having to search the code for it.

The options Property (Array)

The options property is an array that contains an element for each option listed in a select box
in a form. The index numbers count from 0, and each option is placed in the array in the order
in which it is written in the HTML code. The following code shows how you can access the


http://www.lycos.com

388

JavaScript: A Beginner’s Guide

value of an option (this is the value in the value attribute of the option tag, not the content of
the tag) and write it on the page:

<body>
<form>
Fruits: The first option

<select id="optlist">
<option selected="selected" value="orange">Orange</option>
<option value="apple">Apple</option> «— ﬂwsamndombn
<option value="pear">Pear</options> <———1
</select>
</forms Themkdombn
<p>
<script type="text/javascript"s>
var fbox = document.getElementById("optlist");
document .write ("The second option is "); The value of the second
document .write (fbox.options[1] .value) ; :'_ option is written on the page
</script>
</body>

Figure 14-4 shows the results of this script when run in a browser. Notice that the value
printed is the value contained in the value attribute of the option tag (all lowercase) rather than
the content of the tag (first letter capitalized).

The selectedindex Property ~ This property holds the value of the index number of the option
(in the options array just discussed) that the viewer has selected. If the first option is selected,
the value is O. If the second option is selected, the value is 1. This property is discussed in
more detail when it is used for a navigation script later in this chapter.

) Example - Mozilla Firefox
File Edit Miew History Boolmarks Tools Help

@ = € X ar ([0 eirEsiz_pholtiquresichatjiant el
181 Most Visited 1 Gotting Started 3 | Latest Headines

& Disablo- (3 Coolios~ | €55+ 7] Forms~ M| Imoges~ () Intormation~ () Miscolancouws= o Oulline= § & Resice= 4% Tooks~ 5] View Source= .+ Options= v 0 8
Fruits: Ul_angc_\fj

The second option is apple

Dene M i = e

Figure 14-4 The value of the second option is written on the page



Chapter 14:  JavaScript and Forms

The type Property
This property holds the value of the type property for a form element, such as type="“text” or
type="button”. The value of the type attribute for these is text and button, respectively.

The value Property
This property holds the current value of an element. For instance, a text box may have no
default value; but when the viewer inputs information into the box, the text box has a current
value. If nothing is in the box, the current value would be an empty string. (You used this
property for some scripts in previous chapters.)

You will use this property frequently for information, validation, and navigation with
forms. You’ll see it used a lot more throughout this chapter.

The blur() Method

This method allows you to create a blur event on an element in your code. For example, if you
want to keep your default value in a text box from being adjusted by the viewer, you could use
the blur() method to remove focus from an element if it receives focus from the viewer. An
example of this is shown in the following code:

<body>

<form>

Your Favorite Food

<input type="text" name="fav food" value="Pizza"
onfocus="this.form.fav food.blur();" />

</form>

</body>

Clicking the text box gives it focus, but the onfocus event handler catches the focus on the
text box and then uses the blur() method on the element to remove focus from it. Of course,
you could also use this script with no default value to create a text box that can’t be filled out
because it can’t receive focus. In either case, this script is overridden if the viewer turns off
JavaScript in the browser and thus is not recommended as a protection from the user filling
in something in a field. Such things can be handled via input validation on the client side and
server side.

The click() Method

This method allows you to create a click event on a button in your code. However, a click
created this way doesn’t activate the onclick event handler if it is used in the button. Thus, the
click() method is most useful for activating buttons such as submit and reset buttons, which
don’t need an onclick event handler to be able to work.

For instance, a reset button will reset a form when clicked. If you want to reset a form
when a field loses focus (and really irritate the viewer), you could use the following code:

<body>

<form>

Your Favorite Food

<input type="text" name="fav food" onblur="this.form.annoy.click() ;"

389



390

JavaScript: A Beginner’s Guide

/><br />

Drink <input type="text" />

<br /><br />

<input type="reset" name="annoy" value="Reset Form">
</form>

</body>

This code uses the onblur() event to cause the button named “annoy” (the reset button) to be
called to action when the viewer removes focus from the first text box.

The focus() Method

The focus() method lets you create a focus event in your code so that you can bring a certain
form element into focus for the viewer.

For example, you might want to give focus to the first form element on a page (usually a
text box) as soon as the page loads so that the viewer doesn’t have to click the element to bring
it into focus and begin typing. The following code shows how you can do this:

<body>

<form>

Your Favorite Food

<input type="text" id="fav_ food" /><br />

Drink <input type="text" />

</form>

<script type="text/javascript"s>
var f box = document.getElementById("fav food") ;
f box.focus();

</script>

</body>

The script is loaded after the form and its elements exist. It then uses the focus() method to
give focus to the first text box for the viewer.

The select() Method

This method allows you to automatically select (highlight) the contents of a text box or a text
area for the viewer. This is useful if you have set a default value for the element and would like
the viewer to be able to quickly delete the value to type a new one, or if you want to make it
easy for the viewer to copy and paste the contents of the element.

The following code selects the text in a text area when the viewer gives it focus, making it
possible for the viewer to quickly delete the text or to easily copy it to the clipboard:

<body>

<form>

<textarea name="gometext" onfocus="this.form.sometext.select () ;">
This text is the default text for the text

area and is selected when the text area is given focus by the viewer.
</textarea>

</form>

</body>



Chapter 14:  JavaScript and Forms 391

The onfocus event handler causes the call to the method to be executed when the viewer
clicks inside the text area. All of the default text within the <textarea> and </textarea> tags is
selected.

That’s the end of the properties and methods of the form elements. It’s time to return to the
properties of the form object.

The encoding Property
This property often holds the value of the enctype attribute of a form tag. However, the results
can be different for each browser.

The length Property
The length property holds the number of elements in a given form on a page. This chapter has
already covered this property pretty extensively, so there’s no need to discuss it again here.

The method Property

This property holds the value contained in the method attribute of a form tag. Thus, if you’re
sending the form to the server to be processed, you might use something similar to the
following code:

<form name="f1" method="post" action= "http://site.com/cgi-bin/form.cgi">
<!-- form contents here -->
</form>

The value of the method property for this form would be post because it’s within the method
attribute of the form.

The name Property
This property holds the value of the form’s name, which is given to it in the name attribute of
the form tag. You might have some code like this:

<form name="cool form">
<!-- form contents here -->
</form>

Here, the value of the name property is cool_form, because it’s the value inside the name
attribute of the form.

The target Property
This property holds the value given in the target property in a form tag. For instance, you
might have the following code:

<form name="cool form" target="place" action="program.cgi's>
<!-- form contents here -->
</form>

Here, the value of the target property is place, because it’s the value inside the target attribute
of the form.



392

JavaScript: A Beginner’s Guide

Methods

Now take a look at the form object’s methods. The form object has only two methods, reset()
and submit(), which are described next.

The reset() Method

This method enables you to reset a form using your script, allowing you to reset the form on
any event you like. So, if you want to reset a form after the viewer removes focus from an
element, you could use the following:

<body>

<forms The form is reset if this field loses focus
Your Favorite Food -
<input type="text" name="fav food" onblur="this.form.reset();" /><br />

Drink <input type="text" />

<br /><br />

<input type="reset" value="Reset Form" />
<input type="submit" value="Submit Form" />
</form>

</body>

The submit() Method

This method allows you to submit a form without the viewer clicking the submit button. The
following code shows how to do this when the viewer removes focus from an element (much
the same way as with the reset() method):

<body> The form is submitted

<form action="http://site.com/php/form.php"> if this field loses focus

Your Favorite Food <_J
<input type="text" name="fav food" onblur="this.form.submit();" /><br />
Drink <input type="text" />

<br /><br />

<input type="submit" value="Submit Form" />

</form>

</body>

Ensuring the Accessibility of Forms

Ensuring that your forms are accessible to viewers can be somewhat challenging because your
preferred layout might not be interpreted properly by an assistive technology (such as Jaws

or Homepage Reader). There are several things you can do to help ensure that most of your
viewers can access and use your forms. You can place elements and their labels in the expected
order, use <label></label> tags, use <fieldset></fieldset> tags, and be sure not to assume the
user has client-side scripting (such as JavaScript) enabled.



Chapter 14:  JavaScript and Forms 393

Using Proper Element and Label Order
In your HTML code, the order of your label text and form elements can help assistive
technology in reading the form. For instance, consider the following input fields:

<input type="text" name="yourname" id="yourname" /> Name<br />
<input type="text" name="zip code" id="zip code" /> Zip Code<br />

Here, an assistive technology looks for label text to appear before the form element. Since

the first input element does not have any label text before it, the viewer is simply prompted

for input, with no indication of what information to enter. Afterward, the label text “Name” is

associated with the zip_code text box, which can cause the viewer to enter unexpected input.
To correct this, you can simply move the label text and place it before the form element, as

in the following code:

Name <input type="text" name="yourname" id="yourname" /><br />
Zip Code <input type="text" name="zip code" id="zip code" /><br />

Now, the assistive technology likely will pick up the form label and allow the user to enter
the expected information. Using both the name and id attributes also helps, because various
assistive technologies will pick these up as well.

This works for text boxes, text areas, and select boxes as well. However, when dealing
with check boxes and radio buttons, many assistive technologies expect the element
first, followed by the descriptive label. Thus, these should be switched around when
being used.

When dealing with buttons (such as submit, reset, or created buttons), be sure to use the
value attribute to describe what the button does, as that is what assistive technologies will
likely expect.

Using <label></label> Tags
Using label tags helps you to further specify which label text belongs with which form
element. Here is an example:

<label for="yourname">Name</label>
<input type="text" name="yourname" id="yourname" /><br />

Here, you assign the for attribute of the opening label tag the value of the id attribute for the
form element that will use the label text contained within the <label> and </label> tags. In the
preceding example, the for attribute contains yourname, which links the text to the element
with the id of yourname in the HTML code.

Using <fieldset></fieldset> Tags
Using a fieldset can be helpful when dealing with radio buttons and check boxes in order to
group them together into a logical set. Using a legend tag to label the options to choose from



394

JavaScript: A Beginner’s Guide

allows the user to know what is expected to be selected. The following code uses a fieldset to
group together a group of radio buttons used to select a type of fruit:

<fieldset>

<legend>Select a Fruit:</legend>

<input type="radio" name="fruits" id="fruitsl" value="Orange" />
<label for="fruitsl">Orange</labels>

<input type="radio" name="fruits" id="fruits2" value="Banana" />
<label for="fruits2"s>Banana</labels>

<input type="radio" name="fruits" id="fruits3" value="Apple" />
<label for="fruits3">Apple</label>

</fieldset>

Here, you group all of the radio buttons within the <fieldset> and </fieldset> tags and use a
legend tag after the opening fieldset tag to give the group a label. Then, each element is labeled
normally within the fieldset (also using the label tags).

Not Assuming Client-Side Scripting
When initially coding a form, it’s best not to assume JavaScript or another client-side
technology will be available. If JavaScript is required to make the form usable, then a number
of users will not be able to use it because they will have JavaScript disabled for any number of
reasons, such as security.

The best practice is to allow the form to be sent to the server side (which will handle the
form and provide the most important validation routines) even if JavaScript is unavailable.
Code like the following wouldn’t be usable for those without JavaScript:

<input type="button" onclick="this.form.submit () ;" value="Submit Form" />

In this case, a JavaScript event handler and method are required to submit the form. It would
be better to use the traditional submit element to create a submit button.
If you are using some JavaScript validation, you could use code such as the following:

<form method="post" action="form.php" onsubmit="return check form() ;">
<!-- form contents here -->

<input type="submit" name="submit" id="submit" value="Submit Form" />
</form>

This allows you to run the JavaScript function check_form() if JavaScript is available.
Otherwise, the onsubmit event handler will be ignored and the form will be submitted to the
server-side script for validation and handling. If JavaScript is available, that validation routine
can save a trip to the server side. If not, the server-side script will need do the work, but the
user will still be able to use the form as expected.



Chapter 14:  JavaScript and Forms 395

Validation

Validating JavaScript forms is extremely useful. For example, you can validate input before it
is submitted, to help reduce the number of forms with incomplete or inaccurate information.
Validation of form data prior to submission to, say, a Common Gateway Interface (CGI)
script, PHP script, or a Java servlet can save time and reduce load on the server. To begin with
validation, you will look at how to use the onsubmit event handler with the return statement as
well as learn some validation techniques.

onsubmit and the return Statement
To validate the contents of one or more elements in a form, you need to know when the viewer
tries to submit the form. When the viewer clicks the submit button, a submit event occurs,
which can be captured with the onsubmit event handler in the opening form tag.

Thus, the following form would be able to do something when the submit button is
clicked, before acting on its action attribute:

<form method="post" action="form.php" onsubmit="script"s>
<label for="yourname">Name:</label>

<input type="text" name="yourname" id="yourname" />

<br /><br />

<input type="submit" name="submit" id="submit" value="Submit">
</form>

You would replace script here with some JavaScript to be executed when the submit button is

clicked. This is often a call to the function that will be run to test one or more of the form fields.
For the function to do its work, however, you must be sure the submit button is not able to

perform its default action if the viewer’s input doesn’t pass the validation. This means that you

need a return statement in the onsubmit event handler. You want this statement to return true if

the validation passes and to return false if the validation fails. Thus, you want an end result

to be either

onsubmit="return true;"

which allows the submission to continue normally, or

onsubmit="return false;"

which makes the submission void and thus does nothing.

For the technique in the preceding code to work with a function, the return statement in
the onsubmit event handler must call a function that returns a value of true or false. Thus, you
would get a statement like this:

onsubmit="return yourfunction() ;"

You would replace yourfunction with a real function name.



396

JavaScript: A Beginner’s Guide

The key here is that the function must return a value of true or false so that the previous
statement will evaluate to what you need (return true; or return false;). The function itself can
do anything else, but it needs to have a return statement that sends back a value of true or false
to the event handler.

So, you could perform a validation on a form to be sure a text box is not left completely
blank. The following code shows how to do this using a function with the onsubmit event
handler. First, the HTML code (save as val_form.html):

<body>

<form method="post" action="form.php" onsubmit="return check it ()">
<label for="yourname"s>Name:</label>

<input type="text" name="yourname" id="yourname" />

<br /><br />

<input type="submit" name="submit" id="submit" value="Submit"s>
</form><script type="text/javascript" src="val form.js"></scripts>
</body>

Next, the JavaScript code (save as val_form.js):

function check it () {
var thename = document.getElementById("yourname") .value;
if (thename.length < 1) {
window.alert ("Name field is blank, please try again.");
return false;

}

else {
return true;

}
}

The function uses an if statement to check whether the text field has been left blank (using
the value of the text element’s length property). If so, an alert tells the viewer to try again
and the function returns false. Otherwise, the function will return true. If it returns true, the
submission continues. Otherwise, the form is not submitted and the viewer can try again by
entering the necessary information and clicking the submit button again. Keep in mind that the
check_it() function invalidates only a totally empty form field. You would need to make the
function more complex to eliminate submission of names such as a space, a pound (#) symbol,
and so on (which could be handled using regular expressions).

Techniques

For the most part, validation can be as simple or as complex as you need it to be for your
purposes. All you need to do is create your own custom functions to validate the form fields of
your choice based on the information needed.



Chapter 14:  JavaScript and Forms 397

For instance, the example in the preceding section checked for an empty text box in a
name field. However, for a Zip code, you could check whether the field contains five digits by
using a regular expression. If it does not, then you can send an alert telling the viewer the Zip
code is invalid and asking for it to be reentered. The following code shows a way to do this:

<body>
<form method="post" action="form.php" onsubmit="return check it ()">
<label for="zip code">Zip Code:</label>
<input type="text" name="zip code" id="zip code" />
<br /><br />
<input type="submit" name="submit" id="submit" value="Submit"s>
</form>
<script type="text/javascript"s>
function check it () {
var zip = document.getElementById("zip code") .value;
var tomatch = /*\d{5}$/;
if (tomatch.test (zip))
return true;
}
else {
window.alert ("An invalid zip code was entered") ;
return false;

}
}

</script>
</body>

The code uses the regular expression to check for five digits. If anything other than five digits
is entered, then the function will return false. You can, of course, expand this to allow for the
extra four digits that are sometimes used to designate more precisely a specific area within

a Zip code. To do so, add another input field and require that it have four digits if a value is
entered in that second field.

You can make the validation as strict or as loose as you need it in your JavaScript. Keep in
mind, though, that at the application layer (your server-side script or program) you will need to
take extra care with your validation routines to ensure that bad and/or malicious data cannot be
submitted to your application.

TIP

One way to find validation scripts is to try checking some JavaScript sites on the Web.
A number of them have special functions that are made to validate different types of
data. This can save you some work if you can find a function to suit your purposes.



398  JavaScript: A Beginner's Guide

Ask the Expert

Q:
A:

All of the elements like text areas and select boxes have too many properties and
methods to remember. Any suggestions?

A number of these properties and methods are used with all of the element types, while
only a few are more specific. As you continue to write scripts, you will start to know which
elements have which properties and methods, so it won’t be as confusing. If you notice
which properties and methods are used with each element, it will be easier to see when
there is one that is specific to a certain type of element.

What types of input can I validate?

For the most part, you can validate anything you like in the manner you see fit. You can
validate dates, names, times, addresses, e-mail addresses, phone numbers, or anything else
you might need.

Can I validate the selections in a select box or the text in a text area, or maybe some of
the other input types?

In some of these cases, you will already have your own values built into the elements. However,
if you can, you should still validate those values against other information to be sure the
information you receive matches your needs. You just need to adjust your function to perform
the needed tasks based on the different types of input devices (text areas, radio buttons, and so
on). For instance, the next section covers select boxes as they relate to navigation. However,
some of the information (such as the selectedIndex property) is useful for validation as well.

I don’t use server-side scripts, but I use JavaScript for fun and want to validate the
information. Do I really need to add a server-side script?

The need for a server-side script depends on your purposes. If you have a form that needs
to have information saved, sent by e-mail, or sent to a database, then you need a server-side
application.

Request a Number

In this project, you create a script for basic validation of a phone number entered

: prisia 1.js: by the viewer, such as 222-222-2222.



Chapter 14:  JavaScript and Forms 399

Step by Step

1. Create an HTML page with a form and a text box with the label text “Phone Number
(XXX-XXX-XXXX):”. Make sure the form has a submit button and calls the JavaScript
function check_it() to validate the input. Insert the necessary script tags after the form to
call an external JavaScript file named prjs14_1.js. Save the HTML file as pr14_1.html.

2. Create an external JavaScript file and save it as prjs14_1.js. Use it for step 3.

3. Use a regular expression to ensure that the number entered into the text box is in the format
XXX-XXX-XXXX. If it is, send an alert saying ‘“Phone number validated.” Otherwise,
send an alert saying “Invalid phone number entered. Valid format is XXX-XXX-XXXX.”

4. Save the JavaScript file and open the HTML file in your browser. See if it works by typing
various values into the text box and submitting the form.

Try This Summary

In this project, you used your knowledge of JavaScript and forms to create a script to validate
a form. The script validates a time entry by the viewer to see if it is a valid phone number by a
particular set of standards.

Using Forms for Navigation

By using JavaScript with forms, you can create some alternatives to the regular text link and
image link navigation if you wish. This section discusses how to create navigation for your site
using select boxes.

This type of navigation allows the viewer to choose a destination from a list in a select box
and then go to the new location either by clicking a button or by changing the value. To get
started, you will create a navigation select box that uses the viewer’s click of a button to go to
the new location.

Clicking a Button
Creating a select box is pretty straightforward. First, you set up the code for the select box like
this (save the HTML as select.html):

<form>

<label for="sl">Select Page:</label>

<select name="sl1l" id="gsl">

<option selected="selected" value="pagel.html">Page 1l</option>
<option value="page2.html">Page 2</option>

<option value="page3.html">Page 3</option>

</select>

</form>



400

JavaScript: A Beginner’s Guide

Note that the select box is given an id of s1. Also, notice the value attributes are given
URL values (local URLSs here). These are the destinations you want the viewer to go to when
he or she chooses the specified option from the list and clicks the button. Finally, the text to be
shown for each option is added inside the <option> and </option> tags.

Next, code the script that will set this in motion when a button is clicked. The button needs
to perform the action of transferring the viewer to the new destination. To do this, the script
must be able to access the option that has been selected in the select box and get its value (the
URL). Then, the browser needs to take the viewer to the new URL.

To access the option that has been selected, you must work your way down to the options
array for the select box. Recall that the select box was given an id of s1, so you can set up
a variable to hold the select box element:

var s = document.getElementById("sl") ;

Then, to get to the options array for this select box, you can use the following syntax:

s.options[]

The question is, which option do you want to get from the array? You don’t want to guess
by just inserting an index number of choice; you want the index number of the option that has
been selected by the viewer. This is where the selectedIndex property of a select box becomes
useful. Recall that this holds the value of the index number of the option that has been
selected by the viewer. By using the value of this property as the index number in the options
array, you can access the correct option when the viewer makes a selection. The following is
the syntax to use:

s.options[s.selectedIndex]

You now have the correct option from the list. Next, you must get its value so that the URL
in the value attribute is retrieved. To do this, you just need to add the value property on the end
of the long line, like this:

s.options[s.selectedIndex] .value

This is now the value you want, which is the URL of the selection made by the viewer.

Next, you must get this syntax into a working form. This value is the URL where you want
the browser to go when a button is clicked. Thus, you need to add a submit button and then
use the onsubmit event handler to change the window.location property to this value when it is
clicked. The following code creates a button to do this:

<body>
<form onsubmit="return go_ there() ;">
<label for="sl">Select Page:</label>



Chapter 14:  JavaScript and Forms

<select name="gl" id="sl">

<option selected="selected" value="pagel.html">Page 1l</option>
<option value="page2.html">Page 2</option>

<option value="page3.html">Page 3</option>

</select>

<input type="submit" name="go" id="go" value="Go!" />

</form>

<script type="text/javascript" src="select.js"></script>
</body>

This now tells the browser to run a JavaScript function named go_there() when this form is
submitted (by clicking the Go! button). It also calls an external JavaScript file named select.js,
which is where you will place the code that makes the change to the new URL:

function go_there() {
s = document.getElementById("sl") ;
window.location = s.options[s.selectedIndex] .value;
return false;

}

Notice how the selected value is used to change the window.location property to the new
URL. Returning false prevents the form from being submitted to the server so that the client-
side script can handle it. The viewer should be able to navigate by making a selection from the
box and clicking the Go! button. Figure 14-5 shows the initial drop-down box when viewed in
a browser.

Figure 14-6 shows the result of selecting the option for Page 2 and clicking the Go! button.
A new page is shown in the browser as a result.

3 Example - Muzilla Firefox

File

@ = @ Xt ([ MeutEsi_phpitiquresichalafestoct btmi
151 Most Visited 8 Gotting Starked 3| Latest Headines

& teabler S Cookess (] €55+ Z7] Former W] Images+ () Informatian= (4 Mscelanecuss ' outines | & Reser ¥ Took+ {3 view Sourcer - Uptions= v 8 86

Select Mage: Fogel [ Gal

Edit iew History Bookmarks Toolks  Help

M | | B [(Phmeamessmanar| ~

Figure 14-5 The drop-down box before a selection is made and the button is clicked

401



402

JavaScript: A Beginner’s Guide

) Example - Mozilla Firefox

Fie Edit Miew History Boolmarks Tools Help

6 D e X & .-I -.]j.ril;:-rur.-F_._':r.l - ‘“;.._..1:‘. =—— ‘: ' t|- sy )

L8 Most Visited M Getting Started 5 | Latest Headines
&) Disable= [ Coakdes= | €55+ -] Forms= M) Imoges= @) Intormation= (5 Miscellancous= o/ Outine= | | Resice= % Toobs= 1] View Source= . Options= v @

This is I’age 2 (page2.html)

e M | B |(Phmeatsemate| ~

Figure 14-6 The page displayed after the selection is made and the button is clicked

If you want to make this script more accessible, you can use a server-side script to back up

the JavaScript. You would write the code for the server-side script, add the method attribute,
and add the action attribute to the HTML code:

<body>

<form method="post" action="/php/select.php" onsubmit="return go there();
<label for="sl">Select Page:</label>

<select name="sl1l" id="sl">

<option selected="selected" value="pagel.html">Page 1l</options>

<option value="page2.html">Page 2</options>

<option value="page3.html">Page 3</options>

</select>

<input type="submit" name="go" id="go" value="Go!" />
</form>

<script type="text/javascript" src="select.js"></scripts>
</body>

"

Now, if the viewer does not have JavaScript available, the onsubmit attribute will be ignored,
but the action attribute will be used to handle the form. This will go to a script named select.php

in the php directory on the server (these are simply example file and directory names). The
server-side script can then do the work of sending the viewer to the new URL, allowing the
script to work even for those without JavaScript.

One more thing that should be noted is that this script will only work if the viewer’s browser

can handle the document.getElementBylId() method. If you anticipate that some of your users might
have older browsers, it may be a good idea to ensure that they use the server-side script in this case
(or you can add options for this to work using the forms array or using a form name and select box

name). To keep older browsers from running the JavaScript code, you could do the following:

function go_there() {
if (document.getElementById && document.createTextNode) {
s = document.getElementById("sl") ;



Chapter 14:  JavaScript and Forms

window.location = s.options[s.selectedIndex] .value;
return false;

}

return true;

}

Now, the code will work only for those browsers that support getElementByld() and
createTextNode() (this is added for browsers that support only getElementByld() but don’t
support it quite the way one would expect). Otherwise, the script will return true and the
server-side script will be called.

No Button
To create a select box for navigation without a button, you would use the onchange event
handler. However, for accessibility reasons, this type of navigation is not recommended
because it not only makes it very difficult for those using assistive technology to select the
desired option, but also can be confusing in general as the viewer is taken immediately to the
selected destination once it is selected.

If you are using the script for leisure and do not need the script to be accessible, you can
find numerous versions of this type of navigation script on the Web.

Build a Select Box Navigation Script

,pr14 2. html :
iprjsl4_2.3s !

In this project, you build a navigational select box that will have five destinations
for the viewer to choose.

Step by Step
1. Create an HTML document and add script tags so that the HTML file will call an external
JavaScript file named prjs14_2.js. Save the HTML file as pr14_2.html.

2. Create a select box with a button for navigation. You can choose whichever destination sites
and descriptions you like. Name the select box s1. Save the HTML file.

3. Create a JavaScript file and save it as prjs14_2.js. Use it for step 4.

4. Add the code in this file so that the browser will open the selected URL when the button
is clicked.

5. Save the JavaScript file and open the HTML file in your browser. Check to see whether the
navigation system works.

Try This Summary

In this project, you used your knowledge of JavaScript and forms to create a navigational system.

403



404  JavaScript: A Beginner’s Guide

4 Chapter 14 Self Test

1. Each time you add a set of <form> and </form> tags to an HTML document, a(n)
object is created.

2. The forms allows you to access a form using an index number.
3. Which of the following would access the fourth form on a page?
A document.forms[4]
B document.forms[3]
C document.forms(4)
D document.forms(3)
4. Which of the following would find the number of elements in the third form on a page?
A document.forms[2].length
B document.forms[3].length
C document.forms.length
D document.forms(3).length
5. Which of the following holds the value of the number of forms in a document?
A document.forms[0].length
B document.form.length
C document.forms.length
D document.forms[1].length

6. Using form allows you to name the forms on the page that you want to
access later.

7. Which of the following accesses the value of an element named el in a form named f1?
A document.fl.el.value
B document.el.fl.value
C document.fl.e2.value
D document.formsl.el.value

8. The property allows you to access the value of the action="ur[" attribute in the
opening form tag.

9. The property is an array that allows you to access each element in a specific
form.



10.

11.
12.

13.

14.

15.

Chapter 14:  JavaScript and Forms

The options property is an array that contains an element for each listed in a
select box in a form.

The method allows you to reset a form using your script.
Which type of value should a function return when it is used to validate a form?
A yes orno
B true or false
C maybe so
D a floating-point number

When the viewer clicks the submit button on a form, a submit event occurs and can be
captured with the event handler.

The method allows you to submit a form without the viewer clicking the
submit button.

What do you use to get the currently selected option in a select box?
A The length property
B The reset() method
C The getSelected() method
D The selectedIndex property

405



This page intentional ly left blank



Chapter 15

JavaScript and Frames

407



408  JavaScript: A Beginner's Guide

Key Skills & Concepts

An Introduction to Frames
Accessing Frames
Changing Frames

Frame Navigation

Although using frames to create Web sites typically isn’t recommended, because of usability
and accessibility issues, occasionally they (especially inline frames) are the right choice
to achieve particular purposes. You can perform some helpful tasks with frames in JavaScript.
This chapter provides a basic overview of frames and then explains how you can access frames
from other frames. You’ll also learn how to change one frame from another frame, and then
you’ll use some fun frame navigation tricks. Finally, you’ll learn how to use variables across
frames to store and retrieve information.

An Introduction to Frames

The decision of whether or not to use frames on your Web site is up to you. It depends on
your navigational requirements and other Web site issues you might have. If you don’t know
anything about frames, learning some basic information will help you determine whether they
would be useful to you.

If you’re already comfortable using frames, you can skim this section or skip it entirely.
However, if you have little or no experience with frames, you should read this introduction
to frames thoroughly. Frames can get quite messy, especially when you add JavaScript to
the picture.

Purpose of Frames

Frames divide a window into two or more separate areas (a frameset), each containing
different content. This differs from tables in that the divisions in a frameset each contain a
separate Hypertext Markup Language (HTML) document, and you can change one of the
sections without affecting the other sections.

NOTE

Each frame shown on a Web page is actually a separate HTML document.



Chapter 15:  JavaScript and Frames

3 Muzilla Firefox

Hle kbt Wew Hgtory Hookmarks ook Help

6 = @ 2w [ [fesiesiza_phpfpropctsichatsframeset i vt ] [IG]] seqe pal
13 Most visitad 4 Getting started & Latest Headines

@ Disabler [ Cookles [ ] C55+ | Forms+ M Imagess (@ Information= () Miscellanecus= ' Cutiner | Restzer ¥ Tooker ] View Source= | Options® X e 06
I am a frame! I am another frame!

fone M | D |(Rlscatmsnnaa| ~

Figure 15-1 A frameset containing two frames

For example, Figure 15-1 shows a Web page with two frames. Each frame is actually
a separate HTML document. The HTML document that creates the frames uses a set of
<frameset> and </frameset> tags to create a frameset.

Frames have several applications. For instance, you can use them to create a site-wide
navigation system, or you can create a reference system where the table of contents is in one
frame and the corresponding content appears in another.

The Code Behind the Frames

The following code contains the frameset element. It puts together the number and structure
of the frames that will be shown when the document is opened.

The frameset begins, sefting up

two frames from left to right The first frame and
<html> its URL are set The second frame
<frameset cols="20%,80%"> and its URL are set
<frame src="framel.html"></frame>

<frame src="frame2.html"></frame> =
</frameset > 4——— The frameset ends
<noframes>

Sorry, your browser does not support frames. Use the link
below to go to the frameless version of the site.<br />
<a href="noframes.html">Frameless Site</a>

</noframess>

</html>

This code creates a basic frameset that produces a smaller frame on the left side of the
window and a larger frame on the right. Here’s how it works:

1. The opening frameset tag tells the browser that a frameset is to begin. Notice that it replaces
the body tag used in a regular window.

409



410

JavaScript: A Beginner’s Guide

2. The cols attribute of the opening frameset tag tells the browser the window will be divided
into two columns (which move from left to right). The first column (left) is to take up
20 percent of the screen space, while the second column (right) is to take up 80 percent
of the screen space.

3. The first frame tag creates the first frame on the page. The browser displays the frames from
left to right, top to bottom, in the order that they appear in the source code. Thus, this frame
is in the top-left portion of the page—which, in this case, is just the left side of the page.

4. The src attribute tells the browser the URL of the HTML document to display as the
contents of the frame, which is actually what the viewer sees on the left side of the window.
In this case, the document is a file named frame1.html.

5. The second frame tag does the same thing as the first, but the frame is the next one in order from
left to right and top to bottom. Again, because there are only two columns, this frame is just
on the right side of the window. The src attribute points to the URL of the HTML document
to be displayed in this frame. In this case, the document is a file named frame2.html.

6. The </frameset> tag ends the frameset.

7. The content between the <noframes> and </noframes> tags is displayed in browsers that
don’t support frames so that the viewer has something displayed on the screen. You can
place a link to a version of the site with no frames, or you can use any other HTML code
you wish. I used the text and the link to keep the section short for the example.

The document created from the previous code is the page you want to open in the browser
to display the frames. Save this document as frameset.html so you can use it once you add
some code for the documents used in the frames.

Once the frameset is created, you must create the documents that will fill in the frames.
First, create a document to be used for the left frame (framel.html):

<html>
<body>
I am framel.html, and I am on the left side!
</body>
</html>

This simple code tells you which document is being shown in which frame. (You can make the
code as complex as you wish.) Save this as framel.html in the same directory as frameset.html.
Next, you must supply code for the other frame (frame2.html):

<html>
<body>
I am frame2.html, and I am on the right side!
</body>
</html>

Save this as frame2.html in the same directory as frameset.html and framel.html.



Chapter 15:  JavaScript and Frames 411

3 Muzilla Firefox

Hie  Edit  Wew Hstory Hookmarks ool Help

6 = @ 3 v (11 [fsuiesiz_phpfpropctsichaisframeset.himl vt ] [IGle]sooas A

14 Most Visited ¥ Getting Started & Latect Headines

© Disabler 5 Cookiesr (] Cuse £ Former W] imagese ) Informavon= (0 mecelaneoust ' Outiner [ & Reszer ¥ Tock+ {3 view Sourcer | Options® X e 06
T am framel html, and Tam on | I am frame2 html, and T am on the right side!

the lefl sacdel

fone M | B |(Riscatmsnnaa| ~

Figure 15-2 A frameset with two frames, one in each column created by the frameset

Now, when you open frameset.html in your browser, it should display the window with
two frames, each containing the appropriate HTML document, as shown in Figure 15-2.

Frame Options

As you have seen, the opening frameset tag can take on the cols attribute to divide the window
into columns. In the same way, it can instead use the rows attribute to divide the page into
rows from top to bottom. Here is an example of code that creates a frameset with two rows:

<html>

<frameset rows="20%,80%"> < This time the frames go from top to

<frame src-"framel.html"s</frames bottom, since the rows attribute is used
<frame src="frame2.html"></frame>

</frameset>

<noframes>

Use the link below to go to the frameless version of the site.<br />
<a href="noframes.html">Frameless Site</a>

</noframes>

</html>

This time, the page is divided into two frames, one on top and the other. An example of what
this might look like if both framel.html and frame2.html exist is shown in Figure 15-3.

Rows or Columns

If you prefer, the numbers used in the rows or cols attribute can be in pixels rather than
percentages. Also, you can use an asterisk (*) if you want a certain frame to take all of the
space remaining after other frames have been set. For example, look at this code:

<html>
<frameset rows="150,*"> =
<frame src="framel.html"></frame>

The asterisk tells the second frame to take any
remaining space not used by the first frame




412

JavaScript: A Beginner’s Guide

) Mozilla Firefox
File Edit ‘iew History Boolmarks Tools Help

e e X & @ ohplprojectsicha S ua. bl - 27 -] Gl cooss P
181 Most Visited 1 Gotting Started 5 | Latest Headines
&) Disable= & Coakdes= | €55+ -] Forms= ] Imoges= () Intormation= (5 Miscellancous= o/ Outine= |, & Resize= 4% Toobs= 1] View Source= . Options= xXeo

I am frame | html, and I got the top bunlc!

I am frameZ hteal, and I am stuck here on the bottem bunls (it's bigger thowgh)!

e M | B |(Pimeamasmaanar| ~

Figure 15-3 A frameset based on rows instead of columns

<frame src="frame2.html"></frame>

</frameset>

<noframes>

Use the link below to go to the frameless version of the site.<br />
<a href="noframes.html">Frameless Site</a>

</noframess>

</html>

This time, the first row (top) takes up 150 pixels, while the second row (bottom) takes the rest
of the remaining space in the window.

More Than Two Rows or Columns

Of course, you aren’t limited to only two rows or two columns. You can have as many rows or
columns as you like. For instance, if you want a frameset with three columns, you could use
this code:

<html>

<frameset cols="150,*,150"> ¢—————
<frame src="framel.html"></frame>

<frame src="frame2.html"></frame>

<frame src="frame3.html"></frame>
</frameset>

The asterisk tells the middle frame to use any
remaining space not taken by the other frames



Chapter 15:  JavaScript and Frames 413

<noframes>

Use the link below to go to the frameless version of the site.<br />
<a href="noframes.html">Frameless Site</a>

</noframess>

</html>

Here, the left and right columns have a width of 150 pixels each. The column in the center
takes all of the remaining space in the window.

Nesting to Allow Both Rows and Columns
Finally, if you want to have a more complex frameset that includes both rows and columns,
you must nest one frameset within another. For instance, you may want a row that spans the
top portion of the page that is 100 pixels in height. Then, you might want to have two columns
below it: one on the left taking up 150 pixels and one on the right taking the remaining area.
To do this, you need to have a frameset that represents the rows (because the top row must
span the entire top portion of the page). Inside the bottom row, you need another frameset that
uses columns to divide the lower row into the two areas. The following code shows how this
nesting can be done:

<frameset rows="100,*"> < The main frameset begins

<frame src="framel.html"></frame>
<frameset cols="150,*"> =
<frame src="frame2.html"></frame>
<frame src="frame3.html"></frame>
</frameset> -« The nested frameset ends

</frameset> =« The main frameset ends

<noframes>

Use the link below to go to the frameless version of the site.<br />

<a href="noframes.html">Frameless Site</a>

</noframess>

The frameset nested in the
bottom frame begins

Notice that in place of another frame tag for the frame in the second (bottom) row, a new
frameset is used, dividing the bottom row into two more frames. These frames run in columns
and go from left to right.

TiP

Be sure to close each <frameset> tag with a </frameset> tag. As with tables, forgetting
one of these can cause the frames to be displayed improperly or not at all.

Figure 15-4 shows an example of how this nested frameset appears in a browser (assuming
all the documents and files exist).



414

JavaScript: A Beginner’s Guide

3 Muzilla Firefox

File Edit ‘iew History Boolmarks Tools Help

6 = € X tar [ |feiiifEsiz phplprojectsichalSg0d.htm W - | [IG):] sooge L
148 Mast Visited M Gotting Started 7| Latost Hoadines

& veabler [ Cookiess ] Lo 57 rormer B imagest @ Information= (0 Mscelansoust ' Outine | & Heczer ¥ Took+ £ view Sourcer - Options® X e 6
I am a frame!

I am ancther trame! | am yet anather trame!

none M | B |(Cientmmstmnive| ~

Figure 15-4 A nested frameset allows both rows and columns to be used in a window

Accessing Frames

How do you access a frame in JavaScript? You can either use the frames array or name the
frame and use the frame name instead. To begin, take a look at how to access a frame using the
frames array.

The frames Array

You use the frames array to access frames based on their order in the source code. You will
access one frame from within another frame, so you must be able to find the frame you want
to access.

Recall that the frames array comes from the window object. Frames carry most of the same
properties and methods as regular windows, but you access them differently. For instance, take
a look at this code, which creates a frameset with two frames. Name it framesetl.html. (This
replaces the previous example.)

<html>

<frameset cols="60%,40%">

<frame src="framel.html"></frame>

<frame src="frame2.html"></frame>

</frameset>

<noframes>

Use the link below to go to the frameless version of the site.<br />
<a href="noframes.html">Frameless Site</a>

</noframes>

</html>



Chapter 15:  JavaScript and Frames 4158

If you’re coding some script inside the first frame (framel.html) and want to know the
value of the location property in the second frame (frame2.html) to display it for the viewer,
you must figure out how to access the second frame. Remember, you’re working inside a
frameset. You are working in the code for one of the documents that will be the content for
the first frame within the frameset. Thus, to access the other frame, you need to find a way
to get back to the main window and reference the frame. Recall from Chapter 10 that the
window object’s top property allows you to access the topmost window in a frameset (the main
window).

You can now use the frames array because you have access to that main window, which
contains the code for the frameset. The frames array contains an entry for each frame tag in the
code. The count starts at O and continues in the order that each frame tag appears in the source
code. Thus, to access the first frame in a frameset, you could use the following syntax:

top.frames [0]

Using the top property allows you to access the main window and the frameset code. Then,
frames[0] is used to access the first frame in the source code. So, if you’re coding within the
second frame and want to access the first frame, you would use this syntax:

top.frames [0]

Now, you can make the code in the second frame access the needed information in the first
frame for the viewer. The following code is for the first frame (framel.html):

<body>
I am frame 1 and the other frame took information from me! How rude!
</body>

To complete this script, you could use the following code for frame2.html:

<body>

The first frame is from: <br />

<script type="text/javascript"s The value of the location of the second
document .write (top.frames [0] .location) ; «— frame is printed on the page using the

</scripts frames array to access the information

</body> in the frame

Now you can see the result by opening the main window (framesetl.html). The right frame
should tell you the location of the document used for the left frame. Figure 15-5 shows
how this may appear in a browser. (Your location value will probably be different from

the filename.)

The frames array is a good way to access unnamed frames or to access frames if you need
to loop through them. If you recall from Chapter 10, the length property of the frames array
provides the number of frames in a document. Thus, you could loop through the frames array
to print the location of each of the frames in one frame for your viewer to see. First, you will
need the document containing the frameset to be used.



416

JavaScript: A Beginner’s Guide

Y Muzilla Firefux =1
File Edt Yew Hgtory Bockmarks Took  Help 4

€ - ¢ X @ (D soomsicus oot

18 Most Visited 8 Gottin Starked 3| Latest Headines
© ieabler [ Coakest [ o5+ £ Former M| Imagese (@) Informavons (7 Mscelanecuss o/ Cutiner | & Haszer ¥ Took+ ] view Sourcer . Options® X e 6

Tam frame 1 and the other frame took information from me! How nude! The first frame 15 from:
fileiEfzz phpfprojectsichal Sframe 1 html

o M | ) |(Pimeatasannaa| ~

Figure 15-5 The second frame shows information taken from the first frame

For this example, save this main window as frameset2.html. The code for this document is
shown here:

<html>

<frameset cols="20%,80%">

<frame src="framel.html"></frames>

<frame src="frame2.html"></frame>

</frameset>

<noframes>

Use the link below to go to the frameless version of the site.<br />
<a href="noframes.html">Frameless Site</a>

</noframes>

</html>

This time, frame1.html will just have a brief statement:

<html>
<body>
I am frame 1!
</body>
</html>

Now, frame2.html is where the script and results will appear, and could be coded as

shown here:
The loop begins, using the length

<body> property to Enow when to quit
<script type="text/javascript"s

for (var count=0; count<top.frames.length; count+=1) {
var framenum = count+l; < A new variable is created to number the frames
document .write ("Frame "+framenum+" is from "+top.frames[count].location);—1
document .write ("<br />");

}
</script> The results are printed on the page
</body> using the frames array for access



Chapter 15:  JavaScript and Frames

3 Muzilla Firefux

File Edit ‘ew History Bookmarks Toolks  Help

6 s c X iy I: | "‘,_=flls:,l’Hl-_:,i‘zz_phpﬂpru]sct\l:{l:halhfﬁamset!.html "L .: :C'|:_ e )‘
Wil Most Visited # Gotting Starked | Latest Headines
© isabler 5 Cookiesr [ Cusw E7] Former W] imagsst ) Informavans () Mecelanecusr ' Outiner [ 5 Reszer ¥ Took+ {3 iew Sourcer - Options® X e 0

I am frame 1! Frame 1 iz from file/Evzz phprfprojects/chal 3frame 1 html
Frame 2 is from filei/E:fzz_phpdprojectsichal 5/frame2 hrml

Done M | | D |(Cleamentes| ~

Figure 15-6 The location value for each frame is printed in one of the frames

As you’ve seen in previous scripts, the length property determines when the loop should
end. The framenum variable prints out the frame number beginning at 1 rather than its index
number in the array (which begins at 0). The frames array is then used in the document.write()
statement to print the value of the location property for each frame.

Figure 15-6 shows the results of this script when run in a browser (when frameset1.html is
opened). Again, your location values will probably differ from the filenames.

Using a Frame Name

Another way to access one frame from another is to use the name of the frame (much like the
way you used form names in the previous chapter). For example, this code gives each frame a
name by adding the name attribute to the frame tag (call this frameset3.html):

<html>

<frameset cols="50%,50%">

<frame src="framel.html" name="left side"></frame>

<frame src="frame2.html" name="right side"></frame>

</frameset>

<noframes>

Use the link below to go to the frameless version of the site.<br />
<a href="noframes.html">Frameless Site</a>

</noframess>

</html>

You can now access one of the frames from the other using the frame name rather than the
frames array. Thus, if you want to access the second frame (right_side) from the first one, you
could use this syntax:

top.right side

417



418

JavaScript: A Beginner’s Guide

In the same way, you could access the first frame from within the second frame with this
syntax:

top.left side

Now you can make each frame tell the viewer the location of the other frame by coding
the frames with a short document.write() statement in each. The document for the first frame
(frame1.html) could be coded like this:

<body> The name of the right frame is used to
The second (right) frame is from: <br /> pﬁnﬂnhnnmbnHom“in%ebﬁﬂome
<script type="text/javascript"s>

document .write (top.right side.location) ;
</script>
</body>

After that, frame2.html could be coded as follows:

<body>
The first (left) frame is from: <br />
<script type="text/javascript"s>
document .write (top.left side.location);<__ﬂw”°m?°Fmeb&ﬁcmeﬁlﬁahopnm
. - information from it in the right frame
</script>

</body>

Each frame now gives out information about the other one.

Changing Frames

To change the content of one frame from another frame, you can use the target attribute in
HTML for a single change. However, by using the location property in JavaScript, you can
change more than one frame at a time. The following sections cover both possibilities.

Change a Single Frame

In HTML, if you want to change one frame from within another, use the target attribute within
your link tag and give it the value of the name of the frame. For instance, if you want to
change the contents of a frame named right_side from another frame in the frameset, you could
create a link like this:

<a href= "nextpage.html" target="right side"sNext Page</a>

This would open nextpage.html in the frame right_side rather than in the current frame (which
is the default for a link).

TIP

Be sure the target matches the frame name exactly. If it doesn’t match a frame name
or a predefined target, the page to be displayed will open in a new browser window
instead of in the frame or window you intended.



Chapter 15:  JavaScript and Frames

To perform the same task with JavaScript, you can use the frame name along with the
location property to make it work, as in the following syntax:

top.right side.location="nextpage.html";

Here, right_side is the name of the frame to have its contents changed, and nextpage.html is
the page that appears in place of the original document. To code this into a link, you could use
the return false technique used in previous chapters:

<a href="n" onclick= "top.right side.location='newpage.html'; return false;">
New Page</a>

On the other hand, you could also use a method that allows you to point the href attribute
of a link tag to perform JavaScript statements, as shown here:

<a href="javascript:top.right side.location='newpage.html'">
New Page</a>

Notice the addition of the word “javascript” in lowercase followed by a colon. After that, you
can use JavaScript statements as you would use them in an event handler.

The technique in the preceding code also eliminates the need to add the return false
statement to the code. Either method works (aside from the accessibility issues involved with
both of them since the links don’t work without JavaScript enabled... you could change this to
link to the file and use scripting to override it when JavaScript is available, but when changing
multiple frames you couldn’t make the single link change both frames without JavaScript).

Change Multiple Frames
To change more than one frame at a time, you can use JavaScript. Grab the basic frameset
again and save it as frameset4.html. Here’s the code:

<html>

<frameset cols="20%,80%">

<frame src="framel.html" name="left_side"></frame>

<frame src="frame2.html" name="right_ side"></frame>

</frameset>

<noframes>

Use the link below to go to the frameless version of the site.<br />
<a href="noframes.html">Frameless Site</a>

</noframes>

</html>

To change the contents of both frames, you need two additional HTML files so that the
two documents in the two frames can be changed to two new documents. Thus, you need
a document list similar to the following:

frameset4.html (the main window code)

framel.html (document initially shown in the left frame)

419



420

JavaScript: A Beginner’s Guide

frame2.html (document initially shown in the right frame)
frame3.html (new document to appear in the left frame)

frame4.html (new document to appear in the right frame)

You already have the code for frameset4.html, so you just need the code for the four
remaining documents. The fun occurs in the example in framel.html, so that’s where you’ll start.

Frame 1, the Action Frame
This frame contains the link that makes both frames show a new HTML document. To do this,
you can use a function and then call the function from the link. Here’s the code for framel.html:

<body>
<script type="text/javascript"s> The right frame is changed
function twoframes () {
top.right side.location="frame4.html";
self.location="frame3.html"; «—— The current frame The link calls the function
} is changed to change both frames
</script>
<a href="javascript:twoframes () ;">Change Both Frames</a>
</body>

The link tag calls the twoframes() function. The function first changes the contents of the
right frame by referring to its name (right_side). It then changes the location of its own frame
(recall that “self” is a way to refer to the current window or frame, which makes what is being
changed in the code a little less ambiguous). When the link is clicked, both documents will
change to the new documents.

NOTE

You will notice that the frame you are not currently in is changed first and the
self.location is changed last. This is because if you change the self.location before

you change any other frame locations, the browser will move on and the script will not
finish executing.

The Other Frames: Basic Code

In the remaining frames, you can just add some simple code to make the frame identify itself.
Here is some code for frame2.html:

<body>
I am frame 2!
</body>

Here is some code for frame3.html:

<body>
I am frame 3!
</body>



Chapter 15:  JavaScript and Frames 421

3 Mozllla Firefox

Fle Edit Yiew Hstory Bookmarks Toos Helo
oﬂ- C X tar (1) esiffEsizz_phpfprojectsichatSirramcsett.himi 1y -] [IG] coos F
[ Most Visited M Getting Started 5| Latest Headines

& Disabie= & Coolics= | €55~ £ Forms= M| Images= 0 Intormation= 3 Miscelancous= o/ Oubline= | & Resize= ¥ Tools= §&] View Source= . Options= x o6
Change Both Frames T amn frame 2!

Figure 15-7 The view of the frameset before the link is clicked

Finally, here is some code for frame4.html:

<body>
I am frame 4!
</body>

Once these are all set up, open frameset4.html to see the link change both frames. Figure 15-7
shows the initial view of frameset4.html before the link is clicked.
Figure 15-8 shows the page after the link has been clicked and the content of both frames

has been changed.

3 Mozilla Firefox |_|§||z|
Flc Edt View Higtory Bockmarks Tooks Help
o = € X g (1) HeupEss phofprajectsichalSiteamesct . himi 77 | <] cooue P
18 Most Visited P Getting Starked 5 | Latest Headines
& Disabie= [ Coolics= | €55= £ Forms= M| Images= (@) Intormation= () Miscelancous= o/ Oubline= | & Resize= ¥ Tooks= §i] View Source= . Options= X906
I am frame 3! T atn frame 4!
= M B |(imamstannd| ~

Figure 15-8 After the link is clicked, two new documents appear in the frames



422  JavaScript: A Beginner's Guide

You could certainly use more detailed code if you wanted to. You could set it up with

more frames and then change as many of them as you like. You could also code one of the new
frames to have a link that takes the viewer back to the original two frames. In addition, you
could use the URLSs or filenames as parameters to the function.

IDALCRERN Change Frames

prl5_1.html

prl5 1 framel.html
prls 1 frame2.html contents of two other frames in the document.
prl5 1 frame3.html
prl5 1 frame4.html
prl5_1 frame5.html

In this project, you create framesets and change more than one frame at
once. You also create a frameset that will use one frame to change the

Step by Step

Create an HTML document to serve as the frameset. Create a frameset that contains three
frames from top to bottom (rows). The top and bottom frames should each use 33 percent of
the available window space, while the middle frame should use the remaining space.

. Use the following filenames for each frame:

Top frame: pr15_1_framel.html
Middle frame: pr15_1_frame2.html
Bottom frame: pr15_1_frame3.html

. Use these names for each frame:

Top frame: t_frame
Middle frame: m_frame
Bottom frame: b_frame

. Save the file as pr15_1.html.

5. In the code for the top frame (pr15_1_framel.html), provide a link that causes the two

lower frames to receive new content. Use these filenames for the two new frames: pri15_1_
frame4.html and pr15_1_frame5.html.

. Save the file (pr15_1_framel.html).

7. Add any content you like to the remaining frame files (pr15_1_frame2.html, pr15_1_

frame3.html, pr15_1_frame4.html, pr15_1_frame5.html).

. Open prl15_1.html in your browser and try out the link. It should change the lower two

frames in the frameset while the top frame remains the same.

Try This Summary
In this project, you used your knowledge of JavaScript and frames to code a frameset. When
opened in a browser, the viewer can change multiple frames by clicking a link.



Chapter 15:  JavaScript and Frames 423

Frame Navigation

JavaScript also provides handy frame navigational techniques. For instance, you could adjust
the select box navigation created in Chapter 14 to work from one frame to another. Or, you
could create code to allow your viewers to break out of frames. You also could create code that
sends viewers to your frames if they accidentally enter on a page that should be in a frameset.

Using the Select Box with Frames
If you want the select box in one frame to open a document in another frame, you must alter
select box navigation slightly. To do this, you need to change only one part of the code in the
select box.

Let’s use the filename frameset5.html to see how the frames will be shown. The code is
shown here:

<html>

<frameset rows="120,*">

<frame src="framel.html" name="t_ frame"></frames>

<frame src="frame2.html" name="b frame"></frames>

</frameset>

<noframes>

Use the link below to go to the frameless version of the site.<br />
<a href="noframes.html">Frameless Site</a>

</noframess>

</html>

In this case, the frames are going from top to bottom using rows. The top frame (t_frame)
spans 120 pixels from the top, and the bottom frame (b_frame) takes up the remaining space
on the page.

In the preceding example, a select box changes when the viewer makes a choice (no
button). The select box is placed in the top frame to allow the viewer to change the document
shown in the bottom frame. Thus, you need to see the code in framel.html, as shown here:

<body>

<form onsubmit="return go_there() ;">

<label for="gl">Change the lower frame:</labels>

<select id="sl1l">

<option selected="selected" value="#">Choose Destination</options>
<option value="frame3.html">Frame 3</option>

<option value="frame4.html">Frame 4</option>

<option value="frame2.html">Back to Frame 2</options>

</select>

<input type="submit" id="submit" value="Go!" />
</form>

<script type="text/javascript"s>

function go_there() {

s = document.getElementById("sl") ;



424

JavaScript: A Beginner’s Guide

top.b_frame.location = s.options[s.selectedIndex] .value;
return false;

}

</scripts>
</body>

Notice that the only major difference in the code for the select box is the second line of the
code in the go_there() function. Instead of using window.location (which changes the same
frame), it uses the name of the bottom frame so that its location is changed (top.b_frame
Jocation).

The three available choices are to go to Frame 3 (frame3.html), Frame 4 (frame4.html),
or back to the frame that was there initially (frame2.html). Choosing one changes the bottom
frame to the new page.

The only other task is to add some code to the other frame files (frame2.html, frame3.html,
and frame4.html) so there is something to view in the bottom frame. Figure 15-9 shows how
framesetS.html might look initially, before a choice is made (depending on the code you add to
frame2.html).

Figure 15-10 shows an example of how the window might appear if Frame 3 is chosen
from the drop-down box (depending on the code you add to frame3.html).

Breaking Out of Frames

Sometimes another Web site will code links that don’t break the user out of the site’s frames
before arriving at your site. Your site is then left in a smaller portion of the viewer’s window
with the navigation from the other site still showing in other frames. When this happens, you

3 Muzilla Firefux =1
Fle Edit ‘iew History Boolmarks Tools Help

O ¢ X & (lmirmrmomommm— | Rl
1 Most Visited e Gotting Started 3| Latest Headines

&) Disable~ [ Coakest | €55+ £ Forme= ] Imagss+ () Intormation= (5 Miscellaneous+ ./ Outiner | | Resizes ¥ Took= ] View Source= . Options= X e 0
Change the lower frame: __Lmons?!..lesimmlon \'_1_ Gl ]

1 am frame 2!

. M | ) [(lmcamsmmnaar| ~

Figure 15-9 A possible initial appearance of the frameset



Chapter 15:  JavaScript and Frames

3 Muzilla Firefox

File Edit ‘iew History Bookmarke Tools Help

6 * C X iy I: | "‘,_=_flls:,l’Hl-_:,i‘zz_phpﬂpru]sct\l:{l:halhfﬁamsetb,htnﬂ g ': gc|'__:'-' )'_
14 Mast Visited P Getting Started & Latest Hoadines
© isabler 5 Cookiesr (] Cusv E7] Former W] Images+ ) Informavant (0 Mscelaneousr ' Outiner [ 5 Reszer ¥ Took+ {3 View Sourcer - Uptions® X e 0

Change the lower frame: | Frame 3

I am frame 3!

Done M | | B |lmamssmaned| ~

Figure 15-10 A possible appearance once the Frame 3 option is chosen

may want to offer your viewers a way to break out of the other site’s frames, or you may want
to do it automatically.

Using an Optional Link
You can place a link on your page for viewers to click to break out of frames. You need to add
a special target in the <a> tag, as shown here:

<a href="http://yoursite.com" target= " top"sBreak Out of Frames</a>

The target of _top tells the browser to use the full window when opening the URL in the link,
rather than opening the link inside a frame. You just need to replace the URL in the tag with
your own.

NOTE

Using a farget of _top in an anchor (<a>) tag tells the browser to use the full window
when opening the URL in the link, rather than opening the link inside a frame.

If you use frames on your site and want to be sure viewers aren’t stuck in your frames
when going to a new site, you can use this same target to be sure the new URL is opened in the
full window rather than in the frame. The following code shows an example of this:

<a href="http://www.pageresource.com" target= " top"sAnother Site</a>

This technique doesn’t even require JavaScript (you could do it with JavaScript if you really
felt like it), but the next technique does.

425



426

JavaScript: A Beginner’s Guide

Automatically Removing Frames
To remove frames automatically, you must find out if your Web page is inside a frameset when
it loads. If your page doesn’t use frames, then you can determine whether or not it is stuck in
frames from another site pretty easily by using the length property.

If your page is inside a frameset, the value of the length property will be greater than O
for the frames array in the main window. Thus, you can check for a value greater than 1 in the
length property and reload your page in the full window if there are frames. Try this code:

<head> The number of frames in th
. o . . e number of frames in the
<script . type="text/javascript"> main window is checked
function check frames() ({

if (top.frames.length > 0) {4—'

top.location="http://yoursite.com"; ¢— The main window is resef fo show in the
) entire window if frames are present

1
</scripts>
</head>
<body onload="check frames();"><e——— The function is called
<hl>Welcome to my Page</hl>
</body>

The check_frames() function is called as the page loads. The function checks whether any
frames are in the main window. If so, then the location of the top window is changed to the
URL of your page, making your page open in the main window instead of within a frame. You
would replace the URL shown in the code with your own URL.

Sending Viewers to Frames
When you use frames, a visitor might enter your site on one of your pages meant to be inside
your frameset rather than in the full window. This can happen when a search engine is used,
which may index the document and list it. The viewer sees it but may not be able to navigate
through the rest of the site because the frames aren’t there.

The following code checks whether the page is loaded without frames and redirects the
viewer to the main page of the site if the frames have not been loaded:

<head>
<script type="text/javascript">
function check_frames() { This time the check is fo see whether the main
if (top.frames.length == 0) {<«———— window is lacking the necessary frames

top.location="http://www.yoursite.com";

}

}
</script>
</head>
<body onload="check frames();">
<hl>Some Inner Page</hl>
I should be inside a frameset; the script that is run
when this page loads will check to see if I am.
</body>



Chapter 15:  JavaScript and Frames

Ask the Expert

Q: Why do I need to nest framesets to get rows inside columns or columns inside rows?
Why can’t I just use both the rows and cols attributes on one frameset instead?

A: You must nest framesets so that the browser knows where to place all of the rows and
columns. If you just tell the browser you want three rows and two columns, it won’t
necessarily know where to place all of them. For instance, does one of the columns hold
the three rows, or does one of the rows hold both of the columns? When the framesets are
nested, the browser knows where you want things to appear.

Q: What is that “self” thing again?

=

Flip back to Chapter 10 for a short explanation of this concept. Basically, it’s another way
to write “window.” Instead of window.location, you can write self.location. (You can do
this with any of the window properties or methods.) It is just a way to help make the code
clearer, because with frames, in some cases, it’s easier to determine what the code means if
you use “‘self” rather than “window.”

Q: Why would I ever want to change more than one frame at a time?

A: Some Web sites have so much information that, for navigational purposes, changing more
than one frame at a time can be helpful. Also, if you have more than two frames, sometimes
it’s helpful to be able to change all but one of the frames, leaving the lone frame the same
for navigation.

Q: 1 don’t like frames and don’t plan to use them. Do I really need to read this stuff
about them?

A: Although you may not use them yourself, learning about frames can help you if you
need to code them for someone else, or debug someone’s code, break out of frames from
other Web sites, or even if you just want to understand what a Web site is doing while
you’re surfing.

The check_frames() function checks whether the length property is 0. If so, your frameset
hasn’t been loaded. In that case, the viewer is taken to your main page, where your frameset
can be loaded. You would replace the URL in the code with the URL for the document
containing your frameset (usually your main page).

427



428  JavaScript: A Beginner’s Guide

Using Variables Across Frames

Another advantage of using frames is that you can use variables stored in one frame in another
frame. You could store form information in one frame and use it again in another frame after
that frame has loaded a new document, for instance.

The script you’ll create takes information a viewer entered in a form and stores it in the
other frame when the viewer clicks the button to send the information. The information can
then be used on the page to which the viewer is sent.

First, you need a frameset. You can use a simple two-frame system for this, like the
following code:

<html>

<frameset cols="150,*">

<frame src="framel.html" name="left side"></framex>

<frame src="frame2.html" name="right side"></frame>

</frameset>

<noframes>

Use the link below to go to the frameless version of the site.<br />
<a href="noframes.html">Frameless Site</a>

</noframess>

</html>

Save this as frameset6.html. You should have a frame on the left (left_side) that spans 150 pixels
and a frame on the right (right_side) that takes the remaining window space.

In the left frame, you want a document that contains some variables. This is the frame that
won’t be changed, so it can keep track of the variable values while the contents in the other
frame are changed. For this script, you want to have a variable named thename and a variable
named thefood to hold information the viewer will enter into a form in the other frame. Here is
some code for framel.html:

<head>
<script type="text/javascript's>

var thename="" ;} Two variables are declared to hold values

var thefood=""; that will be taken from the other frame
</scripts>
</head>
<body>
This is framel.html; it holds the variable values.
You can put any content you like here.
</body>

The variables are initially given a value of an empty string. The values will be changed
when the viewer sends the information from the other frame.

The document shown initially in the right frame contains a form that allows the viewer to
enter a name. This name is then stored in the thename variable in the left frame. The code for
frame2.html 